Copyright © 2007 Linux Foundation
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".
Portions of the text may be copyrighted by the following parties:
The Regents of the University of California
Free Software Foundation
Ian F. Darwin
Paul Vixie
BSDI (now Wind River)
Andrew G Morgan
Jean-loup Gailly and Mark Adler
Massachusetts Institute of Technology
Apple Inc.
Easy Software Products
artofcode LLC
Till Kamppeter
Manfred Wassman
Python Software Foundation
These excerpts are being used in accordance with their respective licenses.
Linux is the registered trademark of Linus Torvalds in the U.S. and other countries.
UNIX is a registered trademark of The Open Group.
LSB is a trademark of the Linux Foundation in the United States and other countries.
AMD is a trademark of Advanced Micro Devices, Inc.
Intel and Itanium are registered trademarks and Intel386 is a trademark of Intel Corporation.
PowerPC is a registered trademark and PowerPC Architecture is a trademark of the IBM Corporation.
S/390 is a registered trademark of the IBM Corporation.
OpenGL is a registered trademark of Silicon Graphics, Inc.
This is version 3.2 of the Linux Standard Base Core Specification for PPC32. This specification is part of a family of specifications under the general title "Linux Standard Base". Developers of applications or implementations interested in using the LSB trademark should see the Linux Foundation Certification Policy for details.
The LSB defines a binary interface for application programs that are compiled and packaged for LSB-conforming implementations on many different hardware architectures. Since a binary specification shall include information specific to the computer processor architecture for which it is intended, it is not possible for a single document to specify the interface for all possible LSB-conforming implementations. Therefore, the LSB is a family of specifications, rather than a single one.
This document should be used in conjunction with the documents it references. This document enumerates the system components it includes, but descriptions of those components may be included entirely or partly in this document, partly in other documents, or entirely in other reference documents. For example, the section that describes system service routines includes a list of the system routines supported in this interface, formal declarations of the data structures they use that are visible to applications, and a pointer to the underlying referenced specification for information about the syntax and semantics of each call. Only those routines not described in standards referenced by this document, or extensions to those standards, are described in the detail. Information referenced in this way is as much a part of this document as is the information explicitly included here.
The specification carries a version number of either the form x.y or x.y.z. This version number carries the following meaning:
The first number (x) is the major version number. All versions with the same major version number should share binary compatibility. Any addition or deletion of a new library results in a new version number. Interfaces marked as deprecated may be removed from the specification at a major version change.
The second number (y) is the minor version number. Individual interfaces may be added if all certified implementations already had that (previously undocumented) interface. Interfaces may be marked as deprecated at a minor version change. Other minor changes may be permitted at the discretion of the LSB workgroup.
The third number (z), if present, is the editorial level. Only editorial changes should be included in such versions.
Since this specification is a descriptive Application Binary Interface, and not a source level API specification, it is not possible to make a guarantee of 100% backward compatibility between major releases. However, it is the intent that those parts of the binary interface that are visible in the source level API will remain backward compatible from version to version, except where a feature marked as "Deprecated" in one release may be removed from a future release.
Implementors are strongly encouraged to make use of symbol versioning to permit simultaneous support of applications conforming to different releases of this specification.
The Linux Standard Base (LSB) defines a system interface for compiled applications and a minimal environment for support of installation scripts. Its purpose is to enable a uniform industry standard environment for high-volume applications conforming to the LSB.
These specifications are composed of two basic parts: A common specification ("LSB-generic" or "generic LSB"), ISO/IEC 23360 Part 1, describing those parts of the interface that remain constant across all implementations of the LSB, and an architecture-specific part ("LSB-arch" or "archLSB") describing the parts of the interface that vary by processor architecture. Together, the LSB-generic and the relevant architecture-specific part of ISO/IEC 23360 for a single hardware architecture provide a complete interface specification for compiled application programs on systems that share a common hardware architecture.
ISO/IEC 23360 Part 1, the LSB-generic document, should be used in conjunction with an architecture-specific part. Whenever a section of the LSB-generic specification is supplemented by architecture-specific information, the LSB-generic document includes a reference to the architecture part. Architecture-specific parts of ISO/IEC 23360 may also contain additional information that is not referenced in the LSB-generic document.
The LSB contains both a set of Application Program Interfaces (APIs) and Application Binary Interfaces (ABIs). APIs may appear in the source code of portable applications, while the compiled binary of that application may use the larger set of ABIs. A conforming implementation provides all of the ABIs listed here. The compilation system may replace (e.g. by macro definition) certain APIs with calls to one or more of the underlying binary interfaces, and may insert calls to binary interfaces as needed.
The LSB is primarily a binary interface definition. Not all of the source level APIs available to applications may be contained in this specification.
This is the PPC32 architecture specific Core part of the Linux Standard Base (LSB). This part supplements the generic LSB Core module with those interfaces that differ between architectures.
Interfaces described in this part of ISO/IEC 23360 are mandatory except where explicitly listed otherwise. Core interfaces may be supplemented by other modules; all modules are built upon the core.
The following referenced documents are indispensable for the application of this document. For dated references, only the edition cited applies. For undated references, the latest edition of the referenced document (including any amendments) applies.
Note: Where copies of a document are available on the World Wide Web, a Uniform Resource Locator (URL) is given for informative purposes only. This may point to a more recent copy of the referenced specification, or may be out of date. Reference copies of specifications at the revision level indicated may be found at the Linux Foundation's Reference Specifications site.
Table 2-1. Normative References
Name | Title | URL |
---|---|---|
ISO/IEC 23360 Part 1 | ISO/IEC 23360:2005 Linux Standard Base - Part 1 Generic Specification | http://www.linuxbase.org/spec/ |
Filesystem Hierarchy Standard | Filesystem Hierarchy Standard (FHS) 2.3 | http://www.pathname.com/fhs/ |
ISO C (1999) | ISO/IEC 9899: 1999, Programming Languages --C | |
ISO POSIX (2003) | ISO/IEC 9945-1:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 1: Base Definitions ISO/IEC 9945-2:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 2: System Interfaces ISO/IEC 9945-3:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 3: Shell and Utilities ISO/IEC 9945-4:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 4: Rationale Including Technical Cor. 1: 2004 | http://www.unix.org/version3/ |
Large File Support | Large File Support | http://www.UNIX-systems.org/version2/whatsnew/lfs20mar.html |
SUSv2 | CAE Specification, January 1997, System Interfaces and Headers (XSH),Issue 5 (ISBN: 1-85912-181-0, C606) | http://www.opengroup.org/publications/catalog/un.htm |
SVID Issue 3 | American Telephone and Telegraph Company, System V Interface Definition, Issue 3; Morristown, NJ, UNIX Press, 1989. (ISBN 0201566524) | |
SVID Issue 4 | System V Interface Definition, Fourth Edition | |
System V ABI | System V Application Binary Interface, Edition 4.1 | http://www.caldera.com/developers/devspecs/gabi41.pdf |
System V ABI Update | System V Application Binary Interface - DRAFT - 17 December 2003 | http://www.caldera.com/developers/gabi/2003-12-17/contents.html |
System V Application Binary Interface PowerPC™ Processor Supplement | System V Application Binary Interface PowerPC™ Processor Supplement | http://refspecs.linux-foundation.org/elf/elfspec_ppc.pdf |
The PowerPC™ Microprocessor Family | The PowerPC™ Microprocessor Family: The Programming Environment Manual for 32 and 64-bit Microprocessors | http://refspecs.linux-foundation.org/PPC_hrm.2005mar31.pdf |
X/Open Curses | CAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3, C610), plus Corrigendum U018 | http://www.opengroup.org/publications/catalog/un.htm |
In addition, the specifications listed below provide essential background information to implementors of this specification. These references are included for information only.
Table 2-2. Other References
Name | Title | URL |
---|---|---|
DWARF Debugging Information Format, Revision 2.0.0 | DWARF Debugging Information Format, Revision 2.0.0 (July 27, 1993) | http://refspecs.linux-foundation.org/dwarf/dwarf-2.0.0.pdf |
DWARF Debugging Information Format, Revision 3.0.0 (Draft) | DWARF Debugging Information Format, Revision 3.0.0 (Draft) | http://refspecs.linux-foundation.org/dwarf |
IEC 60559/IEEE 754 Floating Point | IEC 60559:1989 Binary floating-point arithmetic for microprocessor systems | http://www.ieee.org/ |
ISO/IEC TR14652 | ISO/IEC Technical Report 14652:2002 Specification method for cultural conventions | |
ITU-T V.42 | International Telecommunication Union Recommendation V.42 (2002): Error-correcting procedures for DCEs using asynchronous-to-synchronous conversionITUV | http://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.42 |
Li18nux Globalization Specification | LI18NUX 2000 Globalization Specification, Version 1.0 with Amendment 4 | http://www.openi18n.org/docs/html/LI18NUX-2000-amd4.htm |
Linux Allocated Device Registry | LINUX ALLOCATED DEVICES | http://www.lanana.org/docs/device-list/devices.txt |
PAM | Open Software Foundation, Request For Comments: 86.0 , October 1995, V. Samar & R.Schemers (SunSoft) | http://www.opengroup.org/tech/rfc/mirror-rfc/rfc86.0.txt |
RFC 1321: The MD5 Message-Digest Algorithm | IETF RFC 1321: The MD5 Message-Digest Algorithm | http://www.ietf.org/rfc/rfc1321.txt |
RFC 1831/1832 RPC & XDR | IETF RFC 1831 & 1832 | http://www.ietf.org/ |
RFC 1833: Binding Protocols for ONC RPC Version 2 | IETF RFC 1833: Binding Protocols for ONC RPC Version 2 | http://www.ietf.org/rfc/rfc1833.txt |
RFC 1950: ZLIB Compressed Data Format Specication | IETF RFC 1950: ZLIB Compressed Data Format Specification | http://www.ietf.org/rfc/rfc1950.txt |
RFC 1951: DEFLATE Compressed Data Format Specification | IETF RFC 1951: DEFLATE Compressed Data Format Specification version 1.3 | http://www.ietf.org/rfc/rfc1951.txt |
RFC 1952: GZIP File Format Specification | IETF RFC 1952: GZIP file format specification version 4.3 | http://www.ietf.org/rfc/rfc1952.txt |
RFC 2440: OpenPGP Message Format | IETF RFC 2440: OpenPGP Message Format | http://www.ietf.org/rfc/rfc2440.txt |
RFC 2821:Simple Mail Transfer Protocol | IETF RFC 2821: Simple Mail Transfer Protocol | http://www.ietf.org/rfc/rfc2821.txt |
RFC 2822:Internet Message Format | IETF RFC 2822: Internet Message Format | http://www.ietf.org/rfc/rfc2822.txt |
RFC 791:Internet Protocol | IETF RFC 791: Internet Protocol Specification | http://www.ietf.org/rfc/rfc791.txt |
RPM Package Format | RPM Package Format V3.0 | http://www.rpm.org/max-rpm/s1-rpm-file-format-rpm-file-format.html |
SUSv2 Commands and Utilities | The Single UNIX Specification(SUS) Version 2, Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604) | http://www.opengroup.org/publications/catalog/un.htm |
zlib Manual | zlib 1.2 Manual | http://www.gzip.org/zlib/ |
The libraries listed in Table 3-1 shall
be available on PPC32 Linux Standard Base systems, with the specified
runtime names. These names override or supplement the names specified
in the generic LSB (ISO/IEC 23360 Part 1) specification. The specified program interpreter,
referred to as proginterp in this table,
shall be used to load the shared libraries specified by
DT_NEEDED
entries at run time.
Table 3-1. Standard Library Names
These libraries will be in an implementation-defined directory which the dynamic linker shall search by default.
A conforming implementation is necessarily architecture specific, and must provide the interfaces specified by both the generic LSB Core specification (ISO/IEC 23360 Part 1) and the relevant architecture specific part of ISO/IEC 23360.
Rationale: An implementation must provide at least the interfaces specified in these specifications. It may also provide additional interfaces.
A conforming implementation shall satisfy the following requirements:
A processor architecture represents a family of related processors which may not have identical feature sets. The architecture specific parts of ISO/IEC 23360 that supplement this specification for a given target processor architecture describe a minimum acceptable processor. The implementation shall provide all features of this processor, whether in hardware or through emulation transparent to the application.
The implementation shall be capable of executing compiled applications having the format and using the system interfaces described in this document.
The implementation shall provide libraries containing the interfaces specified by this document, and shall provide a dynamic linking mechanism that allows these interfaces to be attached to applications at runtime. All the interfaces shall behave as specified in this document.
The map of virtual memory provided by the implementation shall conform to the requirements of this document.
The implementation's low-level behavior with respect to function call linkage, system traps, signals, and other such activities shall conform to the formats described in this document.
The implementation shall provide all of the mandatory interfaces in their entirety.
The implementation may provide one or more of the optional interfaces. Each optional interface that is provided shall be provided in its entirety. The product documentation shall state which optional interfaces are provided.
The implementation shall provide all files and utilities specified as part of this document in the format defined here and in other referenced documents. All commands and utilities shall behave as required by this document. The implementation shall also provide all mandatory components of an application's runtime environment that are included or referenced in this document.
The implementation, when provided with standard data formats and values at a named interface, shall provide the behavior defined for those values and data formats at that interface. However, a conforming implementation may consist of components which are separately packaged and/or sold. For example, a vendor of a conforming implementation might sell the hardware, operating system, and windowing system as separately packaged items.
The implementation may provide additional interfaces with different names. It may also provide additional behavior corresponding to data values outside the standard ranges, for standard named interfaces.
A conforming application is necessarily architecture specific, and must conform to both the generic LSB Core specification (ISO/IEC 23360 Part 1)and the relevant architecture specific part of ISO/IEC 23360.
A conforming application shall satisfy the following requirements:
Its executable files shall be either shell scripts or object files in the format defined for the Object File Format system interface.
Its object files shall participate in dynamic linking as defined in the Program Loading and Linking System interface.
It shall employ only the instructions, traps, and other low-level facilities defined in the Low-Level System interface as being for use by applications.
If it requires any optional interface defined in this document in order to be installed or to execute successfully, the requirement for that optional interface shall be stated in the application's documentation.
It shall not use any interface or data format that is not required to be provided by a conforming implementation, unless:
If such an interface or data format is supplied by another application through direct invocation of that application during execution, that application shall be in turn an LSB conforming application.
The use of that interface or data format, as well as its source, shall be identified in the documentation of the application.
It shall not use any values for a named interface that are reserved for vendor extensions.
For the purposes of this document, the following definitions, as specified in the ISO/IEC Directives, Part 2, 2001, 4th Edition, apply:
For the purposes of this document, the following terms apply:
The architectural part of the LSB Specification which describes the specific parts of the interface that are platform specific. The archLSB is complementary to the gLSB.
The total set of interfaces that are available to be used in the compiled binary code of a conforming application.
The common part of the LSB Specification that describes those parts of the interface that remain constant across all hardware implementations of the LSB.
Describes a value or behavior that is not defined by this document but is selected by an implementor. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence of the value or behavior. An application that relies on such a value or behavior cannot be assured to be portable across conforming implementations. The implementor shall document such a value or behavior so that it can be used correctly by an application.
A file that is read by an interpreter (e.g., awk). The first line of the shell script includes a reference to its interpreter binary.
The set of interfaces that are available to be used in the source code of a conforming application.
Describes the nature of a value or behavior not defined by this document which results from use of an invalid program construct or invalid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.
Describes the nature of a value or behavior not specified by this document which results from use of a valid program construct or valid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.
Other terms and definitions used in this document shall have the same meaning as defined in Chapter 3 of the Base Definitions volume of ISO POSIX (2003).
Throughout this document, the following typographic conventions are used:
function() | the name of a function | |
command | the name of a command or utility | |
CONSTANT | a constant value | |
parameter | a parameter | |
variable | a variable |
Throughout this specification, several tables of interfaces are presented. Each entry in these tables has the following format:
name | the name of the interface | |
(symver) | An optional symbol version identifier, if required. | |
[refno] | A reference number indexing the table of referenced specifications that follows this table. |
For example,
refers to the interface named forkpty() with symbol versionGLIBC_2.0
that is defined in the
SUSv3 reference.
Note: Symbol versions are defined in the architecture specific parts of ISO/IEC 23360 only.
Executable and Linking Format (ELF) defines the object format for compiled applications. This specification supplements the information found in System V ABI Update and System V Application Binary Interface PowerPC™ Processor Supplement, and is intended to document additions made since the publication of that document.
The PowerPC Architecture is specified by the following documents:
Only the features of the PowerPC 603 processor instruction set may be assumed to be present. An application should determine if any additional instruction set features are available before using those additional features. If a feature is not present, then the application may not use it.
Note: The presence of a hardware floating point unit is optional. However, applications requiring floating point arithmetic may experience substantial performance penalties on system without such a unit.
Conforming applications may use only instructions which do not require elevated privileges.
Conforming applications shall not invoke the implementations underlying system call interface directly. The interfaces in the implementation base libraries shall be used instead.
Rationale: Implementation-supplied base libraries may use the system call interface but applications must not assume any particular operating system or kernel version is present.
An implementation must support the 32-bit computation mode as described in The PowerPC™ Microprocessor Family. Conforming applications shall not use instructions provided only for the 64-bit mode.
Applications conforming to this specification must provide feedback to the user if a feature that is required for correct execution of the application is not present. Applications conforming to this specification should attempt to execute in a diminished capacity if a required feature is not present.
This specification does not provide any performance guarantees of a conforming system. A system conforming to this specification may be implemented in either hardware or software.
LSB-conforming applications shall use the data representation as defined in Chapter 3 "Data Representation" section of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall use big-endian byte ordering. LSB-conforming implementations may support little-endian applications.
In addition to the fundamental types specified in Chapter 3 "Fundamental Types" section of the System V Application Binary Interface PowerPC™ Processor Supplement, a 64 bit data type is defined here.
Table 8-1. Scalar Types
Type | C | sizeof | Alignment (bytes) | IntelI386 Architecture |
---|---|---|---|---|
Integral | long long | 8 | 8 | signed double word |
signed long long | ||||
unsigned long long | 8 | 8 | unsigned double word |
LSB-conforming applications shall not use the long double fundamental type.
LSB-conforming applications shall use the function calling sequence as defined in Chapter 3, Section "Function Calling Sequence" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall use only the registers described in Chapter 3, Section "Function Calling Sequence", Subsection "Registers" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall use only the registers described in Chapter 3, Section "Function Calling Sequence", Subsection "Registers" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall use stack frames as described in Chapter 3, Section "Function Calling Sequence", Subsection "The Stack Frame" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall pass parameters to functions as described in Chapter 3, Section "Function Calling Sequence", Subsection "Parameter Passing" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall not return structures or unions in registers as described in Chapter 3, Section "Function Calling Sequence", Subsection "Return Values" of System V Application Binary Interface PowerPC™ Processor Supplement. Instead they must use the alternative method of passing the address of a buffer in a register as shown in the same section.
LSB-conforming applications shall use the Operating System Interfaces as defined in Chapter 3, Section "Operating System Interface" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall use the Exception Interfaces as defined in Chapter 3, Section "Exception Interface" of the System V Application Binary Interface PowerPC™ Processor Supplement.
The LSB does not specify debugging information, however, if the DWARF specification is implemented, see Chapter 3, Section "DWARF Definition" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall follow the guidelines defined in Chapter 3, Section "Exception Interface" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall use the Process initialization as defined in Chapter 3, Section "Process Initialization" of the System V Application Binary Interface PowerPC™ Processor Supplement.
Contrary to what is stated in the Registers part of chapter 3 of the System V Application Binary Interface PowerPC™ Processor Supplement there are no values set in registers r3, r4, r5, r6 and r7. Instead the values specified to appear in all of those registers except r7 are placed on the stack. The value to be placed into register r7, the termination function pointer is not passed to the process.
Figure 3-31 in System V Application Binary Interface PowerPC™ Processor Supplement is incorrect. The initial stack must look like the following.
In addition to the types defined in Chapter 3, Section "Process Initialization", Subsection "Process Stack" of the System V Application Binary Interface PowerPC™ Processor Supplement the following are also supported:
Table 8-2. Extra Auxiliary Types
Name | Value | Comment |
---|---|---|
AT_NOTELF | 10 | Program is not ELF |
AT_UID | 11 | Real uid |
AT_EUID | 12 | Effective uid |
AT_GID | 13 | Real gid |
AT_EGID | 14 | Effective gid |
AT_PLATFORM | 15 | String identifying CPU for optimizations |
AT_HWCAP | 16 | Arch dependent hints at CPU capabilities |
AT_CLKTCK | 17 | Frequency at which times() increments |
AT_DCACHEBSIZE | 19 | The a_val member of this entry gives the data cache block size for processors on the system on which this program is running. If the processors have unified caches, AT_DCACHEBSIZE is the same as AT_UCACHEBSIZE |
AT_ICACHEBSIZE | 20 | The a_val member of this entyr gives the instruction cache block size for processors on the system on which this program is running. If the processors have unified caches, AT_DCACHEBSIZE is the same as AT_UCACHEBSIZE. |
AT_UCACHEBSIZE | 21 | The a_val member of this entry is zero if the processors on the system on which this program is running do not have a unified instruction and data cache. Otherwise it gives the cache block size. |
AT_IGNOREPPC | 22 | All entries of this type should be ignored. |
The last three entries in the table above override the values specified in System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications may use the coding examples given in Chapter 3, Section "Coding Examples" of the System V Application Binary Interface PowerPC™ Processor Supplement to guide implemention of fundamental operations in the following areas.
LSB-Conforming applications may use any of the code models described in Chapter 3, Section "Coding Examples", Subsection "Code Model Overview" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-Conforming applications may use examples described in Chapter 3, Section "Coding Examples", Subsection "Function Prologue and Epilogue" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-Conforming applications may use examples described in Chapter 3, Section "Coding Examples", Subsection "Data Objects" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-Conforming applications may use examples described in Chapter 3, Section "Coding Examples", Subsection "Function Calls" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-Conforming applications may use examples described in Chapter 3, Section "Coding Examples", Subsection "Branching" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-Conforming applications shall only use variable arguments to functions in the manner described in Chapter 3, Section "Function Calling Sequence", Subsection "Variable Argument Lists" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-Conforming applications shall follow guidelines discussed in in Chapter 3, Section "Coding Examples", Subsection "Dynamic Stack Space Allocation" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming implementations shall support an object file format, called Executable and Linking Format (ELF) as defined by the System V Application Binary Interface PowerPC™ Processor Supplement and as supplemented by the Linux Standard Base Specification and this document. LSB-conforming implementations need not support tags related functionality. LSB-conforming applications must not rely on tags related functionality.
LSB-conforming applications shall use the Machine Information as defined in System V Application Binary Interface PowerPC™ Processor Supplement, Chapter 4, Section "ELF Header" Subsection "Machine Information".
The following sections are defined in the System V Application Binary Interface PowerPC™ Processor Supplement Chapter 4, Section "Section", Subsection "Special Sections".
Table 9-1. ELF Special Sections
Name | Type | Attributes |
---|---|---|
.got | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE+SHF_EXECINSTR |
.plt | SHT_NOBITS | SHF_ALLOC+SHF_WRITE+SHF_EXECINSTR |
.sdata | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
The following Linux PPC32 specific sections are defined here.
Table 9-2. Additional Special Sections
Name | Type | Attributes |
---|---|---|
.got2 | SHT_PROGBITS | SHF_ALLOC+SHF_WRITE |
.rela.bss | SHT_RELA | SHF_ALLOC |
.rela.dyn | SHT_RELA | SHF_ALLOC |
.rela.got | SHT_RELA | SHF_ALLOC |
.rela.got2 | SHT_RELA | SHF_ALLOC |
.rela.plt | SHT_RELA | SHF_ALLOC |
.rela.sbss | SHT_RELA | SHF_ALLOC |
.sbss | SHT_NOBITS | SHF_ALLOC+SHF_WRITE |
.sdata2 | SHT_PROGBITS | SHF_ALLOC |
LSB-conforming applications shall use the Symbol Table as defined in Chapter 4, Section "Symbol Table" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall use Relocations as defined in Chapter 4, Section "Relocation" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming applications shall support the relocation types as defined in the Chapter 4, Section "Relocation" Subsection "Relocation Typles" except for the relocation type R_PPC_ADDR30 as specified in Table 4-8 of System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming implementations shall support the object file information and system actions that create running programs as specified in the System V ABI, System V Application Binary Interface PowerPC™ Processor Supplement Chapter 5 and as supplemented by the generic Linux Standard Base Specification and this document.
LSB-conforming applications shall support the program header as defined in the System V Application Binary Interface PowerPC™ Processor Supplement Chapter 5, Section "Program Loading".
LSB-conforming implementations shall map file pages to virtual memory pages as described in Section "Program Loading" of the System V Application Binary Interface PowerPC™ Processor Supplement, Chapter 5.
LSB-conforming implementations shall provide dynamic linking as specified in Section "Dynamic Linking" of the System V Application Binary Interface PowerPC™ Processor Supplement, Chapter 5.
The following dynamic entries are defined in the System V Application Binary Interface PowerPC™ Processor Supplement, Chapter 5, Section "Dynamic Linking".
In addtion the following dynamic entries are also supported:
DT_RELACOUNT | The number of relative relocations in .rela.dyn |
LSB-conforming implementations shall support a Global Offset Table as described in Chapter 5, Section "Dynamic Linking" of the System V Application Binary Interface PowerPC™ Processor Supplement.
Function addresses shall behave as described in Chapter 5, Section "Dynamic Linking", Subsection "Function Addresses" of the System V Application Binary Interface PowerPC™ Processor Supplement.
LSB-conforming implementations shall support a Procedure Linkage Table as described in Chapter 5, Section "Dynamic Linking", Subsection "Procedure Linkage Table" of the System V Application Binary Interface PowerPC™ Processor Supplement.
An LSB-conforming implementation shall support base libraries which provide interfaces for accessing the operating system, processor and other hardware in the system.
Only those interfaces that are unique to the PowerPC 32 platform are defined here. This section should be used in conjunction with the corresponding section in the generic Linux Standard Base Core Specification.
Table 11-1 defines the library name and shared object name for the libc library
The behavior of the interfaces in this library is specified by the following specifications:
[LFS] Large File Support |
[LSB] ISO/IEC 23360 Part 1 |
[SUSv2] SUSv2 |
[SUSv3] ISO POSIX (2003) |
[SVID.3] SVID Issue 3 |
[SVID.4] SVID Issue 4 |
An LSB conforming implementation shall provide the architecture specific functions for RPC specified in Table 11-2, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-2. libc - RPC Function Interfaces
authnone_create(GLIBC_2.0) [SVID.4] | clnt_create(GLIBC_2.0) [SVID.4] | clnt_pcreateerror(GLIBC_2.0) [SVID.4] | clnt_perrno(GLIBC_2.0) [SVID.4] |
clnt_perror(GLIBC_2.0) [SVID.4] | clnt_spcreateerror(GLIBC_2.0) [SVID.4] | clnt_sperrno(GLIBC_2.0) [SVID.4] | clnt_sperror(GLIBC_2.0) [SVID.4] |
key_decryptsession(GLIBC_2.1) [SVID.3] | pmap_getport(GLIBC_2.0) [LSB] | pmap_set(GLIBC_2.0) [LSB] | pmap_unset(GLIBC_2.0) [LSB] |
svc_getreqset(GLIBC_2.0) [SVID.3] | svc_register(GLIBC_2.0) [LSB] | svc_run(GLIBC_2.0) [LSB] | svc_sendreply(GLIBC_2.0) [LSB] |
svcerr_auth(GLIBC_2.0) [SVID.3] | svcerr_decode(GLIBC_2.0) [SVID.3] | svcerr_noproc(GLIBC_2.0) [SVID.3] | svcerr_noprog(GLIBC_2.0) [SVID.3] |
svcerr_progvers(GLIBC_2.0) [SVID.3] | svcerr_systemerr(GLIBC_2.0) [SVID.3] | svcerr_weakauth(GLIBC_2.0) [SVID.3] | svctcp_create(GLIBC_2.0) [LSB] |
svcudp_create(GLIBC_2.0) [LSB] | xdr_accepted_reply(GLIBC_2.0) [SVID.3] | xdr_array(GLIBC_2.0) [SVID.3] | xdr_bool(GLIBC_2.0) [SVID.3] |
xdr_bytes(GLIBC_2.0) [SVID.3] | xdr_callhdr(GLIBC_2.0) [SVID.3] | xdr_callmsg(GLIBC_2.0) [SVID.3] | xdr_char(GLIBC_2.0) [SVID.3] |
xdr_double(GLIBC_2.0) [SVID.3] | xdr_enum(GLIBC_2.0) [SVID.3] | xdr_float(GLIBC_2.0) [SVID.3] | xdr_free(GLIBC_2.0) [SVID.3] |
xdr_int(GLIBC_2.0) [SVID.3] | xdr_long(GLIBC_2.0) [SVID.3] | xdr_opaque(GLIBC_2.0) [SVID.3] | xdr_opaque_auth(GLIBC_2.0) [SVID.3] |
xdr_pointer(GLIBC_2.0) [SVID.3] | xdr_reference(GLIBC_2.0) [SVID.3] | xdr_rejected_reply(GLIBC_2.0) [SVID.3] | xdr_replymsg(GLIBC_2.0) [SVID.3] |
xdr_short(GLIBC_2.0) [SVID.3] | xdr_string(GLIBC_2.0) [SVID.3] | xdr_u_char(GLIBC_2.0) [SVID.3] | xdr_u_int(GLIBC_2.0) [LSB] |
xdr_u_long(GLIBC_2.0) [SVID.3] | xdr_u_short(GLIBC_2.0) [SVID.3] | xdr_union(GLIBC_2.0) [SVID.3] | xdr_vector(GLIBC_2.0) [SVID.3] |
xdr_void(GLIBC_2.0) [SVID.3] | xdr_wrapstring(GLIBC_2.0) [SVID.3] | xdrmem_create(GLIBC_2.0) [SVID.3] | xdrrec_create(GLIBC_2.0) [SVID.3] |
xdrrec_eof(GLIBC_2.0) [SVID.3] | xdrstdio_create(GLIBC_2.0) [LSB] |
An LSB conforming implementation shall provide the architecture specific functions for System Calls specified in Table 11-3, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-3. libc - System Calls Function Interfaces
__fxstat(GLIBC_2.0) [LSB] | __getpgid(GLIBC_2.0) [LSB] | __lxstat(GLIBC_2.0) [LSB] | __xmknod(GLIBC_2.0) [LSB] |
__xstat(GLIBC_2.0) [LSB] | access(GLIBC_2.0) [SUSv3] | acct(GLIBC_2.0) [LSB] | alarm(GLIBC_2.0) [SUSv3] |
brk(GLIBC_2.0) [SUSv2] | chdir(GLIBC_2.0) [SUSv3] | chmod(GLIBC_2.0) [SUSv3] | chown(GLIBC_2.1) [SUSv3] |
chroot(GLIBC_2.0) [SUSv2] | clock(GLIBC_2.0) [SUSv3] | close(GLIBC_2.0) [SUSv3] | closedir(GLIBC_2.0) [SUSv3] |
creat(GLIBC_2.0) [SUSv3] | dup(GLIBC_2.0) [SUSv3] | dup2(GLIBC_2.0) [SUSv3] | execl(GLIBC_2.0) [SUSv3] |
execle(GLIBC_2.0) [SUSv3] | execlp(GLIBC_2.0) [SUSv3] | execv(GLIBC_2.0) [SUSv3] | execve(GLIBC_2.0) [SUSv3] |
execvp(GLIBC_2.0) [SUSv3] | exit(GLIBC_2.0) [SUSv3] | fchdir(GLIBC_2.0) [SUSv3] | fchmod(GLIBC_2.0) [SUSv3] |
fchown(GLIBC_2.0) [SUSv3] | fcntl(GLIBC_2.0) [LSB] | fdatasync(GLIBC_2.0) [SUSv3] | flock(GLIBC_2.0) [LSB] |
fork(GLIBC_2.0) [SUSv3] | fstatfs(GLIBC_2.0) [LSB] | fstatvfs(GLIBC_2.1) [SUSv3] | fsync(GLIBC_2.0) [SUSv3] |
ftime(GLIBC_2.0) [SUSv3] | ftruncate(GLIBC_2.0) [SUSv3] | getcontext(GLIBC_2.3.4) [SUSv3] | getdtablesize(GLIBC_2.0) [LSB] |
getegid(GLIBC_2.0) [SUSv3] | geteuid(GLIBC_2.0) [SUSv3] | getgid(GLIBC_2.0) [SUSv3] | getgroups(GLIBC_2.0) [SUSv3] |
getitimer(GLIBC_2.0) [SUSv3] | getloadavg(GLIBC_2.2) [LSB] | getpagesize(GLIBC_2.0) [LSB] | getpgid(GLIBC_2.0) [SUSv3] |
getpgrp(GLIBC_2.0) [SUSv3] | getpid(GLIBC_2.0) [SUSv3] | getppid(GLIBC_2.0) [SUSv3] | getpriority(GLIBC_2.0) [SUSv3] |
getrlimit(GLIBC_2.2) [SUSv3] | getrusage(GLIBC_2.0) [SUSv3] | getsid(GLIBC_2.0) [SUSv3] | getuid(GLIBC_2.0) [SUSv3] |
getwd(GLIBC_2.0) [SUSv3] | initgroups(GLIBC_2.0) [LSB] | ioctl(GLIBC_2.0) [LSB] | kill(GLIBC_2.0) [LSB] |
killpg(GLIBC_2.0) [SUSv3] | lchown(GLIBC_2.0) [SUSv3] | link(GLIBC_2.0) [LSB] | lockf(GLIBC_2.0) [SUSv3] |
lseek(GLIBC_2.0) [SUSv3] | mkdir(GLIBC_2.0) [SUSv3] | mkfifo(GLIBC_2.0) [SUSv3] | mlock(GLIBC_2.0) [SUSv3] |
mlockall(GLIBC_2.0) [SUSv3] | mmap(GLIBC_2.0) [SUSv3] | mprotect(GLIBC_2.0) [SUSv3] | mremap(GLIBC_2.0) [LSB] |
msync(GLIBC_2.0) [SUSv3] | munlock(GLIBC_2.0) [SUSv3] | munlockall(GLIBC_2.0) [SUSv3] | munmap(GLIBC_2.0) [SUSv3] |
nanosleep(GLIBC_2.0) [SUSv3] | nice(GLIBC_2.0) [SUSv3] | open(GLIBC_2.0) [SUSv3] | opendir(GLIBC_2.0) [SUSv3] |
pathconf(GLIBC_2.0) [SUSv3] | pause(GLIBC_2.0) [SUSv3] | pipe(GLIBC_2.0) [SUSv3] | poll(GLIBC_2.0) [SUSv3] |
pselect(GLIBC_2.0) [SUSv3] | read(GLIBC_2.0) [SUSv3] | readdir(GLIBC_2.0) [SUSv3] | readdir_r(GLIBC_2.0) [SUSv3] |
readlink(GLIBC_2.0) [SUSv3] | readv(GLIBC_2.0) [SUSv3] | rename(GLIBC_2.0) [SUSv3] | rmdir(GLIBC_2.0) [SUSv3] |
sbrk(GLIBC_2.0) [SUSv2] | sched_get_priority_max(GLIBC_2.0) [SUSv3] | sched_get_priority_min(GLIBC_2.0) [SUSv3] | sched_getparam(GLIBC_2.0) [SUSv3] |
sched_getscheduler(GLIBC_2.0) [SUSv3] | sched_rr_get_interval(GLIBC_2.0) [SUSv3] | sched_setparam(GLIBC_2.0) [SUSv3] | sched_setscheduler(GLIBC_2.0) [LSB] |
sched_yield(GLIBC_2.0) [SUSv3] | select(GLIBC_2.0) [SUSv3] | setcontext(GLIBC_2.3.4) [SUSv3] | setegid(GLIBC_2.0) [SUSv3] |
seteuid(GLIBC_2.0) [SUSv3] | setgid(GLIBC_2.0) [SUSv3] | setitimer(GLIBC_2.0) [SUSv3] | setpgid(GLIBC_2.0) [SUSv3] |
setpgrp(GLIBC_2.0) [SUSv3] | setpriority(GLIBC_2.0) [SUSv3] | setregid(GLIBC_2.0) [SUSv3] | setreuid(GLIBC_2.0) [SUSv3] |
setrlimit(GLIBC_2.2) [SUSv3] | setrlimit64(GLIBC_2.1) [LFS] | setsid(GLIBC_2.0) [SUSv3] | setuid(GLIBC_2.0) [SUSv3] |
sleep(GLIBC_2.0) [SUSv3] | statfs(GLIBC_2.0) [LSB] | statvfs(GLIBC_2.1) [SUSv3] | stime(GLIBC_2.0) [LSB] |
symlink(GLIBC_2.0) [SUSv3] | sync(GLIBC_2.0) [SUSv3] | sysconf(GLIBC_2.0) [LSB] | time(GLIBC_2.0) [SUSv3] |
times(GLIBC_2.0) [SUSv3] | truncate(GLIBC_2.0) [SUSv3] | ulimit(GLIBC_2.0) [SUSv3] | umask(GLIBC_2.0) [SUSv3] |
uname(GLIBC_2.0) [SUSv3] | unlink(GLIBC_2.0) [LSB] | utime(GLIBC_2.0) [SUSv3] | utimes(GLIBC_2.0) [SUSv3] |
vfork(GLIBC_2.0) [SUSv3] | wait(GLIBC_2.0) [SUSv3] | wait4(GLIBC_2.0) [LSB] | waitid(GLIBC_2.1) [SUSv3] |
waitpid(GLIBC_2.0) [LSB] | write(GLIBC_2.0) [SUSv3] | writev(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for System Calls specified in Table 11-4, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the architecture specific functions for Standard I/O specified in Table 11-5, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-5. libc - Standard I/O Function Interfaces
_IO_feof(GLIBC_2.0) [LSB] | _IO_getc(GLIBC_2.0) [LSB] | _IO_putc(GLIBC_2.0) [LSB] | _IO_puts(GLIBC_2.0) [LSB] |
asprintf(GLIBC_2.0) [LSB] | clearerr(GLIBC_2.0) [SUSv3] | ctermid(GLIBC_2.0) [SUSv3] | fclose(GLIBC_2.1) [SUSv3] |
fdopen(GLIBC_2.1) [SUSv3] | feof(GLIBC_2.0) [SUSv3] | ferror(GLIBC_2.0) [SUSv3] | fflush(GLIBC_2.0) [SUSv3] |
fflush_unlocked(GLIBC_2.0) [LSB] | fgetc(GLIBC_2.0) [SUSv3] | fgetpos(GLIBC_2.2) [SUSv3] | fgets(GLIBC_2.0) [SUSv3] |
fgetwc_unlocked(GLIBC_2.2) [LSB] | fileno(GLIBC_2.0) [SUSv3] | flockfile(GLIBC_2.0) [SUSv3] | fopen(GLIBC_2.1) [SUSv3] |
fprintf(GLIBC_2.0) [SUSv3] | fputc(GLIBC_2.0) [SUSv3] | fputs(GLIBC_2.0) [SUSv3] | fread(GLIBC_2.0) [SUSv3] |
freopen(GLIBC_2.0) [SUSv3] | fscanf(GLIBC_2.0) [LSB] | fseek(GLIBC_2.0) [SUSv3] | fseeko(GLIBC_2.1) [SUSv3] |
fsetpos(GLIBC_2.2) [SUSv3] | ftell(GLIBC_2.0) [SUSv3] | ftello(GLIBC_2.1) [SUSv3] | fwrite(GLIBC_2.0) [SUSv3] |
getc(GLIBC_2.0) [SUSv3] | getc_unlocked(GLIBC_2.0) [SUSv3] | getchar(GLIBC_2.0) [SUSv3] | getchar_unlocked(GLIBC_2.0) [SUSv3] |
getw(GLIBC_2.0) [SUSv2] | pclose(GLIBC_2.1) [SUSv3] | popen(GLIBC_2.1) [SUSv3] | printf(GLIBC_2.0) [SUSv3] |
putc(GLIBC_2.0) [SUSv3] | putc_unlocked(GLIBC_2.0) [SUSv3] | putchar(GLIBC_2.0) [SUSv3] | putchar_unlocked(GLIBC_2.0) [SUSv3] |
puts(GLIBC_2.0) [SUSv3] | putw(GLIBC_2.0) [SUSv2] | remove(GLIBC_2.0) [SUSv3] | rewind(GLIBC_2.0) [SUSv3] |
rewinddir(GLIBC_2.0) [SUSv3] | scanf(GLIBC_2.0) [LSB] | seekdir(GLIBC_2.0) [SUSv3] | setbuf(GLIBC_2.0) [SUSv3] |
setbuffer(GLIBC_2.0) [LSB] | setvbuf(GLIBC_2.0) [SUSv3] | snprintf(GLIBC_2.0) [SUSv3] | sprintf(GLIBC_2.0) [SUSv3] |
sscanf(GLIBC_2.0) [LSB] | telldir(GLIBC_2.0) [SUSv3] | tempnam(GLIBC_2.0) [SUSv3] | ungetc(GLIBC_2.0) [SUSv3] |
vasprintf(GLIBC_2.0) [LSB] | vdprintf(GLIBC_2.0) [LSB] | vfprintf(GLIBC_2.0) [SUSv3] | vprintf(GLIBC_2.0) [SUSv3] |
vsnprintf(GLIBC_2.0) [SUSv3] | vsprintf(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific data interfaces for Standard I/O specified in Table 11-6, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Signal Handling specified in Table 11-7, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-7. libc - Signal Handling Function Interfaces
__libc_current_sigrtmax(GLIBC_2.1) [LSB] | __libc_current_sigrtmin(GLIBC_2.1) [LSB] | __sigsetjmp(GLIBC_2.3.4) [LSB] | __sysv_signal(GLIBC_2.0) [LSB] |
__xpg_sigpause(GLIBC_2.2) [LSB] | bsd_signal(GLIBC_2.0) [SUSv3] | psignal(GLIBC_2.0) [LSB] | raise(GLIBC_2.0) [SUSv3] |
sigaction(GLIBC_2.0) [SUSv3] | sigaddset(GLIBC_2.0) [SUSv3] | sigaltstack(GLIBC_2.0) [SUSv3] | sigandset(GLIBC_2.0) [LSB] |
sigdelset(GLIBC_2.0) [SUSv3] | sigemptyset(GLIBC_2.0) [SUSv3] | sigfillset(GLIBC_2.0) [SUSv3] | sighold(GLIBC_2.1) [SUSv3] |
sigignore(GLIBC_2.1) [SUSv3] | siginterrupt(GLIBC_2.0) [SUSv3] | sigisemptyset(GLIBC_2.0) [LSB] | sigismember(GLIBC_2.0) [SUSv3] |
siglongjmp(GLIBC_2.3.4) [SUSv3] | signal(GLIBC_2.0) [SUSv3] | sigorset(GLIBC_2.0) [LSB] | sigpause(GLIBC_2.0) [LSB] |
sigpending(GLIBC_2.0) [SUSv3] | sigprocmask(GLIBC_2.0) [SUSv3] | sigqueue(GLIBC_2.1) [SUSv3] | sigrelse(GLIBC_2.1) [SUSv3] |
sigreturn(GLIBC_2.0) [LSB] | sigset(GLIBC_2.1) [SUSv3] | sigsuspend(GLIBC_2.0) [SUSv3] | sigtimedwait(GLIBC_2.1) [SUSv3] |
sigwait(GLIBC_2.0) [SUSv3] | sigwaitinfo(GLIBC_2.1) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for Signal Handling specified in Table 11-8, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the architecture specific data interfaces for Signal Handling specified in Table 11-9, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Localization Functions specified in Table 11-10, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-10. libc - Localization Functions Function Interfaces
bind_textdomain_codeset(GLIBC_2.2) [LSB] | bindtextdomain(GLIBC_2.0) [LSB] | catclose(GLIBC_2.0) [SUSv3] | catgets(GLIBC_2.0) [SUSv3] |
catopen(GLIBC_2.0) [SUSv3] | dcgettext(GLIBC_2.0) [LSB] | dcngettext(GLIBC_2.2) [LSB] | dgettext(GLIBC_2.0) [LSB] |
dngettext(GLIBC_2.2) [LSB] | gettext(GLIBC_2.0) [LSB] | iconv(GLIBC_2.1) [SUSv3] | iconv_close(GLIBC_2.1) [SUSv3] |
iconv_open(GLIBC_2.1) [SUSv3] | localeconv(GLIBC_2.2) [SUSv3] | ngettext(GLIBC_2.2) [LSB] | nl_langinfo(GLIBC_2.0) [SUSv3] |
setlocale(GLIBC_2.0) [SUSv3] | textdomain(GLIBC_2.0) [LSB] |
An LSB conforming implementation shall provide the architecture specific data interfaces for Localization Functions specified in Table 11-11, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Posix Spawn Option specified in Table 11-12, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-12. libc - Posix Spawn Option Function Interfaces
posix_spawn(GLIBC_2.2) [SUSv3] | posix_spawn_file_actions_addclose(GLIBC_2.2) [SUSv3] | posix_spawn_file_actions_adddup2(GLIBC_2.2) [SUSv3] | posix_spawn_file_actions_addopen(GLIBC_2.2) [SUSv3] |
posix_spawn_file_actions_destroy(GLIBC_2.2) [SUSv3] | posix_spawn_file_actions_init(GLIBC_2.2) [SUSv3] | posix_spawnattr_destroy(GLIBC_2.2) [SUSv3] | posix_spawnattr_getflags(GLIBC_2.2) [SUSv3] |
posix_spawnattr_getpgroup(GLIBC_2.2) [SUSv3] | posix_spawnattr_getschedparam(GLIBC_2.2) [SUSv3] | posix_spawnattr_getschedpolicy(GLIBC_2.2) [SUSv3] | posix_spawnattr_getsigdefault(GLIBC_2.2) [SUSv3] |
posix_spawnattr_getsigmask(GLIBC_2.2) [SUSv3] | posix_spawnattr_init(GLIBC_2.2) [SUSv3] | posix_spawnattr_setflags(GLIBC_2.2) [SUSv3] | posix_spawnattr_setpgroup(GLIBC_2.2) [SUSv3] |
posix_spawnattr_setschedparam(GLIBC_2.2) [SUSv3] | posix_spawnattr_setschedpolicy(GLIBC_2.2) [SUSv3] | posix_spawnattr_setsigdefault(GLIBC_2.2) [SUSv3] | posix_spawnattr_setsigmask(GLIBC_2.2) [SUSv3] |
posix_spawnp(GLIBC_2.2) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific functions for Posix Advisory Option specified in Table 11-13, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Socket Interface specified in Table 11-14, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-14. libc - Socket Interface Function Interfaces
__h_errno_location(GLIBC_2.0) [LSB] | accept(GLIBC_2.0) [SUSv3] | bind(GLIBC_2.0) [SUSv3] | bindresvport(GLIBC_2.0) [LSB] |
connect(GLIBC_2.0) [SUSv3] | gethostid(GLIBC_2.0) [SUSv3] | gethostname(GLIBC_2.0) [SUSv3] | getpeername(GLIBC_2.0) [SUSv3] |
getsockname(GLIBC_2.0) [SUSv3] | getsockopt(GLIBC_2.0) [LSB] | if_freenameindex(GLIBC_2.1) [SUSv3] | if_indextoname(GLIBC_2.1) [SUSv3] |
if_nameindex(GLIBC_2.1) [SUSv3] | if_nametoindex(GLIBC_2.1) [SUSv3] | listen(GLIBC_2.0) [SUSv3] | recv(GLIBC_2.0) [SUSv3] |
recvfrom(GLIBC_2.0) [SUSv3] | recvmsg(GLIBC_2.0) [SUSv3] | send(GLIBC_2.0) [SUSv3] | sendmsg(GLIBC_2.0) [SUSv3] |
sendto(GLIBC_2.0) [SUSv3] | setsockopt(GLIBC_2.0) [LSB] | shutdown(GLIBC_2.0) [SUSv3] | sockatmark(GLIBC_2.2.4) [SUSv3] |
socket(GLIBC_2.0) [SUSv3] | socketpair(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific data interfaces for Socket Interface specified in Table 11-15, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Wide Characters specified in Table 11-16, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-16. libc - Wide Characters Function Interfaces
__wcstod_internal(GLIBC_2.0) [LSB] | __wcstof_internal(GLIBC_2.0) [LSB] | __wcstol_internal(GLIBC_2.0) [LSB] | __wcstold_internal(GLIBC_2.0) [LSB] |
__wcstoul_internal(GLIBC_2.0) [LSB] | btowc(GLIBC_2.0) [SUSv3] | fgetwc(GLIBC_2.2) [SUSv3] | fgetws(GLIBC_2.2) [SUSv3] |
fputwc(GLIBC_2.2) [SUSv3] | fputws(GLIBC_2.2) [SUSv3] | fwide(GLIBC_2.2) [SUSv3] | fwprintf(GLIBC_2.2) [SUSv3] |
fwscanf(GLIBC_2.2) [LSB] | getwc(GLIBC_2.2) [SUSv3] | getwchar(GLIBC_2.2) [SUSv3] | mblen(GLIBC_2.0) [SUSv3] |
mbrlen(GLIBC_2.0) [SUSv3] | mbrtowc(GLIBC_2.0) [SUSv3] | mbsinit(GLIBC_2.0) [SUSv3] | mbsnrtowcs(GLIBC_2.0) [LSB] |
mbsrtowcs(GLIBC_2.0) [SUSv3] | mbstowcs(GLIBC_2.0) [SUSv3] | mbtowc(GLIBC_2.0) [SUSv3] | putwc(GLIBC_2.2) [SUSv3] |
putwchar(GLIBC_2.2) [SUSv3] | swprintf(GLIBC_2.2) [SUSv3] | swscanf(GLIBC_2.2) [LSB] | towctrans(GLIBC_2.0) [SUSv3] |
towlower(GLIBC_2.0) [SUSv3] | towupper(GLIBC_2.0) [SUSv3] | ungetwc(GLIBC_2.2) [SUSv3] | vfwprintf(GLIBC_2.2) [SUSv3] |
vfwscanf(GLIBC_2.2) [LSB] | vswprintf(GLIBC_2.2) [SUSv3] | vswscanf(GLIBC_2.2) [LSB] | vwprintf(GLIBC_2.2) [SUSv3] |
vwscanf(GLIBC_2.2) [LSB] | wcpcpy(GLIBC_2.0) [LSB] | wcpncpy(GLIBC_2.0) [LSB] | wcrtomb(GLIBC_2.0) [SUSv3] |
wcscasecmp(GLIBC_2.1) [LSB] | wcscat(GLIBC_2.0) [SUSv3] | wcschr(GLIBC_2.0) [SUSv3] | wcscmp(GLIBC_2.0) [SUSv3] |
wcscoll(GLIBC_2.0) [SUSv3] | wcscpy(GLIBC_2.0) [SUSv3] | wcscspn(GLIBC_2.0) [SUSv3] | wcsdup(GLIBC_2.0) [LSB] |
wcsftime(GLIBC_2.2) [SUSv3] | wcslen(GLIBC_2.0) [SUSv3] | wcsncasecmp(GLIBC_2.1) [LSB] | wcsncat(GLIBC_2.0) [SUSv3] |
wcsncmp(GLIBC_2.0) [SUSv3] | wcsncpy(GLIBC_2.0) [SUSv3] | wcsnlen(GLIBC_2.1) [LSB] | wcsnrtombs(GLIBC_2.0) [LSB] |
wcspbrk(GLIBC_2.0) [SUSv3] | wcsrchr(GLIBC_2.0) [SUSv3] | wcsrtombs(GLIBC_2.0) [SUSv3] | wcsspn(GLIBC_2.0) [SUSv3] |
wcsstr(GLIBC_2.0) [SUSv3] | wcstod(GLIBC_2.0) [SUSv3] | wcstof(GLIBC_2.0) [SUSv3] | wcstoimax(GLIBC_2.1) [SUSv3] |
wcstok(GLIBC_2.0) [SUSv3] | wcstol(GLIBC_2.0) [SUSv3] | wcstold(GLIBC_2.0) [SUSv3] | wcstoll(GLIBC_2.1) [SUSv3] |
wcstombs(GLIBC_2.0) [SUSv3] | wcstoq(GLIBC_2.0) [LSB] | wcstoul(GLIBC_2.0) [SUSv3] | wcstoull(GLIBC_2.1) [SUSv3] |
wcstoumax(GLIBC_2.1) [SUSv3] | wcstouq(GLIBC_2.0) [LSB] | wcswcs(GLIBC_2.1) [SUSv3] | wcswidth(GLIBC_2.0) [SUSv3] |
wcsxfrm(GLIBC_2.0) [SUSv3] | wctob(GLIBC_2.0) [SUSv3] | wctomb(GLIBC_2.0) [SUSv3] | wctrans(GLIBC_2.0) [SUSv3] |
wctype(GLIBC_2.0) [SUSv3] | wcwidth(GLIBC_2.0) [SUSv3] | wmemchr(GLIBC_2.0) [SUSv3] | wmemcmp(GLIBC_2.0) [SUSv3] |
wmemcpy(GLIBC_2.0) [SUSv3] | wmemmove(GLIBC_2.0) [SUSv3] | wmemset(GLIBC_2.0) [SUSv3] | wprintf(GLIBC_2.2) [SUSv3] |
wscanf(GLIBC_2.2) [LSB] |
An LSB conforming implementation shall provide the architecture specific functions for String Functions specified in Table 11-17, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-17. libc - String Functions Function Interfaces
__mempcpy(GLIBC_2.0) [LSB] | __rawmemchr(GLIBC_2.1) [LSB] | __stpcpy(GLIBC_2.0) [LSB] | __strdup(GLIBC_2.0) [LSB] |
__strtod_internal(GLIBC_2.0) [LSB] | __strtof_internal(GLIBC_2.0) [LSB] | __strtok_r(GLIBC_2.0) [LSB] | __strtol_internal(GLIBC_2.0) [LSB] |
__strtold_internal(GLIBC_2.0) [LSB] | __strtoll_internal(GLIBC_2.0) [LSB] | __strtoul_internal(GLIBC_2.0) [LSB] | __strtoull_internal(GLIBC_2.0) [LSB] |
__xpg_strerror_r(GLIBC_2.3.4) [LSB] | bcmp(GLIBC_2.0) [SUSv3] | bcopy(GLIBC_2.0) [SUSv3] | bzero(GLIBC_2.0) [SUSv3] |
ffs(GLIBC_2.0) [SUSv3] | index(GLIBC_2.0) [SUSv3] | memccpy(GLIBC_2.0) [SUSv3] | memchr(GLIBC_2.0) [SUSv3] |
memcmp(GLIBC_2.0) [SUSv3] | memcpy(GLIBC_2.0) [SUSv3] | memmove(GLIBC_2.0) [SUSv3] | memrchr(GLIBC_2.2) [LSB] |
memset(GLIBC_2.0) [SUSv3] | rindex(GLIBC_2.0) [SUSv3] | stpcpy(GLIBC_2.0) [LSB] | stpncpy(GLIBC_2.0) [LSB] |
strcasecmp(GLIBC_2.0) [SUSv3] | strcasestr(GLIBC_2.1) [LSB] | strcat(GLIBC_2.0) [SUSv3] | strchr(GLIBC_2.0) [SUSv3] |
strcmp(GLIBC_2.0) [SUSv3] | strcoll(GLIBC_2.0) [SUSv3] | strcpy(GLIBC_2.0) [SUSv3] | strcspn(GLIBC_2.0) [SUSv3] |
strdup(GLIBC_2.0) [SUSv3] | strerror(GLIBC_2.0) [SUSv3] | strerror_r(GLIBC_2.0) [LSB] | strfmon(GLIBC_2.0) [SUSv3] |
strftime(GLIBC_2.0) [SUSv3] | strlen(GLIBC_2.0) [SUSv3] | strncasecmp(GLIBC_2.0) [SUSv3] | strncat(GLIBC_2.0) [SUSv3] |
strncmp(GLIBC_2.0) [SUSv3] | strncpy(GLIBC_2.0) [SUSv3] | strndup(GLIBC_2.0) [LSB] | strnlen(GLIBC_2.0) [LSB] |
strpbrk(GLIBC_2.0) [SUSv3] | strptime(GLIBC_2.0) [LSB] | strrchr(GLIBC_2.0) [SUSv3] | strsep(GLIBC_2.0) [LSB] |
strsignal(GLIBC_2.0) [LSB] | strspn(GLIBC_2.0) [SUSv3] | strstr(GLIBC_2.0) [SUSv3] | strtof(GLIBC_2.0) [SUSv3] |
strtoimax(GLIBC_2.1) [SUSv3] | strtok(GLIBC_2.0) [SUSv3] | strtok_r(GLIBC_2.0) [SUSv3] | strtold(GLIBC_2.0) [SUSv3] |
strtoll(GLIBC_2.0) [SUSv3] | strtoq(GLIBC_2.0) [LSB] | strtoull(GLIBC_2.0) [SUSv3] | strtoumax(GLIBC_2.1) [SUSv3] |
strtouq(GLIBC_2.0) [LSB] | strxfrm(GLIBC_2.0) [SUSv3] | swab(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for String Functions specified in Table 11-18, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the architecture specific functions for IPC Functions specified in Table 11-19, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-19. libc - IPC Functions Function Interfaces
ftok(GLIBC_2.0) [SUSv3] | msgctl(GLIBC_2.2) [SUSv3] | msgget(GLIBC_2.0) [SUSv3] | msgrcv(GLIBC_2.0) [SUSv3] |
msgsnd(GLIBC_2.0) [SUSv3] | semctl(GLIBC_2.2) [SUSv3] | semget(GLIBC_2.0) [SUSv3] | semop(GLIBC_2.0) [SUSv3] |
shmat(GLIBC_2.0) [SUSv3] | shmctl(GLIBC_2.2) [SUSv3] | shmdt(GLIBC_2.0) [SUSv3] | shmget(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific functions for Regular Expressions specified in Table 11-20, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Character Type Functions specified in Table 11-21, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-21. libc - Character Type Functions Function Interfaces
__ctype_get_mb_cur_max(GLIBC_2.0) [LSB] | _tolower(GLIBC_2.0) [SUSv3] | _toupper(GLIBC_2.0) [SUSv3] | isalnum(GLIBC_2.0) [SUSv3] |
isalpha(GLIBC_2.0) [SUSv3] | isascii(GLIBC_2.0) [SUSv3] | iscntrl(GLIBC_2.0) [SUSv3] | isdigit(GLIBC_2.0) [SUSv3] |
isgraph(GLIBC_2.0) [SUSv3] | islower(GLIBC_2.0) [SUSv3] | isprint(GLIBC_2.0) [SUSv3] | ispunct(GLIBC_2.0) [SUSv3] |
isspace(GLIBC_2.0) [SUSv3] | isupper(GLIBC_2.0) [SUSv3] | iswalnum(GLIBC_2.0) [SUSv3] | iswalpha(GLIBC_2.0) [SUSv3] |
iswblank(GLIBC_2.1) [SUSv3] | iswcntrl(GLIBC_2.0) [SUSv3] | iswctype(GLIBC_2.0) [SUSv3] | iswdigit(GLIBC_2.0) [SUSv3] |
iswgraph(GLIBC_2.0) [SUSv3] | iswlower(GLIBC_2.0) [SUSv3] | iswprint(GLIBC_2.0) [SUSv3] | iswpunct(GLIBC_2.0) [SUSv3] |
iswspace(GLIBC_2.0) [SUSv3] | iswupper(GLIBC_2.0) [SUSv3] | iswxdigit(GLIBC_2.0) [SUSv3] | isxdigit(GLIBC_2.0) [SUSv3] |
toascii(GLIBC_2.0) [SUSv3] | tolower(GLIBC_2.0) [SUSv3] | toupper(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific functions for Time Manipulation specified in Table 11-22, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-22. libc - Time Manipulation Function Interfaces
adjtime(GLIBC_2.0) [LSB] | asctime(GLIBC_2.0) [SUSv3] | asctime_r(GLIBC_2.0) [SUSv3] | ctime(GLIBC_2.0) [SUSv3] |
ctime_r(GLIBC_2.0) [SUSv3] | difftime(GLIBC_2.0) [SUSv3] | gmtime(GLIBC_2.0) [SUSv3] | gmtime_r(GLIBC_2.0) [SUSv3] |
localtime(GLIBC_2.0) [SUSv3] | localtime_r(GLIBC_2.0) [SUSv3] | mktime(GLIBC_2.0) [SUSv3] | tzset(GLIBC_2.0) [SUSv3] |
ualarm(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific data interfaces for Time Manipulation specified in Table 11-23, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Terminal Interface Functions specified in Table 11-24, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-24. libc - Terminal Interface Functions Function Interfaces
cfgetispeed(GLIBC_2.0) [SUSv3] | cfgetospeed(GLIBC_2.0) [SUSv3] | cfmakeraw(GLIBC_2.0) [LSB] | cfsetispeed(GLIBC_2.0) [SUSv3] |
cfsetospeed(GLIBC_2.0) [SUSv3] | cfsetspeed(GLIBC_2.0) [LSB] | tcdrain(GLIBC_2.0) [SUSv3] | tcflow(GLIBC_2.0) [SUSv3] |
tcflush(GLIBC_2.0) [SUSv3] | tcgetattr(GLIBC_2.0) [SUSv3] | tcgetpgrp(GLIBC_2.0) [SUSv3] | tcgetsid(GLIBC_2.1) [SUSv3] |
tcsendbreak(GLIBC_2.0) [SUSv3] | tcsetattr(GLIBC_2.0) [SUSv3] | tcsetpgrp(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific functions for System Database Interface specified in Table 11-25, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-25. libc - System Database Interface Function Interfaces
endgrent(GLIBC_2.0) [SUSv3] | endprotoent(GLIBC_2.0) [SUSv3] | endpwent(GLIBC_2.0) [SUSv3] | endservent(GLIBC_2.0) [SUSv3] |
endutent(GLIBC_2.0) [LSB] | endutxent(GLIBC_2.1) [SUSv3] | getgrent(GLIBC_2.0) [SUSv3] | getgrgid(GLIBC_2.0) [SUSv3] |
getgrgid_r(GLIBC_2.1.2) [SUSv3] | getgrnam(GLIBC_2.0) [SUSv3] | getgrnam_r(GLIBC_2.1.2) [SUSv3] | getgrouplist(GLIBC_2.2.4) [LSB] |
gethostbyaddr(GLIBC_2.0) [SUSv3] | gethostbyaddr_r(GLIBC_2.1.2) [LSB] | gethostbyname(GLIBC_2.0) [SUSv3] | gethostbyname2(GLIBC_2.0) [LSB] |
gethostbyname2_r(GLIBC_2.1.2) [LSB] | gethostbyname_r(GLIBC_2.1.2) [LSB] | getprotobyname(GLIBC_2.0) [SUSv3] | getprotobynumber(GLIBC_2.0) [SUSv3] |
getprotoent(GLIBC_2.0) [SUSv3] | getpwent(GLIBC_2.0) [SUSv3] | getpwnam(GLIBC_2.0) [SUSv3] | getpwnam_r(GLIBC_2.1.2) [SUSv3] |
getpwuid(GLIBC_2.0) [SUSv3] | getpwuid_r(GLIBC_2.1.2) [SUSv3] | getservbyname(GLIBC_2.0) [SUSv3] | getservbyport(GLIBC_2.0) [SUSv3] |
getservent(GLIBC_2.0) [SUSv3] | getutent(GLIBC_2.0) [LSB] | getutent_r(GLIBC_2.0) [LSB] | getutxent(GLIBC_2.1) [SUSv3] |
getutxid(GLIBC_2.1) [SUSv3] | getutxline(GLIBC_2.1) [SUSv3] | pututxline(GLIBC_2.1) [SUSv3] | setgrent(GLIBC_2.0) [SUSv3] |
setgroups(GLIBC_2.0) [LSB] | setprotoent(GLIBC_2.0) [SUSv3] | setpwent(GLIBC_2.0) [SUSv3] | setservent(GLIBC_2.0) [SUSv3] |
setutent(GLIBC_2.0) [LSB] | setutxent(GLIBC_2.1) [SUSv3] | utmpname(GLIBC_2.0) [LSB] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for System Database Interface specified in Table 11-26, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the architecture specific functions for Language Support specified in Table 11-27, with the full mandatory functionality as described in the referenced underlying specification.
An LSB conforming implementation shall provide the architecture specific functions for Large File Support specified in Table 11-28, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-28. libc - Large File Support Function Interfaces
__fxstat64(GLIBC_2.2) [LSB] | __lxstat64(GLIBC_2.2) [LSB] | __xstat64(GLIBC_2.2) [LSB] | creat64(GLIBC_2.1) [LFS] |
fgetpos64(GLIBC_2.2) [LFS] | fopen64(GLIBC_2.1) [LFS] | freopen64(GLIBC_2.1) [LFS] | fseeko64(GLIBC_2.1) [LFS] |
fsetpos64(GLIBC_2.2) [LFS] | fstatfs64(GLIBC_2.1) [LSB] | fstatvfs64(GLIBC_2.1) [LFS] | ftello64(GLIBC_2.1) [LFS] |
ftruncate64(GLIBC_2.1) [LFS] | ftw64(GLIBC_2.1) [LFS] | getrlimit64(GLIBC_2.2) [LFS] | lockf64(GLIBC_2.1) [LFS] |
mkstemp64(GLIBC_2.2) [LFS] | mmap64(GLIBC_2.1) [LFS] | nftw64(GLIBC_2.3.3) [LFS] | posix_fadvise64(GLIBC_2.3.3) [LSB] |
posix_fallocate64(GLIBC_2.3.3) [LSB] | readdir64(GLIBC_2.2) [LFS] | readdir64_r(GLIBC_2.2) [LSB] | statfs64(GLIBC_2.1) [LSB] |
statvfs64(GLIBC_2.1) [LFS] | tmpfile64(GLIBC_2.1) [LFS] | truncate64(GLIBC_2.1) [LFS] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for Large File Support specified in Table 11-29, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the architecture specific functions for Standard Library specified in Table 11-30, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-30. libc - Standard Library Function Interfaces
_Exit(GLIBC_2.1.1) [SUSv3] | __assert_fail(GLIBC_2.0) [LSB] | __cxa_atexit(GLIBC_2.1.3) [LSB] | __cxa_finalize(GLIBC_2.1.3) [LSB] |
__errno_location(GLIBC_2.0) [LSB] | __fpending(GLIBC_2.2) [LSB] | __getpagesize(GLIBC_2.0) [LSB] | __isinf(GLIBC_2.0) [LSB] |
__isinff(GLIBC_2.0) [LSB] | __isinfl(GLIBC_2.0) [LSB] | __isnan(GLIBC_2.0) [LSB] | __isnanf(GLIBC_2.0) [LSB] |
__isnanl(GLIBC_2.0) [LSB] | __sysconf(GLIBC_2.2) [LSB] | __xpg_basename(GLIBC_2.0) [LSB] | _exit(GLIBC_2.0) [SUSv3] |
_longjmp(GLIBC_2.3.4) [SUSv3] | _setjmp(GLIBC_2.3.4) [SUSv3] | a64l(GLIBC_2.0) [SUSv3] | abort(GLIBC_2.0) [SUSv3] |
abs(GLIBC_2.0) [SUSv3] | atof(GLIBC_2.0) [SUSv3] | atoi(GLIBC_2.0) [SUSv3] | atol(GLIBC_2.0) [SUSv3] |
atoll(GLIBC_2.0) [SUSv3] | basename(GLIBC_2.0) [LSB] | bsearch(GLIBC_2.0) [SUSv3] | calloc(GLIBC_2.0) [SUSv3] |
closelog(GLIBC_2.0) [SUSv3] | confstr(GLIBC_2.0) [SUSv3] | cuserid(GLIBC_2.0) [SUSv2] | daemon(GLIBC_2.0) [LSB] |
dirname(GLIBC_2.0) [SUSv3] | div(GLIBC_2.0) [SUSv3] | drand48(GLIBC_2.0) [SUSv3] | ecvt(GLIBC_2.0) [SUSv3] |
erand48(GLIBC_2.0) [SUSv3] | err(GLIBC_2.0) [LSB] | error(GLIBC_2.0) [LSB] | errx(GLIBC_2.0) [LSB] |
fcvt(GLIBC_2.0) [SUSv3] | fmtmsg(GLIBC_2.1) [SUSv3] | fnmatch(GLIBC_2.2.3) [SUSv3] | fpathconf(GLIBC_2.0) [SUSv3] |
free(GLIBC_2.0) [SUSv3] | freeaddrinfo(GLIBC_2.0) [SUSv3] | ftrylockfile(GLIBC_2.0) [SUSv3] | ftw(GLIBC_2.0) [SUSv3] |
funlockfile(GLIBC_2.0) [SUSv3] | gai_strerror(GLIBC_2.1) [SUSv3] | gcvt(GLIBC_2.0) [SUSv3] | getaddrinfo(GLIBC_2.0) [SUSv3] |
getcwd(GLIBC_2.0) [SUSv3] | getdate(GLIBC_2.1) [SUSv3] | getdomainname(GLIBC_2.0) [LSB] | getenv(GLIBC_2.0) [SUSv3] |
getlogin(GLIBC_2.0) [SUSv3] | getlogin_r(GLIBC_2.0) [SUSv3] | getnameinfo(GLIBC_2.1) [SUSv3] | getopt(GLIBC_2.0) [LSB] |
getopt_long(GLIBC_2.0) [LSB] | getopt_long_only(GLIBC_2.0) [LSB] | getsubopt(GLIBC_2.0) [SUSv3] | gettimeofday(GLIBC_2.0) [SUSv3] |
glob(GLIBC_2.0) [SUSv3] | glob64(GLIBC_2.2) [LSB] | globfree(GLIBC_2.0) [SUSv3] | globfree64(GLIBC_2.1) [LSB] |
grantpt(GLIBC_2.1) [SUSv3] | hcreate(GLIBC_2.0) [SUSv3] | hdestroy(GLIBC_2.0) [SUSv3] | hsearch(GLIBC_2.0) [SUSv3] |
htonl(GLIBC_2.0) [SUSv3] | htons(GLIBC_2.0) [SUSv3] | imaxabs(GLIBC_2.1.1) [SUSv3] | imaxdiv(GLIBC_2.1.1) [SUSv3] |
inet_addr(GLIBC_2.0) [SUSv3] | inet_aton(GLIBC_2.0) [LSB] | inet_ntoa(GLIBC_2.0) [SUSv3] | inet_ntop(GLIBC_2.0) [SUSv3] |
inet_pton(GLIBC_2.0) [SUSv3] | initstate(GLIBC_2.0) [SUSv3] | insque(GLIBC_2.0) [SUSv3] | isatty(GLIBC_2.0) [SUSv3] |
isblank(GLIBC_2.0) [SUSv3] | jrand48(GLIBC_2.0) [SUSv3] | l64a(GLIBC_2.0) [SUSv3] | labs(GLIBC_2.0) [SUSv3] |
lcong48(GLIBC_2.0) [SUSv3] | ldiv(GLIBC_2.0) [SUSv3] | lfind(GLIBC_2.0) [SUSv3] | llabs(GLIBC_2.0) [SUSv3] |
lldiv(GLIBC_2.0) [SUSv3] | longjmp(GLIBC_2.3.4) [SUSv3] | lrand48(GLIBC_2.0) [SUSv3] | lsearch(GLIBC_2.0) [SUSv3] |
makecontext(GLIBC_2.3.4) [SUSv3] | malloc(GLIBC_2.0) [SUSv3] | memmem(GLIBC_2.0) [LSB] | mkstemp(GLIBC_2.0) [SUSv3] |
mktemp(GLIBC_2.0) [SUSv3] | mrand48(GLIBC_2.0) [SUSv3] | nftw(GLIBC_2.3.3) [SUSv3] | nrand48(GLIBC_2.0) [SUSv3] |
ntohl(GLIBC_2.0) [SUSv3] | ntohs(GLIBC_2.0) [SUSv3] | openlog(GLIBC_2.0) [SUSv3] | perror(GLIBC_2.0) [SUSv3] |
posix_openpt(GLIBC_2.2.1) [SUSv3] | ptsname(GLIBC_2.1) [SUSv3] | putenv(GLIBC_2.0) [SUSv3] | qsort(GLIBC_2.0) [SUSv3] |
rand(GLIBC_2.0) [SUSv3] | rand_r(GLIBC_2.0) [SUSv3] | random(GLIBC_2.0) [SUSv3] | realloc(GLIBC_2.0) [SUSv3] |
realpath(GLIBC_2.3) [SUSv3] | remque(GLIBC_2.0) [SUSv3] | seed48(GLIBC_2.0) [SUSv3] | setenv(GLIBC_2.0) [SUSv3] |
sethostname(GLIBC_2.0) [LSB] | setlogmask(GLIBC_2.0) [SUSv3] | setstate(GLIBC_2.0) [SUSv3] | srand(GLIBC_2.0) [SUSv3] |
srand48(GLIBC_2.0) [SUSv3] | srandom(GLIBC_2.0) [SUSv3] | strtod(GLIBC_2.0) [SUSv3] | strtol(GLIBC_2.0) [SUSv3] |
strtoul(GLIBC_2.0) [SUSv3] | swapcontext(GLIBC_2.3.4) [SUSv3] | syslog(GLIBC_2.0) [SUSv3] | system(GLIBC_2.0) [LSB] |
tdelete(GLIBC_2.0) [SUSv3] | tfind(GLIBC_2.0) [SUSv3] | tmpfile(GLIBC_2.1) [SUSv3] | tmpnam(GLIBC_2.0) [SUSv3] |
tsearch(GLIBC_2.0) [SUSv3] | ttyname(GLIBC_2.0) [SUSv3] | ttyname_r(GLIBC_2.0) [SUSv3] | twalk(GLIBC_2.0) [SUSv3] |
unlockpt(GLIBC_2.1) [SUSv3] | unsetenv(GLIBC_2.0) [SUSv3] | usleep(GLIBC_2.0) [SUSv3] | verrx(GLIBC_2.0) [LSB] |
vfscanf(GLIBC_2.0) [LSB] | vscanf(GLIBC_2.0) [LSB] | vsscanf(GLIBC_2.0) [LSB] | vsyslog(GLIBC_2.0) [LSB] |
warn(GLIBC_2.0) [LSB] | warnx(GLIBC_2.0) [LSB] | wordexp(GLIBC_2.1) [SUSv3] | wordfree(GLIBC_2.1) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for Standard Library specified in Table 11-31, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
Table 11-31. libc - Standard Library Deprecated Function Interfaces
basename(GLIBC_2.0) [LSB] | getdomainname(GLIBC_2.0) [LSB] | inet_aton(GLIBC_2.0) [LSB] |
An LSB conforming implementation shall provide the architecture specific data interfaces for Standard Library specified in Table 11-32, with the full mandatory functionality as described in the referenced underlying specification.
This section defines global identifiers and their values that are associated with interfaces contained in libc. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
enum { _ISupper = 1, _ISlower = 2, _ISalpha = 4, _ISdigit = 8, _ISxdigit = 16, _ISspace = 32, _ISprint = 64, _ISgraph = 128, _ISblank = 256, _IScntrl = 512, _ISpunct = 1024, _ISalnum = 2048 }; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
#define O_LARGEFILE 0200000 #define F_GETLK64 12 #define F_SETLK64 13 #define F_SETLKW64 14 |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
#define ULONG_MAX 0xFFFFFFFFUL #define LONG_MAX 2147483647L #define CHAR_MIN 0 #define CHAR_MAX 255 #define PTHREAD_STACK_MIN 16384 |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
struct pt_regs { unsigned long int gpr[32]; unsigned long int nip; unsigned long int msr; unsigned long int orig_gpr3; unsigned long int ctr; unsigned long int link; unsigned long int xer; unsigned long int ccr; unsigned long int mq; unsigned long int trap; unsigned long int dar; unsigned long int dsisr; unsigned long int result; }; #define SIGEV_PAD_SIZE ((SIGEV_MAX_SIZE/sizeof(int))-3) #define SI_PAD_SIZE ((SI_MAX_SIZE/sizeof(int))-3) struct sigaction { union { sighandler_t _sa_handler; void (*_sa_sigaction) (int, siginfo_t *, void *); } __sigaction_handler; sigset_t sa_mask; unsigned long int sa_flags; void (*sa_restorer) (void); }; #define MINSIGSTKSZ 2048 #define SIGSTKSZ 8192 struct sigcontext { long int _unused[4]; int signal; unsigned long int handler; unsigned long int oldmask; struct pt_regs *regs; }; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
#define INT64_C(c) c ## LL #define INTMAX_C(c) c ## LL #define __INT64_C(c) c ## LL #define UINT64_C(c) c ## ULL #define UINTMAX_C(c) c ## ULL #define __UINT64_C(c) c ## ULL #define INTPTR_MIN (-2147483647-1) #define INT_FAST16_MIN (-2147483647-1) #define INT_FAST32_MIN (-2147483647-1) #define PTRDIFF_MIN (-2147483647-1) #define INTPTR_MAX (2147483647) #define INT_FAST16_MAX (2147483647) #define INT_FAST32_MAX (2147483647) #define PTRDIFF_MAX (2147483647) #define SIZE_MAX (4294967295U) #define UINTPTR_MAX (4294967295U) #define UINT_FAST16_MAX (4294967295U) #define UINT_FAST32_MAX (4294967295U) typedef long long int int64_t; typedef long long int intmax_t; typedef unsigned long long int uintmax_t; typedef int intptr_t; typedef unsigned int uintptr_t; typedef unsigned long long int uint64_t; typedef long long int int_least64_t; typedef unsigned long long int uint_least64_t; typedef int int_fast16_t; typedef int int_fast32_t; typedef long long int int_fast64_t; typedef unsigned int uint_fast16_t; typedef unsigned int uint_fast32_t; typedef unsigned long long int uint_fast64_t; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
#define TIOCGWINSZ 0x40087468 #define TIOCNOTTY 0x5422 #define FIONREAD 1074030207 |
struct ipc_perm { key_t __key; uid_t uid; gid_t gid; uid_t cuid; uid_t cgid; mode_t mode; long int __seq; int __pad1; unsigned long long int __unused1; unsigned long long int __unused2; }; |
typedef unsigned long int msgqnum_t; typedef unsigned long int msglen_t; struct msqid_ds { struct ipc_perm msg_perm; unsigned int __unused1; time_t msg_stime; unsigned int __unused2; time_t msg_rtime; unsigned int __unused3; time_t msg_ctime; unsigned long int __msg_cbytes; msgqnum_t msg_qnum; msglen_t msg_qbytes; pid_t msg_lspid; pid_t msg_lrpid; unsigned long int __unused4; unsigned long int __unused5; }; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
struct semid_ds { struct ipc_perm sem_perm; unsigned int __unused1; time_t sem_otime; unsigned int __unused2; time_t sem_ctime; unsigned long int sem_nsems; unsigned long int __unused3; unsigned long int __unused4; }; |
#define SHMLBA (__getpagesize()) typedef unsigned long int shmatt_t; struct shmid_ds { struct ipc_perm shm_perm; unsigned int __unused1; time_t shm_atime; unsigned int __unused2; time_t shm_dtime; unsigned int __unused3; time_t shm_ctime; unsigned int __unused4; size_t shm_segsz; pid_t shm_cpid; pid_t shm_lpid; shmatt_t shm_nattch; unsigned long int __unused5; unsigned long int __unused6; }; |
typedef uint32_t __ss_aligntype; #define SO_RCVLOWAT 16 #define SO_SNDLOWAT 17 #define SO_RCVTIMEO 18 #define SO_SNDTIMEO 19 |
#define _STAT_VER 3 struct stat { dev_t st_dev; unsigned short __pad1; ino_t st_ino; mode_t st_mode; nlink_t st_nlink; uid_t st_uid; gid_t st_gid; dev_t st_rdev; unsigned short __pad2; off_t st_size; blksize_t st_blksize; blkcnt_t st_blocks; struct timespec st_atim; struct timespec st_mtim; struct timespec st_ctim; unsigned long int __unused4; unsigned long int __unused5; }; struct stat64 { dev_t st_dev; ino64_t st_ino; mode_t st_mode; nlink_t st_nlink; uid_t st_uid; gid_t st_gid; dev_t st_rdev; unsigned short __pad2; off64_t st_size; blksize_t st_blksize; blkcnt64_t st_blocks; struct timespec st_atim; struct timespec st_mtim; struct timespec st_ctim; unsigned long int __unused4; unsigned long int __unused5; }; |
struct statfs { int f_type; int f_bsize; fsblkcnt_t f_blocks; fsblkcnt_t f_bfree; fsblkcnt_t f_bavail; fsfilcnt_t f_files; fsfilcnt_t f_ffree; fsid_t f_fsid; int f_namelen; int f_frsize; int f_spare[5]; }; struct statfs64 { int f_type; int f_bsize; fsblkcnt64_t f_blocks; fsblkcnt64_t f_bfree; fsblkcnt64_t f_bavail; fsfilcnt64_t f_files; fsfilcnt64_t f_ffree; fsid_t f_fsid; int f_namelen; int f_frsize; int f_spare[5]; }; |
struct statvfs { unsigned long int f_bsize; unsigned long int f_frsize; fsblkcnt_t f_blocks; fsblkcnt_t f_bfree; fsblkcnt_t f_bavail; fsfilcnt_t f_files; fsfilcnt_t f_ffree; fsfilcnt_t f_favail; unsigned long int f_fsid; int __f_unused; unsigned long int f_flag; unsigned long int f_namemax; int __f_spare[6]; }; struct statvfs64 { unsigned long int f_bsize; unsigned long int f_frsize; fsblkcnt64_t f_blocks; fsblkcnt64_t f_bfree; fsblkcnt64_t f_bavail; fsfilcnt64_t f_files; fsfilcnt64_t f_ffree; fsfilcnt64_t f_favail; unsigned long int f_fsid; int __f_unused; unsigned long int f_flag; unsigned long int f_namemax; int __f_spare[6]; }; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
#define TAB1 1024 #define CR3 12288 #define CRDLY 12288 #define FF1 16384 #define FFDLY 16384 #define XCASE 16384 #define ONLCR 2 #define TAB2 2048 #define TAB3 3072 #define TABDLY 3072 #define BS1 32768 #define BSDLY 32768 #define OLCUC 4 #define CR1 4096 #define IUCLC 4096 #define VT1 65536 #define VTDLY 65536 #define NLDLY 768 #define CR2 8192 #define VWERASE 10 #define VREPRINT 11 #define VSUSP 12 #define VSTART 13 #define VSTOP 14 #define VDISCARD 16 #define VMIN 5 #define VEOL 6 #define VEOL2 8 #define VSWTC 9 #define IXOFF 1024 #define IXON 512 #define CSTOPB 1024 #define HUPCL 16384 #define CREAD 2048 #define CS6 256 #define CLOCAL 32768 #define PARENB 4096 #define CS7 512 #define VTIME 7 #define CS8 768 #define CSIZE 768 #define PARODD 8192 #define NOFLSH 0x80000000 #define ECHOKE 1 #define IEXTEN 1024 #define ISIG 128 #define ECHONL 16 #define ECHOE 2 #define ICANON 256 #define ECHOPRT 32 #define ECHOK 4 #define TOSTOP 4194304 #define PENDIN 536870912 #define ECHOCTL 64 #define FLUSHO 8388608 |
typedef struct _libc_vrstate { unsigned int vrregs[128]; unsigned int vrsave; unsigned int _pad[2]; unsigned int vscr; } vrregset_t __attribute__ ((__aligned__(16))); #define NGREG 48 typedef unsigned long int gregset_t[48]; typedef struct _libc_fpstate { double fpregs[32]; double fpscr; int _pad[2]; } fpregset_t; typedef struct { gregset_t gregs; fpregset_t fpregs; vrregset_t vrregs; } mcontext_t; union uc_regs_ptr { struct pt_regs *regs; mcontext_t *uc_regs; }; typedef struct ucontext { unsigned long int uc_flags; struct ucontext *uc_link; stack_t uc_stack; int uc_pad[7]; union uc_regs_ptr uc_mcontext; sigset_t uc_sigmask; char uc_reg_space[sizeof(mcontext_t) + 12]; } ucontext_t; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
struct lastlog { time_t ll_time; char ll_line[UT_LINESIZE]; char ll_host[UT_HOSTSIZE]; }; struct utmp { short ut_type; pid_t ut_pid; char ut_line[UT_LINESIZE]; char ut_id[4]; char ut_user[UT_NAMESIZE]; char ut_host[UT_HOSTSIZE]; struct exit_status ut_exit; long int ut_session; struct timeval ut_tv; int32_t ut_addr_v6[4]; char __unused[20]; }; |
struct utmpx { short ut_type; pid_t ut_pid; char ut_line[UT_LINESIZE]; char ut_id[4]; char ut_user[UT_NAMESIZE]; char ut_host[UT_HOSTSIZE]; struct exit_status ut_exit; long int ut_session; struct timeval ut_tv; int32_t ut_addr_v6[4]; char __unused[20]; }; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
Table 11-33 defines the library name and shared object name for the libm library
The behavior of the interfaces in this library is specified by the following specifications:
[ISOC99] ISO C (1999) |
[LSB] ISO/IEC 23360 Part 1 |
[SUSv3] ISO POSIX (2003) |
[SVID.3] SVID Issue 3 |
An LSB conforming implementation shall provide the architecture specific functions for Math specified in Table 11-34, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-34. libm - Math Function Interfaces
__finite(GLIBC_2.1) [LSB] | __finitef(GLIBC_2.1) [LSB] | __finitel(GLIBC_2.1) [LSB] | __fpclassify(GLIBC_2.1) [LSB] |
__fpclassifyf(GLIBC_2.1) [LSB] | __signbit(GLIBC_2.1) [LSB] | __signbitf(GLIBC_2.1) [LSB] | acos(GLIBC_2.0) [SUSv3] |
acosf(GLIBC_2.0) [SUSv3] | acosh(GLIBC_2.0) [SUSv3] | acoshf(GLIBC_2.0) [SUSv3] | acoshl(GLIBC_2.0) [SUSv3] |
acosl(GLIBC_2.0) [SUSv3] | asin(GLIBC_2.0) [SUSv3] | asinf(GLIBC_2.0) [SUSv3] | asinh(GLIBC_2.0) [SUSv3] |
asinhf(GLIBC_2.0) [SUSv3] | asinhl(GLIBC_2.0) [SUSv3] | asinl(GLIBC_2.0) [SUSv3] | atan(GLIBC_2.0) [SUSv3] |
atan2(GLIBC_2.0) [SUSv3] | atan2f(GLIBC_2.0) [SUSv3] | atan2l(GLIBC_2.0) [SUSv3] | atanf(GLIBC_2.0) [SUSv3] |
atanh(GLIBC_2.0) [SUSv3] | atanhf(GLIBC_2.0) [SUSv3] | atanhl(GLIBC_2.0) [SUSv3] | atanl(GLIBC_2.0) [SUSv3] |
cabs(GLIBC_2.1) [SUSv3] | cabsf(GLIBC_2.1) [SUSv3] | cabsl(GLIBC_2.1) [SUSv3] | cacos(GLIBC_2.1) [SUSv3] |
cacosf(GLIBC_2.1) [SUSv3] | cacosh(GLIBC_2.1) [SUSv3] | cacoshf(GLIBC_2.1) [SUSv3] | cacoshl(GLIBC_2.1) [SUSv3] |
cacosl(GLIBC_2.1) [SUSv3] | carg(GLIBC_2.1) [SUSv3] | cargf(GLIBC_2.1) [SUSv3] | cargl(GLIBC_2.1) [SUSv3] |
casin(GLIBC_2.1) [SUSv3] | casinf(GLIBC_2.1) [SUSv3] | casinh(GLIBC_2.1) [SUSv3] | casinhf(GLIBC_2.1) [SUSv3] |
casinhl(GLIBC_2.1) [SUSv3] | casinl(GLIBC_2.1) [SUSv3] | catan(GLIBC_2.1) [SUSv3] | catanf(GLIBC_2.1) [SUSv3] |
catanh(GLIBC_2.1) [SUSv3] | catanhf(GLIBC_2.1) [SUSv3] | catanhl(GLIBC_2.1) [SUSv3] | catanl(GLIBC_2.1) [SUSv3] |
cbrt(GLIBC_2.0) [SUSv3] | cbrtf(GLIBC_2.0) [SUSv3] | cbrtl(GLIBC_2.0) [SUSv3] | ccos(GLIBC_2.1) [SUSv3] |
ccosf(GLIBC_2.1) [SUSv3] | ccosh(GLIBC_2.1) [SUSv3] | ccoshf(GLIBC_2.1) [SUSv3] | ccoshl(GLIBC_2.1) [SUSv3] |
ccosl(GLIBC_2.1) [SUSv3] | ceil(GLIBC_2.0) [SUSv3] | ceilf(GLIBC_2.0) [SUSv3] | ceill(GLIBC_2.0) [SUSv3] |
cexp(GLIBC_2.1) [SUSv3] | cexpf(GLIBC_2.1) [SUSv3] | cexpl(GLIBC_2.1) [SUSv3] | cimag(GLIBC_2.1) [SUSv3] |
cimagf(GLIBC_2.1) [SUSv3] | cimagl(GLIBC_2.1) [SUSv3] | clog(GLIBC_2.1) [SUSv3] | clog10(GLIBC_2.1) [LSB] |
clog10f(GLIBC_2.1) [LSB] | clog10l(GLIBC_2.1) [LSB] | clogf(GLIBC_2.1) [SUSv3] | clogl(GLIBC_2.1) [SUSv3] |
conj(GLIBC_2.1) [SUSv3] | conjf(GLIBC_2.1) [SUSv3] | conjl(GLIBC_2.1) [SUSv3] | copysign(GLIBC_2.0) [SUSv3] |
copysignf(GLIBC_2.0) [SUSv3] | copysignl(GLIBC_2.0) [SUSv3] | cos(GLIBC_2.0) [SUSv3] | cosf(GLIBC_2.0) [SUSv3] |
cosh(GLIBC_2.0) [SUSv3] | coshf(GLIBC_2.0) [SUSv3] | coshl(GLIBC_2.0) [SUSv3] | cosl(GLIBC_2.0) [SUSv3] |
cpow(GLIBC_2.1) [SUSv3] | cpowf(GLIBC_2.1) [SUSv3] | cpowl(GLIBC_2.1) [SUSv3] | cproj(GLIBC_2.1) [SUSv3] |
cprojf(GLIBC_2.1) [SUSv3] | cprojl(GLIBC_2.1) [SUSv3] | creal(GLIBC_2.1) [SUSv3] | crealf(GLIBC_2.1) [SUSv3] |
creall(GLIBC_2.1) [SUSv3] | csin(GLIBC_2.1) [SUSv3] | csinf(GLIBC_2.1) [SUSv3] | csinh(GLIBC_2.1) [SUSv3] |
csinhf(GLIBC_2.1) [SUSv3] | csinhl(GLIBC_2.1) [SUSv3] | csinl(GLIBC_2.1) [SUSv3] | csqrt(GLIBC_2.1) [SUSv3] |
csqrtf(GLIBC_2.1) [SUSv3] | csqrtl(GLIBC_2.1) [SUSv3] | ctan(GLIBC_2.1) [SUSv3] | ctanf(GLIBC_2.1) [SUSv3] |
ctanh(GLIBC_2.1) [SUSv3] | ctanhf(GLIBC_2.1) [SUSv3] | ctanhl(GLIBC_2.1) [SUSv3] | ctanl(GLIBC_2.1) [SUSv3] |
drem(GLIBC_2.0) [LSB] | dremf(GLIBC_2.0) [LSB] | dreml(GLIBC_2.0) [LSB] | erf(GLIBC_2.0) [SUSv3] |
erfc(GLIBC_2.0) [SUSv3] | erfcf(GLIBC_2.0) [SUSv3] | erfcl(GLIBC_2.0) [SUSv3] | erff(GLIBC_2.0) [SUSv3] |
erfl(GLIBC_2.0) [SUSv3] | exp(GLIBC_2.0) [SUSv3] | exp10(GLIBC_2.1) [LSB] | exp10f(GLIBC_2.1) [LSB] |
exp10l(GLIBC_2.1) [LSB] | exp2(GLIBC_2.1) [SUSv3] | exp2f(GLIBC_2.1) [SUSv3] | expf(GLIBC_2.0) [SUSv3] |
expl(GLIBC_2.0) [SUSv3] | expm1(GLIBC_2.0) [SUSv3] | expm1f(GLIBC_2.0) [SUSv3] | expm1l(GLIBC_2.0) [SUSv3] |
fabs(GLIBC_2.0) [SUSv3] | fabsf(GLIBC_2.0) [SUSv3] | fabsl(GLIBC_2.0) [SUSv3] | fdim(GLIBC_2.1) [SUSv3] |
fdimf(GLIBC_2.1) [SUSv3] | fdiml(GLIBC_2.1) [SUSv3] | feclearexcept(GLIBC_2.2) [SUSv3] | fedisableexcept(GLIBC_2.2) [LSB] |
feenableexcept(GLIBC_2.2) [LSB] | fegetenv(GLIBC_2.2) [SUSv3] | fegetexcept(GLIBC_2.2) [LSB] | fegetexceptflag(GLIBC_2.2) [SUSv3] |
fegetround(GLIBC_2.1) [SUSv3] | feholdexcept(GLIBC_2.1) [SUSv3] | feraiseexcept(GLIBC_2.2) [SUSv3] | fesetenv(GLIBC_2.2) [SUSv3] |
fesetexceptflag(GLIBC_2.2) [SUSv3] | fesetround(GLIBC_2.1) [SUSv3] | fetestexcept(GLIBC_2.1) [SUSv3] | feupdateenv(GLIBC_2.2) [SUSv3] |
finite(GLIBC_2.0) [LSB] | finitef(GLIBC_2.0) [LSB] | finitel(GLIBC_2.0) [LSB] | floor(GLIBC_2.0) [SUSv3] |
floorf(GLIBC_2.0) [SUSv3] | floorl(GLIBC_2.0) [SUSv3] | fma(GLIBC_2.1) [SUSv3] | fmaf(GLIBC_2.1) [SUSv3] |
fmal(GLIBC_2.1) [SUSv3] | fmax(GLIBC_2.1) [SUSv3] | fmaxf(GLIBC_2.1) [SUSv3] | fmaxl(GLIBC_2.1) [SUSv3] |
fmin(GLIBC_2.1) [SUSv3] | fminf(GLIBC_2.1) [SUSv3] | fminl(GLIBC_2.1) [SUSv3] | fmod(GLIBC_2.0) [SUSv3] |
fmodf(GLIBC_2.0) [SUSv3] | fmodl(GLIBC_2.0) [SUSv3] | frexp(GLIBC_2.0) [SUSv3] | frexpf(GLIBC_2.0) [SUSv3] |
frexpl(GLIBC_2.0) [SUSv3] | gamma(GLIBC_2.0) [LSB] | gammaf(GLIBC_2.0) [LSB] | gammal(GLIBC_2.0) [LSB] |
hypot(GLIBC_2.0) [SUSv3] | hypotf(GLIBC_2.0) [SUSv3] | hypotl(GLIBC_2.0) [SUSv3] | ilogb(GLIBC_2.0) [SUSv3] |
ilogbf(GLIBC_2.0) [SUSv3] | ilogbl(GLIBC_2.0) [SUSv3] | j0(GLIBC_2.0) [SUSv3] | j0f(GLIBC_2.0) [LSB] |
j0l(GLIBC_2.0) [LSB] | j1(GLIBC_2.0) [SUSv3] | j1f(GLIBC_2.0) [LSB] | j1l(GLIBC_2.0) [LSB] |
jn(GLIBC_2.0) [SUSv3] | jnf(GLIBC_2.0) [LSB] | jnl(GLIBC_2.0) [LSB] | ldexp(GLIBC_2.0) [SUSv3] |
ldexpf(GLIBC_2.0) [SUSv3] | ldexpl(GLIBC_2.0) [SUSv3] | lgamma(GLIBC_2.0) [SUSv3] | lgamma_r(GLIBC_2.0) [LSB] |
lgammaf(GLIBC_2.0) [SUSv3] | lgammaf_r(GLIBC_2.0) [LSB] | lgammal(GLIBC_2.0) [SUSv3] | lgammal_r(GLIBC_2.0) [LSB] |
llrint(GLIBC_2.1) [SUSv3] | llrintf(GLIBC_2.1) [SUSv3] | llrintl(GLIBC_2.1) [SUSv3] | llround(GLIBC_2.1) [SUSv3] |
llroundf(GLIBC_2.1) [SUSv3] | llroundl(GLIBC_2.1) [SUSv3] | log(GLIBC_2.0) [SUSv3] | log10(GLIBC_2.0) [SUSv3] |
log10f(GLIBC_2.0) [SUSv3] | log10l(GLIBC_2.0) [SUSv3] | log1p(GLIBC_2.0) [SUSv3] | log1pf(GLIBC_2.0) [SUSv3] |
log1pl(GLIBC_2.0) [SUSv3] | log2(GLIBC_2.1) [SUSv3] | log2f(GLIBC_2.1) [SUSv3] | log2l(GLIBC_2.1) [SUSv3] |
logb(GLIBC_2.0) [SUSv3] | logbf(GLIBC_2.0) [SUSv3] | logbl(GLIBC_2.0) [SUSv3] | logf(GLIBC_2.0) [SUSv3] |
logl(GLIBC_2.0) [SUSv3] | lrint(GLIBC_2.1) [SUSv3] | lrintf(GLIBC_2.1) [SUSv3] | lrintl(GLIBC_2.1) [SUSv3] |
lround(GLIBC_2.1) [SUSv3] | lroundf(GLIBC_2.1) [SUSv3] | lroundl(GLIBC_2.1) [SUSv3] | matherr(GLIBC_2.0) [SVID.3] |
modf(GLIBC_2.0) [SUSv3] | modff(GLIBC_2.0) [SUSv3] | modfl(GLIBC_2.0) [SUSv3] | nan(GLIBC_2.1) [SUSv3] |
nanf(GLIBC_2.1) [SUSv3] | nanl(GLIBC_2.1) [SUSv3] | nearbyint(GLIBC_2.1) [SUSv3] | nearbyintf(GLIBC_2.1) [SUSv3] |
nearbyintl(GLIBC_2.1) [SUSv3] | nextafter(GLIBC_2.0) [SUSv3] | nextafterf(GLIBC_2.0) [SUSv3] | nextafterl(GLIBC_2.0) [SUSv3] |
nexttoward(GLIBC_2.1) [SUSv3] | nexttowardf(GLIBC_2.1) [SUSv3] | nexttowardl(GLIBC_2.1) [SUSv3] | pow(GLIBC_2.0) [SUSv3] |
pow10(GLIBC_2.1) [LSB] | pow10f(GLIBC_2.1) [LSB] | pow10l(GLIBC_2.1) [LSB] | powf(GLIBC_2.0) [SUSv3] |
powl(GLIBC_2.0) [SUSv3] | remainder(GLIBC_2.0) [SUSv3] | remainderf(GLIBC_2.0) [SUSv3] | remainderl(GLIBC_2.0) [SUSv3] |
remquo(GLIBC_2.1) [SUSv3] | remquof(GLIBC_2.1) [SUSv3] | remquol(GLIBC_2.1) [SUSv3] | rint(GLIBC_2.0) [SUSv3] |
rintf(GLIBC_2.0) [SUSv3] | rintl(GLIBC_2.0) [SUSv3] | round(GLIBC_2.1) [SUSv3] | roundf(GLIBC_2.1) [SUSv3] |
roundl(GLIBC_2.1) [SUSv3] | scalb(GLIBC_2.0) [SUSv3] | scalbf(GLIBC_2.0) [ISOC99] | scalbl(GLIBC_2.0) [ISOC99] |
scalbln(GLIBC_2.1) [SUSv3] | scalblnf(GLIBC_2.1) [SUSv3] | scalblnl(GLIBC_2.1) [SUSv3] | scalbn(GLIBC_2.0) [SUSv3] |
scalbnf(GLIBC_2.0) [SUSv3] | scalbnl(GLIBC_2.0) [SUSv3] | significand(GLIBC_2.0) [LSB] | significandf(GLIBC_2.0) [LSB] |
significandl(GLIBC_2.0) [LSB] | sin(GLIBC_2.0) [SUSv3] | sincos(GLIBC_2.1) [LSB] | sincosf(GLIBC_2.1) [LSB] |
sincosl(GLIBC_2.1) [LSB] | sinf(GLIBC_2.0) [SUSv3] | sinh(GLIBC_2.0) [SUSv3] | sinhf(GLIBC_2.0) [SUSv3] |
sinhl(GLIBC_2.0) [SUSv3] | sinl(GLIBC_2.0) [SUSv3] | sqrt(GLIBC_2.0) [SUSv3] | sqrtf(GLIBC_2.0) [SUSv3] |
sqrtl(GLIBC_2.0) [SUSv3] | tan(GLIBC_2.0) [SUSv3] | tanf(GLIBC_2.0) [SUSv3] | tanh(GLIBC_2.0) [SUSv3] |
tanhf(GLIBC_2.0) [SUSv3] | tanhl(GLIBC_2.0) [SUSv3] | tanl(GLIBC_2.0) [SUSv3] | tgamma(GLIBC_2.1) [SUSv3] |
tgammaf(GLIBC_2.1) [SUSv3] | tgammal(GLIBC_2.1) [SUSv3] | trunc(GLIBC_2.1) [SUSv3] | truncf(GLIBC_2.1) [SUSv3] |
truncl(GLIBC_2.1) [SUSv3] | y0(GLIBC_2.0) [SUSv3] | y0f(GLIBC_2.0) [LSB] | y0l(GLIBC_2.0) [LSB] |
y1(GLIBC_2.0) [SUSv3] | y1f(GLIBC_2.0) [LSB] | y1l(GLIBC_2.0) [LSB] | yn(GLIBC_2.0) [SUSv3] |
ynf(GLIBC_2.0) [LSB] | ynl(GLIBC_2.0) [LSB] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for Math specified in Table 11-35, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
Table 11-35. libm - Math Deprecated Function Interfaces
drem(GLIBC_2.0) [LSB] | dremf(GLIBC_2.0) [LSB] | dreml(GLIBC_2.0) [LSB] | finite(GLIBC_2.0) [LSB] |
finitef(GLIBC_2.0) [LSB] | finitel(GLIBC_2.0) [LSB] | gamma(GLIBC_2.0) [LSB] | gammaf(GLIBC_2.0) [LSB] |
gammal(GLIBC_2.0) [LSB] | matherr(GLIBC_2.0) [SVID.3] |
An LSB conforming implementation shall provide the architecture specific data interfaces for Math specified in Table 11-36, with the full mandatory functionality as described in the referenced underlying specification.
This section defines global identifiers and their values that are associated with interfaces contained in libm. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
#define FE_INVALID (1 << (31 - 2)) #define FE_OVERFLOW (1 << (31 - 3)) #define FE_UNDERFLOW (1 << (31 - 4)) #define FE_DIVBYZERO (1 << (31 - 5)) #define FE_INEXACT (1 << (31 - 6)) #define FE_ALL_EXCEPT \ (FE_INEXACT | FE_DIVBYZERO | FE_UNDERFLOW | FE_OVERFLOW | FE_INVALID) #define FE_TONEAREST 0 #define FE_TOWARDZERO 1 #define FE_UPWARD 2 #define FE_DOWNWARD 3 typedef unsigned int fexcept_t; typedef double fenv_t; #define FE_DFL_ENV (&__fe_dfl_env) |
#define fpclassify(x) \ (sizeof (x) == sizeof (float) ? __fpclassifyf (x) : __fpclassify (x) ) #define signbit(x) \ (sizeof (x) == sizeof (float)? __signbitf (x): __signbit (x)) #define isfinite(x) \ (sizeof (x) == sizeof (float) ? __finitef (x) : __finite (x)) #define isinf(x) \ (sizeof (x) == sizeof (float) ? __isinff (x) : __isinf (x)) #define isnan(x) \ (sizeof (x) == sizeof (float) ? __isnanf (x) : __isnan (x)) #define HUGE_VALL 0x1.0p2047L #define FP_ILOGB0 -2147483647 #define FP_ILOGBNAN 2147483647 |
Table 11-37 defines the library name and shared object name for the libpthread library
The behavior of the interfaces in this library is specified by the following specifications:
[LFS] Large File Support |
[LSB] ISO/IEC 23360 Part 1 |
[SUSv3] ISO POSIX (2003) |
An LSB conforming implementation shall provide the architecture specific functions for Realtime Threads specified in Table 11-38, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-38. libpthread - Realtime Threads Function Interfaces
pthread_attr_getinheritsched(GLIBC_2.0) [SUSv3] | pthread_attr_getschedpolicy(GLIBC_2.0) [SUSv3] | pthread_attr_getscope(GLIBC_2.0) [SUSv3] | pthread_attr_setinheritsched(GLIBC_2.0) [SUSv3] |
pthread_attr_setschedpolicy(GLIBC_2.0) [SUSv3] | pthread_attr_setscope(GLIBC_2.0) [SUSv3] | pthread_getschedparam(GLIBC_2.0) [SUSv3] | pthread_setschedparam(GLIBC_2.0) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific functions for Advanced Realtime Threads specified in Table 11-39, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-39. libpthread - Advanced Realtime Threads Function Interfaces
pthread_barrier_destroy(GLIBC_2.2) [SUSv3] | pthread_barrier_init(GLIBC_2.2) [SUSv3] | pthread_barrier_wait(GLIBC_2.2) [SUSv3] | pthread_barrierattr_destroy(GLIBC_2.2) [SUSv3] |
pthread_barrierattr_init(GLIBC_2.2) [SUSv3] | pthread_barrierattr_setpshared(GLIBC_2.2) [SUSv3] | pthread_getcpuclockid(GLIBC_2.2) [SUSv3] | pthread_spin_destroy(GLIBC_2.2) [SUSv3] |
pthread_spin_init(GLIBC_2.2) [SUSv3] | pthread_spin_lock(GLIBC_2.2) [SUSv3] | pthread_spin_trylock(GLIBC_2.2) [SUSv3] | pthread_spin_unlock(GLIBC_2.2) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific functions for Posix Threads specified in Table 11-40, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-40. libpthread - Posix Threads Function Interfaces
_pthread_cleanup_pop(GLIBC_2.0) [LSB] | _pthread_cleanup_push(GLIBC_2.0) [LSB] | pthread_attr_destroy(GLIBC_2.0) [SUSv3] | pthread_attr_getdetachstate(GLIBC_2.0) [SUSv3] |
pthread_attr_getguardsize(GLIBC_2.1) [SUSv3] | pthread_attr_getschedparam(GLIBC_2.0) [SUSv3] | pthread_attr_getstack(GLIBC_2.2) [SUSv3] | pthread_attr_getstackaddr(GLIBC_2.1) [SUSv3] |
pthread_attr_getstacksize(GLIBC_2.1) [SUSv3] | pthread_attr_init(GLIBC_2.1) [SUSv3] | pthread_attr_setdetachstate(GLIBC_2.0) [SUSv3] | pthread_attr_setguardsize(GLIBC_2.1) [SUSv3] |
pthread_attr_setschedparam(GLIBC_2.0) [SUSv3] | pthread_attr_setstackaddr(GLIBC_2.1) [SUSv3] | pthread_attr_setstacksize(GLIBC_2.1) [SUSv3] | pthread_cancel(GLIBC_2.0) [SUSv3] |
pthread_cond_broadcast(GLIBC_2.3.2) [SUSv3] | pthread_cond_destroy(GLIBC_2.3.2) [SUSv3] | pthread_cond_init(GLIBC_2.3.2) [SUSv3] | pthread_cond_signal(GLIBC_2.3.2) [SUSv3] |
pthread_cond_timedwait(GLIBC_2.3.2) [SUSv3] | pthread_cond_wait(GLIBC_2.3.2) [SUSv3] | pthread_condattr_destroy(GLIBC_2.0) [SUSv3] | pthread_condattr_getpshared(GLIBC_2.2) [SUSv3] |
pthread_condattr_init(GLIBC_2.0) [SUSv3] | pthread_condattr_setpshared(GLIBC_2.2) [SUSv3] | pthread_create(GLIBC_2.1) [SUSv3] | pthread_detach(GLIBC_2.0) [SUSv3] |
pthread_equal(GLIBC_2.0) [SUSv3] | pthread_exit(GLIBC_2.0) [SUSv3] | pthread_getconcurrency(GLIBC_2.1) [SUSv3] | pthread_getspecific(GLIBC_2.0) [SUSv3] |
pthread_join(GLIBC_2.0) [SUSv3] | pthread_key_create(GLIBC_2.0) [SUSv3] | pthread_key_delete(GLIBC_2.0) [SUSv3] | pthread_kill(GLIBC_2.0) [SUSv3] |
pthread_mutex_destroy(GLIBC_2.0) [SUSv3] | pthread_mutex_init(GLIBC_2.0) [SUSv3] | pthread_mutex_lock(GLIBC_2.0) [SUSv3] | pthread_mutex_timedlock(GLIBC_2.2) [SUSv3] |
pthread_mutex_trylock(GLIBC_2.0) [SUSv3] | pthread_mutex_unlock(GLIBC_2.0) [SUSv3] | pthread_mutexattr_destroy(GLIBC_2.0) [SUSv3] | pthread_mutexattr_getpshared(GLIBC_2.2) [SUSv3] |
pthread_mutexattr_gettype(GLIBC_2.1) [SUSv3] | pthread_mutexattr_init(GLIBC_2.0) [SUSv3] | pthread_mutexattr_setpshared(GLIBC_2.2) [SUSv3] | pthread_mutexattr_settype(GLIBC_2.1) [SUSv3] |
pthread_once(GLIBC_2.0) [SUSv3] | pthread_rwlock_destroy(GLIBC_2.1) [SUSv3] | pthread_rwlock_init(GLIBC_2.1) [SUSv3] | pthread_rwlock_rdlock(GLIBC_2.1) [SUSv3] |
pthread_rwlock_timedrdlock(GLIBC_2.2) [SUSv3] | pthread_rwlock_timedwrlock(GLIBC_2.2) [SUSv3] | pthread_rwlock_tryrdlock(GLIBC_2.1) [SUSv3] | pthread_rwlock_trywrlock(GLIBC_2.1) [SUSv3] |
pthread_rwlock_unlock(GLIBC_2.1) [SUSv3] | pthread_rwlock_wrlock(GLIBC_2.1) [SUSv3] | pthread_rwlockattr_destroy(GLIBC_2.1) [SUSv3] | pthread_rwlockattr_getpshared(GLIBC_2.1) [SUSv3] |
pthread_rwlockattr_init(GLIBC_2.1) [SUSv3] | pthread_rwlockattr_setpshared(GLIBC_2.1) [SUSv3] | pthread_self(GLIBC_2.0) [SUSv3] | pthread_setcancelstate(GLIBC_2.0) [SUSv3] |
pthread_setcanceltype(GLIBC_2.0) [SUSv3] | pthread_setconcurrency(GLIBC_2.1) [SUSv3] | pthread_setspecific(GLIBC_2.0) [SUSv3] | pthread_sigmask(GLIBC_2.0) [SUSv3] |
pthread_testcancel(GLIBC_2.0) [SUSv3] | sem_close(GLIBC_2.1.1) [SUSv3] | sem_destroy(GLIBC_2.1) [SUSv3] | sem_getvalue(GLIBC_2.1) [SUSv3] |
sem_init(GLIBC_2.1) [SUSv3] | sem_open(GLIBC_2.1.1) [SUSv3] | sem_post(GLIBC_2.1) [SUSv3] | sem_timedwait(GLIBC_2.2) [SUSv3] |
sem_trywait(GLIBC_2.1) [SUSv3] | sem_unlink(GLIBC_2.1.1) [SUSv3] | sem_wait(GLIBC_2.1) [SUSv3] |
An LSB conforming implementation shall provide the architecture specific deprecated functions for Posix Threads specified in Table 11-41, with the full mandatory functionality as described in the referenced underlying specification.
Note: These interfaces are deprecated, and applications should avoid using them. These interfaces may be withdrawn in future releases of this specification.
An LSB conforming implementation shall provide the architecture specific functions for Thread aware versions of libc interfaces specified in Table 11-42, with the full mandatory functionality as described in the referenced underlying specification.
This section defines global identifiers and their values that are associated with interfaces contained in libpthread. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
#define __SIZEOF_PTHREAD_BARRIER_T 20 typedef union { char __size[__SIZEOF_PTHREAD_BARRIER_T]; long int __align; } pthread_barrier_t; |
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
Table 11-43 defines the library name and shared object name for the libgcc_s library
The behavior of the interfaces in this library is specified by the following specifications:
[LSB] ISO/IEC 23360 Part 1 |
An LSB conforming implementation shall provide the architecture specific functions for Unwind Library specified in Table 11-44, with the full mandatory functionality as described in the referenced underlying specification.
Table 11-44. libgcc_s - Unwind Library Function Interfaces
_Unwind_Backtrace(GCC_3.3) [LSB] | _Unwind_DeleteException(GCC_3.0) [LSB] | _Unwind_FindEnclosingFunction(GCC_3.3) [LSB] | _Unwind_Find_FDE(GCC_3.0) [LSB] |
_Unwind_ForcedUnwind(GCC_3.0) [LSB] | _Unwind_GetCFA(GCC_3.3) [LSB] | _Unwind_GetDataRelBase(GCC_3.0) [LSB] | _Unwind_GetGR(GCC_3.0) [LSB] |
_Unwind_GetIP(GCC_3.0) [LSB] | _Unwind_GetLanguageSpecificData(GCC_3.0) [LSB] | _Unwind_GetRegionStart(GCC_3.0) [LSB] | _Unwind_GetTextRelBase(GCC_3.0) [LSB] |
_Unwind_RaiseException(GCC_3.0) [LSB] | _Unwind_Resume(GCC_3.0) [LSB] | _Unwind_Resume_or_Rethrow(GCC_3.3) [LSB] | _Unwind_SetGR(GCC_3.0) [LSB] |
_Unwind_SetIP(GCC_3.0) [LSB] |
This section defines global identifiers and their values that are associated with interfaces contained in libgcc_s. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
typedef _Unwind_Reason_Code(*_Unwind_Stop_Fn) (int version, _Unwind_Action actions, _Unwind_Exception_Class exceptionClass, struct _Unwind_Exception * exceptionObject, struct _Unwind_Context * context, void *stop_parameter); typedef _Unwind_Reason_Code(*_Unwind_Trace_Fn) (struct _Unwind_Context *, void *); extern void _Unwind_DeleteException(struct _Unwind_Exception *); extern fde *_Unwind_Find_FDE(void *, struct dwarf_eh_base *); extern _Unwind_Ptr _Unwind_GetDataRelBase(struct _Unwind_Context *); extern _Unwind_Word _Unwind_GetGR(struct _Unwind_Context *, int); extern _Unwind_Ptr _Unwind_GetIP(struct _Unwind_Context *); extern _Unwind_Ptr _Unwind_GetLanguageSpecificData(struct _Unwind_Context *, unsigned int); extern _Unwind_Ptr _Unwind_GetRegionStart(struct _Unwind_Context *); extern _Unwind_Reason_Code _Unwind_RaiseException(struct _Unwind_Exception *); extern void _Unwind_SetIP(struct _Unwind_Context *, unsigned int); extern void _Unwind_Resume(struct _Unwind_Exception *); extern void _Unwind_SetGR(struct _Unwind_Context *, int, u_int64_t); extern _Unwind_Ptr _Unwind_GetTextRelBase(struct _Unwind_Context *); extern _Unwind_Ptr _Unwind_ForcedUnwind(struct _Unwind_Exception *, _Unwind_Stop_Fn, void *); extern _Unwind_Reason_Code _Unwind_Backtrace(_Unwind_Trace_Fn, void *); extern _Unwind_Reason_Code _Unwind_GetCFA(struct _Unwind_Context *); extern _Unwind_Reason_Code _Unwind_Resume_or_Rethrow(struct _Unwind_Exception *); extern void *_Unwind_FindEnclosingFunction(void *); |
The interfaces defined on the following pages are included in libgcc_s and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.
Other interfaces listed in Section 11.8 shall behave as described in the referenced base document. For interfaces referencing LSB and not listed below, please see the generic part of the specification.
_Unwind_DeleteException() deletes the given exception object. If a given runtime resumes normal execution after catching a foreign exception, it will not know how to delete that exception. Such an exception shall be deleted by calling _Unwind_DeleteException(). This is a convenience function that calls the function pointed to by the exception_cleanup field of the exception header.
_Unwind_ForcedUnwind() raises an exception for forced unwinding, passing along the given exception object, which should have its exception_class and exception_cleanup fields set. The exception object has been allocated by the language-specific runtime, and has a language-specific format, except that it shall contain an _Unwind_Exception struct.
Forced unwinding is a single-phase process. stop and stop_parameter control the termination of the unwind process instead of the usual personality routine query. stop is called for each unwind frame, with the parameteres described for the usual personality routine below, plus an additional stop_parameter.
When stop identifies the destination frame, it
transfers control to the user code as appropriate without returning,
normally after calling _Unwind_DeleteException(). If not,
then it should return an _Unwind_Reason_Code
value.
If stop returns any reason code other than
_URC_NO_REASON, then the stack state is indeterminate
from the point of view of the caller of
_Unwind_ForcedUnwind(). Rather than attempt to return,
therefore, the unwind library should use the
exception_cleanup
entry in the exception, and then
call abort().
This is not the destination from. The unwind runtime will call frame's
personality routine with the _UA_FORCE_UNWIND
and _UA_CLEANUP_PHASE
flag set in
actions, and then unwind to the next frame
and call the stop() function again.
In order to allow _Unwind_ForcedUnwind() to
perform special processing when it reaches the end of the stack, the
unwind runtime will call it after the last frame is rejected, with a
NULL
stack pointer in the context, and the
stop() function shall catch this condition. It may
return this code if it cannot handle end-of-stack.
The stop() function may return this code for other fatal conditions like stack corruption.
_Unwind_GetGR() returns data at index found in context. The register is identified by its index: 0 to 31 are for the fixed registers, and 32 to 127 are for the stacked registers.
During the two phases of unwinding, only GR1 has a guaranteed value, which is the global pointer of the frame referenced by the unwind context. If the register has its NAT bit set, the behavior is unspecified.
_Unwind_GetIP() returns the instruction pointer value for the routine identified by the unwind context.
_Unwind_GetLanguageSpecificData() returns the address of the language specific data area for the current stack frame.
_Unwind_GetRegionStart() routine returns the address (i.e., 0) of the beginning of the procedure or code fragment described by the current unwind descriptor block.
_Unwind_RaiseException()
raises an exception, passing along the given exception
object, which should have its
exception_class
and
exception_cleanup
fields set.
The exception object has been allocated by the language-specific
runtime, and has a language-specific format, exception that it shall
contain an _Unwind_Exception
.
_Unwind_RaiseException() does not return unless an
error condition is found. If an error condition occurs, an
_Unwind_Reason_Code
is returnd:
The unwinder encountered the end of the stack during phase one without finding a handler. The unwind runtime will not have modified the stack. The C++ runtime will normally call uncaught_exception() in this case.
The unwinder encountered an unexpected error during phase one, because of something like stack corruption. The unwind runtime will not have modified the stack. The C++ runtime will normally call terminate() in this case.
The unwinder encountered an unexpected error during phase two. This is usually a throw, which will call terminate().
_Unwind_Resume() resumes propagation of an existing exception object. A call to this routine is inserted as the end of a landing pad that performs cleanup, but does not resume normal execution. It causes unwinding to proceed further.
_Unwind_SetGR() sets the value of the register indexed for the routine identified by the unwind context.
Table 11-45 defines the library name and shared object name for the libdl library
The behavior of the interfaces in this library is specified by the following specifications:
[LSB] ISO/IEC 23360 Part 1 |
[SUSv3] ISO POSIX (2003) |
An LSB conforming implementation shall provide the architecture specific functions for Dynamic Loader specified in Table 11-46, with the full mandatory functionality as described in the referenced underlying specification.
This section defines global identifiers and their values that are associated with interfaces contained in libdl. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
Table 11-47 defines the library name and shared object name for the libcrypt library
The behavior of the interfaces in this library is specified by the following specifications:
[SUSv3] ISO POSIX (2003) |
An LSB conforming implementation shall provide the architecture specific functions for Encryption specified in Table 11-48, with the full mandatory functionality as described in the referenced underlying specification.
An LSB-conforming implementation shall also support some utility libraries which are built on top of the interfaces provided by the base libraries. These libraries implement common functionality, and hide additional system dependent information such as file formats and device names.
Table 12-1 defines the library name and shared object name for the libz library
No external functions are defined for libz - Compression Library in this part of the specification. See also the generic specification.
This section defines global identifiers and their values that are associated with interfaces contained in libz. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
Table 12-2 defines the library name and shared object name for the libncurses library
No external functions are defined for libncurses - Curses in this part of the specification. See also the generic specification.
This section defines global identifiers and their values that are associated with interfaces contained in libncurses. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content. Where an interface is defined as requiring a particular system header file all of the data definitions for that system header file presented here shall be in effect.
This section gives data definitions to promote binary application portability, not to repeat source interface definitions available elsewhere. System providers and application developers should use this ABI to supplement - not to replace - source interface definition specifications.
This specification uses the ISO C (1999) C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.
/* * This header is architecture neutral * Please refer to the generic specification for details */ |
Table 12-3 defines the library name and shared object name for the libutil library
The behavior of the interfaces in this library is specified by the following specifications:
[LSB] ISO/IEC 23360 Part 1 |
An LSB conforming implementation shall provide the architecture specific functions for Utility Functions specified in Table 12-4, with the full mandatory functionality as described in the referenced underlying specification.
The LSB runtime environment shall provde the following dependencies.
lsb-core-ppc32 | This dependency is used to indicate that the application is dependent on features contained in the LSB-Core specification. |
This dependency shall have a version of 3.0.
Other LSB modules may add additional dependencies; such dependencies shall have the format lsb-module-ppc32.
All packages must specify an architecture of ppc. A LSB runtime environment must accept an architecture of ppc even if the native architecture is different.
The archnum
value in the Lead Section shall be 0x0005.
The behavior of the interfaces in this library is specified by the following Standards.
Large File Support [LFS] |
ISO/IEC 23360 Part 1 [LSB] |
SUSv2 [SUSv2] |
ISO POSIX (2003) [SUSv3] |
SVID Issue 3 [SVID.3] |
SVID Issue 4 [SVID.4] |
Table A-1. libc Function Interfaces
_Exit(GLIBC_2.1.1)[SUSv3] | getsid(GLIBC_2.0)[SUSv3] | setutent(GLIBC_2.0)[LSB] |
_IO_feof(GLIBC_2.0)[LSB] | getsockname(GLIBC_2.0)[SUSv3] | setutxent(GLIBC_2.1)[SUSv3] |
_IO_getc(GLIBC_2.0)[LSB] | getsockopt(GLIBC_2.0)[LSB] | setvbuf(GLIBC_2.0)[SUSv3] |
_IO_putc(GLIBC_2.0)[LSB] | getsubopt(GLIBC_2.0)[SUSv3] | shmat(GLIBC_2.0)[SUSv3] |
_IO_puts(GLIBC_2.0)[LSB] | gettext(GLIBC_2.0)[LSB] | shmctl(GLIBC_2.2)[SUSv3] |
__assert_fail(GLIBC_2.0)[LSB] | gettimeofday(GLIBC_2.0)[SUSv3] | shmdt(GLIBC_2.0)[SUSv3] |
__ctype_get_mb_cur_max(GLIBC_2.0)[LSB] | getuid(GLIBC_2.0)[SUSv3] | shmget(GLIBC_2.0)[SUSv3] |
__cxa_atexit(GLIBC_2.1.3)[LSB] | getutent(GLIBC_2.0)[LSB] | shutdown(GLIBC_2.0)[SUSv3] |
__cxa_finalize(GLIBC_2.1.3)[LSB] | getutent_r(GLIBC_2.0)[LSB] | sigaction(GLIBC_2.0)[SUSv3] |
__errno_location(GLIBC_2.0)[LSB] | getutxent(GLIBC_2.1)[SUSv3] | sigaddset(GLIBC_2.0)[SUSv3] |
__fpending(GLIBC_2.2)[LSB] | getutxid(GLIBC_2.1)[SUSv3] | sigaltstack(GLIBC_2.0)[SUSv3] |
__fxstat(GLIBC_2.0)[LSB] | getutxline(GLIBC_2.1)[SUSv3] | sigandset(GLIBC_2.0)[LSB] |
__fxstat64(GLIBC_2.2)[LSB] | getw(GLIBC_2.0)[SUSv2] | sigdelset(GLIBC_2.0)[SUSv3] |
__getpagesize(GLIBC_2.0)[LSB] | getwc(GLIBC_2.2)[SUSv3] | sigemptyset(GLIBC_2.0)[SUSv3] |
__getpgid(GLIBC_2.0)[LSB] | getwchar(GLIBC_2.2)[SUSv3] | sigfillset(GLIBC_2.0)[SUSv3] |
__h_errno_location(GLIBC_2.0)[LSB] | getwd(GLIBC_2.0)[SUSv3] | sighold(GLIBC_2.1)[SUSv3] |
__isinf(GLIBC_2.0)[LSB] | glob(GLIBC_2.0)[SUSv3] | sigignore(GLIBC_2.1)[SUSv3] |
__isinff(GLIBC_2.0)[LSB] | glob64(GLIBC_2.2)[LSB] | siginterrupt(GLIBC_2.0)[SUSv3] |
__isinfl(GLIBC_2.0)[LSB] | globfree(GLIBC_2.0)[SUSv3] | sigisemptyset(GLIBC_2.0)[LSB] |
__isnan(GLIBC_2.0)[LSB] | globfree64(GLIBC_2.1)[LSB] | sigismember(GLIBC_2.0)[SUSv3] |
__isnanf(GLIBC_2.0)[LSB] | gmtime(GLIBC_2.0)[SUSv3] | siglongjmp(GLIBC_2.3.4)[SUSv3] |
__isnanl(GLIBC_2.0)[LSB] | gmtime_r(GLIBC_2.0)[SUSv3] | signal(GLIBC_2.0)[SUSv3] |
__libc_current_sigrtmax(GLIBC_2.1)[LSB] | grantpt(GLIBC_2.1)[SUSv3] | sigorset(GLIBC_2.0)[LSB] |
__libc_current_sigrtmin(GLIBC_2.1)[LSB] | hcreate(GLIBC_2.0)[SUSv3] | sigpause(GLIBC_2.0)[LSB] |
__libc_start_main(GLIBC_2.0)[LSB] | hdestroy(GLIBC_2.0)[SUSv3] | sigpending(GLIBC_2.0)[SUSv3] |
__lxstat(GLIBC_2.0)[LSB] | hsearch(GLIBC_2.0)[SUSv3] | sigprocmask(GLIBC_2.0)[SUSv3] |
__lxstat64(GLIBC_2.2)[LSB] | htonl(GLIBC_2.0)[SUSv3] | sigqueue(GLIBC_2.1)[SUSv3] |
__mempcpy(GLIBC_2.0)[LSB] | htons(GLIBC_2.0)[SUSv3] | sigrelse(GLIBC_2.1)[SUSv3] |
__rawmemchr(GLIBC_2.1)[LSB] | iconv(GLIBC_2.1)[SUSv3] | sigreturn(GLIBC_2.0)[LSB] |
__sigsetjmp(GLIBC_2.3.4)[LSB] | iconv_close(GLIBC_2.1)[SUSv3] | sigset(GLIBC_2.1)[SUSv3] |
__stpcpy(GLIBC_2.0)[LSB] | iconv_open(GLIBC_2.1)[SUSv3] | sigsuspend(GLIBC_2.0)[SUSv3] |
__strdup(GLIBC_2.0)[LSB] | if_freenameindex(GLIBC_2.1)[SUSv3] | sigtimedwait(GLIBC_2.1)[SUSv3] |
__strtod_internal(GLIBC_2.0)[LSB] | if_indextoname(GLIBC_2.1)[SUSv3] | sigwait(GLIBC_2.0)[SUSv3] |
__strtof_internal(GLIBC_2.0)[LSB] | if_nameindex(GLIBC_2.1)[SUSv3] | sigwaitinfo(GLIBC_2.1)[SUSv3] |
__strtok_r(GLIBC_2.0)[LSB] | if_nametoindex(GLIBC_2.1)[SUSv3] | sleep(GLIBC_2.0)[SUSv3] |
__strtol_internal(GLIBC_2.0)[LSB] | imaxabs(GLIBC_2.1.1)[SUSv3] | snprintf(GLIBC_2.0)[SUSv3] |
__strtold_internal(GLIBC_2.0)[LSB] | imaxdiv(GLIBC_2.1.1)[SUSv3] | sockatmark(GLIBC_2.2.4)[SUSv3] |
__strtoll_internal(GLIBC_2.0)[LSB] | index(GLIBC_2.0)[SUSv3] | socket(GLIBC_2.0)[SUSv3] |
__strtoul_internal(GLIBC_2.0)[LSB] | inet_addr(GLIBC_2.0)[SUSv3] | socketpair(GLIBC_2.0)[SUSv3] |
__strtoull_internal(GLIBC_2.0)[LSB] | inet_aton(GLIBC_2.0)[LSB] | sprintf(GLIBC_2.0)[SUSv3] |
__sysconf(GLIBC_2.2)[LSB] | inet_ntoa(GLIBC_2.0)[SUSv3] | srand(GLIBC_2.0)[SUSv3] |
__sysv_signal(GLIBC_2.0)[LSB] | inet_ntop(GLIBC_2.0)[SUSv3] | srand48(GLIBC_2.0)[SUSv3] |
__wcstod_internal(GLIBC_2.0)[LSB] | inet_pton(GLIBC_2.0)[SUSv3] | srandom(GLIBC_2.0)[SUSv3] |
__wcstof_internal(GLIBC_2.0)[LSB] | initgroups(GLIBC_2.0)[LSB] | sscanf(GLIBC_2.0)[LSB] |
__wcstol_internal(GLIBC_2.0)[LSB] | initstate(GLIBC_2.0)[SUSv3] | statfs(GLIBC_2.0)[LSB] |
__wcstold_internal(GLIBC_2.0)[LSB] | insque(GLIBC_2.0)[SUSv3] | statfs64(GLIBC_2.1)[LSB] |
__wcstoul_internal(GLIBC_2.0)[LSB] | ioctl(GLIBC_2.0)[LSB] | statvfs(GLIBC_2.1)[SUSv3] |
__xmknod(GLIBC_2.0)[LSB] | isalnum(GLIBC_2.0)[SUSv3] | statvfs64(GLIBC_2.1)[LFS] |
__xpg_basename(GLIBC_2.0)[LSB] | isalpha(GLIBC_2.0)[SUSv3] | stime(GLIBC_2.0)[LSB] |
__xpg_sigpause(GLIBC_2.2)[LSB] | isascii(GLIBC_2.0)[SUSv3] | stpcpy(GLIBC_2.0)[LSB] |
__xpg_strerror_r(GLIBC_2.3.4)[LSB] | isatty(GLIBC_2.0)[SUSv3] | stpncpy(GLIBC_2.0)[LSB] |
__xstat(GLIBC_2.0)[LSB] | isblank(GLIBC_2.0)[SUSv3] | strcasecmp(GLIBC_2.0)[SUSv3] |
__xstat64(GLIBC_2.2)[LSB] | iscntrl(GLIBC_2.0)[SUSv3] | strcasestr(GLIBC_2.1)[LSB] |
_exit(GLIBC_2.0)[SUSv3] | isdigit(GLIBC_2.0)[SUSv3] | strcat(GLIBC_2.0)[SUSv3] |
_longjmp(GLIBC_2.3.4)[SUSv3] | isgraph(GLIBC_2.0)[SUSv3] | strchr(GLIBC_2.0)[SUSv3] |
_setjmp(GLIBC_2.3.4)[SUSv3] | islower(GLIBC_2.0)[SUSv3] | strcmp(GLIBC_2.0)[SUSv3] |
_tolower(GLIBC_2.0)[SUSv3] | isprint(GLIBC_2.0)[SUSv3] | strcoll(GLIBC_2.0)[SUSv3] |
_toupper(GLIBC_2.0)[SUSv3] | ispunct(GLIBC_2.0)[SUSv3] | strcpy(GLIBC_2.0)[SUSv3] |
a64l(GLIBC_2.0)[SUSv3] | isspace(GLIBC_2.0)[SUSv3] | strcspn(GLIBC_2.0)[SUSv3] |
abort(GLIBC_2.0)[SUSv3] | isupper(GLIBC_2.0)[SUSv3] | strdup(GLIBC_2.0)[SUSv3] |
abs(GLIBC_2.0)[SUSv3] | iswalnum(GLIBC_2.0)[SUSv3] | strerror(GLIBC_2.0)[SUSv3] |
accept(GLIBC_2.0)[SUSv3] | iswalpha(GLIBC_2.0)[SUSv3] | strerror_r(GLIBC_2.0)[LSB] |
access(GLIBC_2.0)[SUSv3] | iswblank(GLIBC_2.1)[SUSv3] | strfmon(GLIBC_2.0)[SUSv3] |
acct(GLIBC_2.0)[LSB] | iswcntrl(GLIBC_2.0)[SUSv3] | strftime(GLIBC_2.0)[SUSv3] |
adjtime(GLIBC_2.0)[LSB] | iswctype(GLIBC_2.0)[SUSv3] | strlen(GLIBC_2.0)[SUSv3] |
alarm(GLIBC_2.0)[SUSv3] | iswdigit(GLIBC_2.0)[SUSv3] | strncasecmp(GLIBC_2.0)[SUSv3] |
asctime(GLIBC_2.0)[SUSv3] | iswgraph(GLIBC_2.0)[SUSv3] | strncat(GLIBC_2.0)[SUSv3] |
asctime_r(GLIBC_2.0)[SUSv3] | iswlower(GLIBC_2.0)[SUSv3] | strncmp(GLIBC_2.0)[SUSv3] |
asprintf(GLIBC_2.0)[LSB] | iswprint(GLIBC_2.0)[SUSv3] | strncpy(GLIBC_2.0)[SUSv3] |
atof(GLIBC_2.0)[SUSv3] | iswpunct(GLIBC_2.0)[SUSv3] | strndup(GLIBC_2.0)[LSB] |
atoi(GLIBC_2.0)[SUSv3] | iswspace(GLIBC_2.0)[SUSv3] | strnlen(GLIBC_2.0)[LSB] |
atol(GLIBC_2.0)[SUSv3] | iswupper(GLIBC_2.0)[SUSv3] | strpbrk(GLIBC_2.0)[SUSv3] |
atoll(GLIBC_2.0)[SUSv3] | iswxdigit(GLIBC_2.0)[SUSv3] | strptime(GLIBC_2.0)[LSB] |
authnone_create(GLIBC_2.0)[SVID.4] | isxdigit(GLIBC_2.0)[SUSv3] | strrchr(GLIBC_2.0)[SUSv3] |
basename(GLIBC_2.0)[LSB] | jrand48(GLIBC_2.0)[SUSv3] | strsep(GLIBC_2.0)[LSB] |
bcmp(GLIBC_2.0)[SUSv3] | key_decryptsession(GLIBC_2.1)[SVID.3] | strsignal(GLIBC_2.0)[LSB] |
bcopy(GLIBC_2.0)[SUSv3] | kill(GLIBC_2.0)[LSB] | strspn(GLIBC_2.0)[SUSv3] |
bind(GLIBC_2.0)[SUSv3] | killpg(GLIBC_2.0)[SUSv3] | strstr(GLIBC_2.0)[SUSv3] |
bind_textdomain_codeset(GLIBC_2.2)[LSB] | l64a(GLIBC_2.0)[SUSv3] | strtod(GLIBC_2.0)[SUSv3] |
bindresvport(GLIBC_2.0)[LSB] | labs(GLIBC_2.0)[SUSv3] | strtof(GLIBC_2.0)[SUSv3] |
bindtextdomain(GLIBC_2.0)[LSB] | lchown(GLIBC_2.0)[SUSv3] | strtoimax(GLIBC_2.1)[SUSv3] |
brk(GLIBC_2.0)[SUSv2] | lcong48(GLIBC_2.0)[SUSv3] | strtok(GLIBC_2.0)[SUSv3] |
bsd_signal(GLIBC_2.0)[SUSv3] | ldiv(GLIBC_2.0)[SUSv3] | strtok_r(GLIBC_2.0)[SUSv3] |
bsearch(GLIBC_2.0)[SUSv3] | lfind(GLIBC_2.0)[SUSv3] | strtol(GLIBC_2.0)[SUSv3] |
btowc(GLIBC_2.0)[SUSv3] | link(GLIBC_2.0)[LSB] | strtold(GLIBC_2.0)[SUSv3] |
bzero(GLIBC_2.0)[SUSv3] | listen(GLIBC_2.0)[SUSv3] | strtoll(GLIBC_2.0)[SUSv3] |
calloc(GLIBC_2.0)[SUSv3] | llabs(GLIBC_2.0)[SUSv3] | strtoq(GLIBC_2.0)[LSB] |
catclose(GLIBC_2.0)[SUSv3] | lldiv(GLIBC_2.0)[SUSv3] | strtoul(GLIBC_2.0)[SUSv3] |
catgets(GLIBC_2.0)[SUSv3] | localeconv(GLIBC_2.2)[SUSv3] | strtoull(GLIBC_2.0)[SUSv3] |
catopen(GLIBC_2.0)[SUSv3] | localtime(GLIBC_2.0)[SUSv3] | strtoumax(GLIBC_2.1)[SUSv3] |
cfgetispeed(GLIBC_2.0)[SUSv3] | localtime_r(GLIBC_2.0)[SUSv3] | strtouq(GLIBC_2.0)[LSB] |
cfgetospeed(GLIBC_2.0)[SUSv3] | lockf(GLIBC_2.0)[SUSv3] | strxfrm(GLIBC_2.0)[SUSv3] |
cfmakeraw(GLIBC_2.0)[LSB] | lockf64(GLIBC_2.1)[LFS] | svc_getreqset(GLIBC_2.0)[SVID.3] |
cfsetispeed(GLIBC_2.0)[SUSv3] | longjmp(GLIBC_2.3.4)[SUSv3] | svc_register(GLIBC_2.0)[LSB] |
cfsetospeed(GLIBC_2.0)[SUSv3] | lrand48(GLIBC_2.0)[SUSv3] | svc_run(GLIBC_2.0)[LSB] |
cfsetspeed(GLIBC_2.0)[LSB] | lsearch(GLIBC_2.0)[SUSv3] | svc_sendreply(GLIBC_2.0)[LSB] |
chdir(GLIBC_2.0)[SUSv3] | lseek(GLIBC_2.0)[SUSv3] | svcerr_auth(GLIBC_2.0)[SVID.3] |
chmod(GLIBC_2.0)[SUSv3] | makecontext(GLIBC_2.3.4)[SUSv3] | svcerr_decode(GLIBC_2.0)[SVID.3] |
chown(GLIBC_2.1)[SUSv3] | malloc(GLIBC_2.0)[SUSv3] | svcerr_noproc(GLIBC_2.0)[SVID.3] |
chroot(GLIBC_2.0)[SUSv2] | mblen(GLIBC_2.0)[SUSv3] | svcerr_noprog(GLIBC_2.0)[SVID.3] |
clearerr(GLIBC_2.0)[SUSv3] | mbrlen(GLIBC_2.0)[SUSv3] | svcerr_progvers(GLIBC_2.0)[SVID.3] |
clnt_create(GLIBC_2.0)[SVID.4] | mbrtowc(GLIBC_2.0)[SUSv3] | svcerr_systemerr(GLIBC_2.0)[SVID.3] |
clnt_pcreateerror(GLIBC_2.0)[SVID.4] | mbsinit(GLIBC_2.0)[SUSv3] | svcerr_weakauth(GLIBC_2.0)[SVID.3] |
clnt_perrno(GLIBC_2.0)[SVID.4] | mbsnrtowcs(GLIBC_2.0)[LSB] | svctcp_create(GLIBC_2.0)[LSB] |
clnt_perror(GLIBC_2.0)[SVID.4] | mbsrtowcs(GLIBC_2.0)[SUSv3] | svcudp_create(GLIBC_2.0)[LSB] |
clnt_spcreateerror(GLIBC_2.0)[SVID.4] | mbstowcs(GLIBC_2.0)[SUSv3] | swab(GLIBC_2.0)[SUSv3] |
clnt_sperrno(GLIBC_2.0)[SVID.4] | mbtowc(GLIBC_2.0)[SUSv3] | swapcontext(GLIBC_2.3.4)[SUSv3] |
clnt_sperror(GLIBC_2.0)[SVID.4] | memccpy(GLIBC_2.0)[SUSv3] | swprintf(GLIBC_2.2)[SUSv3] |
clock(GLIBC_2.0)[SUSv3] | memchr(GLIBC_2.0)[SUSv3] | swscanf(GLIBC_2.2)[LSB] |
close(GLIBC_2.0)[SUSv3] | memcmp(GLIBC_2.0)[SUSv3] | symlink(GLIBC_2.0)[SUSv3] |
closedir(GLIBC_2.0)[SUSv3] | memcpy(GLIBC_2.0)[SUSv3] | sync(GLIBC_2.0)[SUSv3] |
closelog(GLIBC_2.0)[SUSv3] | memmem(GLIBC_2.0)[LSB] | sysconf(GLIBC_2.0)[LSB] |
confstr(GLIBC_2.0)[SUSv3] | memmove(GLIBC_2.0)[SUSv3] | syslog(GLIBC_2.0)[SUSv3] |
connect(GLIBC_2.0)[SUSv3] | memrchr(GLIBC_2.2)[LSB] | system(GLIBC_2.0)[LSB] |
creat(GLIBC_2.0)[SUSv3] | memset(GLIBC_2.0)[SUSv3] | tcdrain(GLIBC_2.0)[SUSv3] |
creat64(GLIBC_2.1)[LFS] | mkdir(GLIBC_2.0)[SUSv3] | tcflow(GLIBC_2.0)[SUSv3] |
ctermid(GLIBC_2.0)[SUSv3] | mkfifo(GLIBC_2.0)[SUSv3] | tcflush(GLIBC_2.0)[SUSv3] |
ctime(GLIBC_2.0)[SUSv3] | mkstemp(GLIBC_2.0)[SUSv3] | tcgetattr(GLIBC_2.0)[SUSv3] |
ctime_r(GLIBC_2.0)[SUSv3] | mkstemp64(GLIBC_2.2)[LFS] | tcgetpgrp(GLIBC_2.0)[SUSv3] |
cuserid(GLIBC_2.0)[SUSv2] | mktemp(GLIBC_2.0)[SUSv3] | tcgetsid(GLIBC_2.1)[SUSv3] |
daemon(GLIBC_2.0)[LSB] | mktime(GLIBC_2.0)[SUSv3] | tcsendbreak(GLIBC_2.0)[SUSv3] |
dcgettext(GLIBC_2.0)[LSB] | mlock(GLIBC_2.0)[SUSv3] | tcsetattr(GLIBC_2.0)[SUSv3] |
dcngettext(GLIBC_2.2)[LSB] | mlockall(GLIBC_2.0)[SUSv3] | tcsetpgrp(GLIBC_2.0)[SUSv3] |
dgettext(GLIBC_2.0)[LSB] | mmap(GLIBC_2.0)[SUSv3] | tdelete(GLIBC_2.0)[SUSv3] |
difftime(GLIBC_2.0)[SUSv3] | mmap64(GLIBC_2.1)[LFS] | telldir(GLIBC_2.0)[SUSv3] |
dirname(GLIBC_2.0)[SUSv3] | mprotect(GLIBC_2.0)[SUSv3] | tempnam(GLIBC_2.0)[SUSv3] |
div(GLIBC_2.0)[SUSv3] | mrand48(GLIBC_2.0)[SUSv3] | textdomain(GLIBC_2.0)[LSB] |
dngettext(GLIBC_2.2)[LSB] | mremap(GLIBC_2.0)[LSB] | tfind(GLIBC_2.0)[SUSv3] |
drand48(GLIBC_2.0)[SUSv3] | msgctl(GLIBC_2.2)[SUSv3] | time(GLIBC_2.0)[SUSv3] |
dup(GLIBC_2.0)[SUSv3] | msgget(GLIBC_2.0)[SUSv3] | times(GLIBC_2.0)[SUSv3] |
dup2(GLIBC_2.0)[SUSv3] | msgrcv(GLIBC_2.0)[SUSv3] | tmpfile(GLIBC_2.1)[SUSv3] |
ecvt(GLIBC_2.0)[SUSv3] | msgsnd(GLIBC_2.0)[SUSv3] | tmpfile64(GLIBC_2.1)[LFS] |
endgrent(GLIBC_2.0)[SUSv3] | msync(GLIBC_2.0)[SUSv3] | tmpnam(GLIBC_2.0)[SUSv3] |
endprotoent(GLIBC_2.0)[SUSv3] | munlock(GLIBC_2.0)[SUSv3] | toascii(GLIBC_2.0)[SUSv3] |
endpwent(GLIBC_2.0)[SUSv3] | munlockall(GLIBC_2.0)[SUSv3] | tolower(GLIBC_2.0)[SUSv3] |
endservent(GLIBC_2.0)[SUSv3] | munmap(GLIBC_2.0)[SUSv3] | toupper(GLIBC_2.0)[SUSv3] |
endutent(GLIBC_2.0)[LSB] | nanosleep(GLIBC_2.0)[SUSv3] | towctrans(GLIBC_2.0)[SUSv3] |
endutxent(GLIBC_2.1)[SUSv3] | nftw(GLIBC_2.3.3)[SUSv3] | towlower(GLIBC_2.0)[SUSv3] |
erand48(GLIBC_2.0)[SUSv3] | nftw64(GLIBC_2.3.3)[LFS] | towupper(GLIBC_2.0)[SUSv3] |
err(GLIBC_2.0)[LSB] | ngettext(GLIBC_2.2)[LSB] | truncate(GLIBC_2.0)[SUSv3] |
error(GLIBC_2.0)[LSB] | nice(GLIBC_2.0)[SUSv3] | truncate64(GLIBC_2.1)[LFS] |
errx(GLIBC_2.0)[LSB] | nl_langinfo(GLIBC_2.0)[SUSv3] | tsearch(GLIBC_2.0)[SUSv3] |
execl(GLIBC_2.0)[SUSv3] | nrand48(GLIBC_2.0)[SUSv3] | ttyname(GLIBC_2.0)[SUSv3] |
execle(GLIBC_2.0)[SUSv3] | ntohl(GLIBC_2.0)[SUSv3] | ttyname_r(GLIBC_2.0)[SUSv3] |
execlp(GLIBC_2.0)[SUSv3] | ntohs(GLIBC_2.0)[SUSv3] | twalk(GLIBC_2.0)[SUSv3] |
execv(GLIBC_2.0)[SUSv3] | open(GLIBC_2.0)[SUSv3] | tzset(GLIBC_2.0)[SUSv3] |
execve(GLIBC_2.0)[SUSv3] | opendir(GLIBC_2.0)[SUSv3] | ualarm(GLIBC_2.0)[SUSv3] |
execvp(GLIBC_2.0)[SUSv3] | openlog(GLIBC_2.0)[SUSv3] | ulimit(GLIBC_2.0)[SUSv3] |
exit(GLIBC_2.0)[SUSv3] | pathconf(GLIBC_2.0)[SUSv3] | umask(GLIBC_2.0)[SUSv3] |
fchdir(GLIBC_2.0)[SUSv3] | pause(GLIBC_2.0)[SUSv3] | uname(GLIBC_2.0)[SUSv3] |
fchmod(GLIBC_2.0)[SUSv3] | pclose(GLIBC_2.1)[SUSv3] | ungetc(GLIBC_2.0)[SUSv3] |
fchown(GLIBC_2.0)[SUSv3] | perror(GLIBC_2.0)[SUSv3] | ungetwc(GLIBC_2.2)[SUSv3] |
fclose(GLIBC_2.1)[SUSv3] | pipe(GLIBC_2.0)[SUSv3] | unlink(GLIBC_2.0)[LSB] |
fcntl(GLIBC_2.0)[LSB] | pmap_getport(GLIBC_2.0)[LSB] | unlockpt(GLIBC_2.1)[SUSv3] |
fcvt(GLIBC_2.0)[SUSv3] | pmap_set(GLIBC_2.0)[LSB] | unsetenv(GLIBC_2.0)[SUSv3] |
fdatasync(GLIBC_2.0)[SUSv3] | pmap_unset(GLIBC_2.0)[LSB] | usleep(GLIBC_2.0)[SUSv3] |
fdopen(GLIBC_2.1)[SUSv3] | poll(GLIBC_2.0)[SUSv3] | utime(GLIBC_2.0)[SUSv3] |
feof(GLIBC_2.0)[SUSv3] | popen(GLIBC_2.1)[SUSv3] | utimes(GLIBC_2.0)[SUSv3] |
ferror(GLIBC_2.0)[SUSv3] | posix_fadvise(GLIBC_2.2)[SUSv3] | utmpname(GLIBC_2.0)[LSB] |
fflush(GLIBC_2.0)[SUSv3] | posix_fadvise64(GLIBC_2.3.3)[LSB] | vasprintf(GLIBC_2.0)[LSB] |
fflush_unlocked(GLIBC_2.0)[LSB] | posix_fallocate(GLIBC_2.2)[SUSv3] | vdprintf(GLIBC_2.0)[LSB] |
ffs(GLIBC_2.0)[SUSv3] | posix_fallocate64(GLIBC_2.3.3)[LSB] | verrx(GLIBC_2.0)[LSB] |
fgetc(GLIBC_2.0)[SUSv3] | posix_madvise(GLIBC_2.2)[SUSv3] | vfork(GLIBC_2.0)[SUSv3] |
fgetpos(GLIBC_2.2)[SUSv3] | posix_memalign(GLIBC_2.2)[SUSv3] | vfprintf(GLIBC_2.0)[SUSv3] |
fgetpos64(GLIBC_2.2)[LFS] | posix_openpt(GLIBC_2.2.1)[SUSv3] | vfscanf(GLIBC_2.0)[LSB] |
fgets(GLIBC_2.0)[SUSv3] | posix_spawn(GLIBC_2.2)[SUSv3] | vfwprintf(GLIBC_2.2)[SUSv3] |
fgetwc(GLIBC_2.2)[SUSv3] | posix_spawn_file_actions_addclose(GLIBC_2.2)[SUSv3] | vfwscanf(GLIBC_2.2)[LSB] |
fgetwc_unlocked(GLIBC_2.2)[LSB] | posix_spawn_file_actions_adddup2(GLIBC_2.2)[SUSv3] | vprintf(GLIBC_2.0)[SUSv3] |
fgetws(GLIBC_2.2)[SUSv3] | posix_spawn_file_actions_addopen(GLIBC_2.2)[SUSv3] | vscanf(GLIBC_2.0)[LSB] |
fileno(GLIBC_2.0)[SUSv3] | posix_spawn_file_actions_destroy(GLIBC_2.2)[SUSv3] | vsnprintf(GLIBC_2.0)[SUSv3] |
flock(GLIBC_2.0)[LSB] | posix_spawn_file_actions_init(GLIBC_2.2)[SUSv3] | vsprintf(GLIBC_2.0)[SUSv3] |
flockfile(GLIBC_2.0)[SUSv3] | posix_spawnattr_destroy(GLIBC_2.2)[SUSv3] | vsscanf(GLIBC_2.0)[LSB] |
fmtmsg(GLIBC_2.1)[SUSv3] | posix_spawnattr_getflags(GLIBC_2.2)[SUSv3] | vswprintf(GLIBC_2.2)[SUSv3] |
fnmatch(GLIBC_2.2.3)[SUSv3] | posix_spawnattr_getpgroup(GLIBC_2.2)[SUSv3] | vswscanf(GLIBC_2.2)[LSB] |
fopen(GLIBC_2.1)[SUSv3] | posix_spawnattr_getschedparam(GLIBC_2.2)[SUSv3] | vsyslog(GLIBC_2.0)[LSB] |
fopen64(GLIBC_2.1)[LFS] | posix_spawnattr_getschedpolicy(GLIBC_2.2)[SUSv3] | vwprintf(GLIBC_2.2)[SUSv3] |
fork(GLIBC_2.0)[SUSv3] | posix_spawnattr_getsigdefault(GLIBC_2.2)[SUSv3] | vwscanf(GLIBC_2.2)[LSB] |
fpathconf(GLIBC_2.0)[SUSv3] | posix_spawnattr_getsigmask(GLIBC_2.2)[SUSv3] | wait(GLIBC_2.0)[SUSv3] |
fprintf(GLIBC_2.0)[SUSv3] | posix_spawnattr_init(GLIBC_2.2)[SUSv3] | wait4(GLIBC_2.0)[LSB] |
fputc(GLIBC_2.0)[SUSv3] | posix_spawnattr_setflags(GLIBC_2.2)[SUSv3] | waitid(GLIBC_2.1)[SUSv3] |
fputs(GLIBC_2.0)[SUSv3] | posix_spawnattr_setpgroup(GLIBC_2.2)[SUSv3] | waitpid(GLIBC_2.0)[LSB] |
fputwc(GLIBC_2.2)[SUSv3] | posix_spawnattr_setschedparam(GLIBC_2.2)[SUSv3] | warn(GLIBC_2.0)[LSB] |
fputws(GLIBC_2.2)[SUSv3] | posix_spawnattr_setschedpolicy(GLIBC_2.2)[SUSv3] | warnx(GLIBC_2.0)[LSB] |
fread(GLIBC_2.0)[SUSv3] | posix_spawnattr_setsigdefault(GLIBC_2.2)[SUSv3] | wcpcpy(GLIBC_2.0)[LSB] |
free(GLIBC_2.0)[SUSv3] | posix_spawnattr_setsigmask(GLIBC_2.2)[SUSv3] | wcpncpy(GLIBC_2.0)[LSB] |
freeaddrinfo(GLIBC_2.0)[SUSv3] | posix_spawnp(GLIBC_2.2)[SUSv3] | wcrtomb(GLIBC_2.0)[SUSv3] |
freopen(GLIBC_2.0)[SUSv3] | printf(GLIBC_2.0)[SUSv3] | wcscasecmp(GLIBC_2.1)[LSB] |
freopen64(GLIBC_2.1)[LFS] | pselect(GLIBC_2.0)[SUSv3] | wcscat(GLIBC_2.0)[SUSv3] |
fscanf(GLIBC_2.0)[LSB] | psignal(GLIBC_2.0)[LSB] | wcschr(GLIBC_2.0)[SUSv3] |
fseek(GLIBC_2.0)[SUSv3] | ptsname(GLIBC_2.1)[SUSv3] | wcscmp(GLIBC_2.0)[SUSv3] |
fseeko(GLIBC_2.1)[SUSv3] | putc(GLIBC_2.0)[SUSv3] | wcscoll(GLIBC_2.0)[SUSv3] |
fseeko64(GLIBC_2.1)[LFS] | putc_unlocked(GLIBC_2.0)[SUSv3] | wcscpy(GLIBC_2.0)[SUSv3] |
fsetpos(GLIBC_2.2)[SUSv3] | putchar(GLIBC_2.0)[SUSv3] | wcscspn(GLIBC_2.0)[SUSv3] |
fsetpos64(GLIBC_2.2)[LFS] | putchar_unlocked(GLIBC_2.0)[SUSv3] | wcsdup(GLIBC_2.0)[LSB] |
fstatfs(GLIBC_2.0)[LSB] | putenv(GLIBC_2.0)[SUSv3] | wcsftime(GLIBC_2.2)[SUSv3] |
fstatfs64(GLIBC_2.1)[LSB] | puts(GLIBC_2.0)[SUSv3] | wcslen(GLIBC_2.0)[SUSv3] |
fstatvfs(GLIBC_2.1)[SUSv3] | pututxline(GLIBC_2.1)[SUSv3] | wcsncasecmp(GLIBC_2.1)[LSB] |
fstatvfs64(GLIBC_2.1)[LFS] | putw(GLIBC_2.0)[SUSv2] | wcsncat(GLIBC_2.0)[SUSv3] |
fsync(GLIBC_2.0)[SUSv3] | putwc(GLIBC_2.2)[SUSv3] | wcsncmp(GLIBC_2.0)[SUSv3] |
ftell(GLIBC_2.0)[SUSv3] | putwchar(GLIBC_2.2)[SUSv3] | wcsncpy(GLIBC_2.0)[SUSv3] |
ftello(GLIBC_2.1)[SUSv3] | qsort(GLIBC_2.0)[SUSv3] | wcsnlen(GLIBC_2.1)[LSB] |
ftello64(GLIBC_2.1)[LFS] | raise(GLIBC_2.0)[SUSv3] | wcsnrtombs(GLIBC_2.0)[LSB] |
ftime(GLIBC_2.0)[SUSv3] | rand(GLIBC_2.0)[SUSv3] | wcspbrk(GLIBC_2.0)[SUSv3] |
ftok(GLIBC_2.0)[SUSv3] | rand_r(GLIBC_2.0)[SUSv3] | wcsrchr(GLIBC_2.0)[SUSv3] |
ftruncate(GLIBC_2.0)[SUSv3] | random(GLIBC_2.0)[SUSv3] | wcsrtombs(GLIBC_2.0)[SUSv3] |
ftruncate64(GLIBC_2.1)[LFS] | read(GLIBC_2.0)[SUSv3] | wcsspn(GLIBC_2.0)[SUSv3] |
ftrylockfile(GLIBC_2.0)[SUSv3] | readdir(GLIBC_2.0)[SUSv3] | wcsstr(GLIBC_2.0)[SUSv3] |
ftw(GLIBC_2.0)[SUSv3] | readdir64(GLIBC_2.2)[LFS] | wcstod(GLIBC_2.0)[SUSv3] |
ftw64(GLIBC_2.1)[LFS] | readdir64_r(GLIBC_2.2)[LSB] | wcstof(GLIBC_2.0)[SUSv3] |
funlockfile(GLIBC_2.0)[SUSv3] | readdir_r(GLIBC_2.0)[SUSv3] | wcstoimax(GLIBC_2.1)[SUSv3] |
fwide(GLIBC_2.2)[SUSv3] | readlink(GLIBC_2.0)[SUSv3] | wcstok(GLIBC_2.0)[SUSv3] |
fwprintf(GLIBC_2.2)[SUSv3] | readv(GLIBC_2.0)[SUSv3] | wcstol(GLIBC_2.0)[SUSv3] |
fwrite(GLIBC_2.0)[SUSv3] | realloc(GLIBC_2.0)[SUSv3] | wcstold(GLIBC_2.0)[SUSv3] |
fwscanf(GLIBC_2.2)[LSB] | realpath(GLIBC_2.3)[SUSv3] | wcstoll(GLIBC_2.1)[SUSv3] |
gai_strerror(GLIBC_2.1)[SUSv3] | recv(GLIBC_2.0)[SUSv3] | wcstombs(GLIBC_2.0)[SUSv3] |
gcvt(GLIBC_2.0)[SUSv3] | recvfrom(GLIBC_2.0)[SUSv3] | wcstoq(GLIBC_2.0)[LSB] |
getaddrinfo(GLIBC_2.0)[SUSv3] | recvmsg(GLIBC_2.0)[SUSv3] | wcstoul(GLIBC_2.0)[SUSv3] |
getc(GLIBC_2.0)[SUSv3] | regcomp(GLIBC_2.0)[SUSv3] | wcstoull(GLIBC_2.1)[SUSv3] |
getc_unlocked(GLIBC_2.0)[SUSv3] | regerror(GLIBC_2.0)[SUSv3] | wcstoumax(GLIBC_2.1)[SUSv3] |
getchar(GLIBC_2.0)[SUSv3] | regexec(GLIBC_2.3.4)[LSB] | wcstouq(GLIBC_2.0)[LSB] |
getchar_unlocked(GLIBC_2.0)[SUSv3] | regfree(GLIBC_2.0)[SUSv3] | wcswcs(GLIBC_2.1)[SUSv3] |
getcontext(GLIBC_2.3.4)[SUSv3] | remove(GLIBC_2.0)[SUSv3] | wcswidth(GLIBC_2.0)[SUSv3] |
getcwd(GLIBC_2.0)[SUSv3] | remque(GLIBC_2.0)[SUSv3] | wcsxfrm(GLIBC_2.0)[SUSv3] |
getdate(GLIBC_2.1)[SUSv3] | rename(GLIBC_2.0)[SUSv3] | wctob(GLIBC_2.0)[SUSv3] |
getdomainname(GLIBC_2.0)[LSB] | rewind(GLIBC_2.0)[SUSv3] | wctomb(GLIBC_2.0)[SUSv3] |
getdtablesize(GLIBC_2.0)[LSB] | rewinddir(GLIBC_2.0)[SUSv3] | wctrans(GLIBC_2.0)[SUSv3] |
getegid(GLIBC_2.0)[SUSv3] | rindex(GLIBC_2.0)[SUSv3] | wctype(GLIBC_2.0)[SUSv3] |
getenv(GLIBC_2.0)[SUSv3] | rmdir(GLIBC_2.0)[SUSv3] | wcwidth(GLIBC_2.0)[SUSv3] |
geteuid(GLIBC_2.0)[SUSv3] | sbrk(GLIBC_2.0)[SUSv2] | wmemchr(GLIBC_2.0)[SUSv3] |
getgid(GLIBC_2.0)[SUSv3] | scanf(GLIBC_2.0)[LSB] | wmemcmp(GLIBC_2.0)[SUSv3] |
getgrent(GLIBC_2.0)[SUSv3] | sched_get_priority_max(GLIBC_2.0)[SUSv3] | wmemcpy(GLIBC_2.0)[SUSv3] |
getgrgid(GLIBC_2.0)[SUSv3] | sched_get_priority_min(GLIBC_2.0)[SUSv3] | wmemmove(GLIBC_2.0)[SUSv3] |
getgrgid_r(GLIBC_2.1.2)[SUSv3] | sched_getparam(GLIBC_2.0)[SUSv3] | wmemset(GLIBC_2.0)[SUSv3] |
getgrnam(GLIBC_2.0)[SUSv3] | sched_getscheduler(GLIBC_2.0)[SUSv3] | wordexp(GLIBC_2.1)[SUSv3] |
getgrnam_r(GLIBC_2.1.2)[SUSv3] | sched_rr_get_interval(GLIBC_2.0)[SUSv3] | wordfree(GLIBC_2.1)[SUSv3] |
getgrouplist(GLIBC_2.2.4)[LSB] | sched_setparam(GLIBC_2.0)[SUSv3] | wprintf(GLIBC_2.2)[SUSv3] |
getgroups(GLIBC_2.0)[SUSv3] | sched_setscheduler(GLIBC_2.0)[LSB] | write(GLIBC_2.0)[SUSv3] |
gethostbyaddr(GLIBC_2.0)[SUSv3] | sched_yield(GLIBC_2.0)[SUSv3] | writev(GLIBC_2.0)[SUSv3] |
gethostbyaddr_r(GLIBC_2.1.2)[LSB] | seed48(GLIBC_2.0)[SUSv3] | wscanf(GLIBC_2.2)[LSB] |
gethostbyname(GLIBC_2.0)[SUSv3] | seekdir(GLIBC_2.0)[SUSv3] | xdr_accepted_reply(GLIBC_2.0)[SVID.3] |
gethostbyname2(GLIBC_2.0)[LSB] | select(GLIBC_2.0)[SUSv3] | xdr_array(GLIBC_2.0)[SVID.3] |
gethostbyname2_r(GLIBC_2.1.2)[LSB] | semctl(GLIBC_2.2)[SUSv3] | xdr_bool(GLIBC_2.0)[SVID.3] |
gethostbyname_r(GLIBC_2.1.2)[LSB] | semget(GLIBC_2.0)[SUSv3] | xdr_bytes(GLIBC_2.0)[SVID.3] |
gethostid(GLIBC_2.0)[SUSv3] | semop(GLIBC_2.0)[SUSv3] | xdr_callhdr(GLIBC_2.0)[SVID.3] |
gethostname(GLIBC_2.0)[SUSv3] | send(GLIBC_2.0)[SUSv3] | xdr_callmsg(GLIBC_2.0)[SVID.3] |
getitimer(GLIBC_2.0)[SUSv3] | sendmsg(GLIBC_2.0)[SUSv3] | xdr_char(GLIBC_2.0)[SVID.3] |
getloadavg(GLIBC_2.2)[LSB] | sendto(GLIBC_2.0)[SUSv3] | xdr_double(GLIBC_2.0)[SVID.3] |
getlogin(GLIBC_2.0)[SUSv3] | setbuf(GLIBC_2.0)[SUSv3] | xdr_enum(GLIBC_2.0)[SVID.3] |
getlogin_r(GLIBC_2.0)[SUSv3] | setbuffer(GLIBC_2.0)[LSB] | xdr_float(GLIBC_2.0)[SVID.3] |
getnameinfo(GLIBC_2.1)[SUSv3] | setcontext(GLIBC_2.3.4)[SUSv3] | xdr_free(GLIBC_2.0)[SVID.3] |
getopt(GLIBC_2.0)[LSB] | setegid(GLIBC_2.0)[SUSv3] | xdr_int(GLIBC_2.0)[SVID.3] |
getopt_long(GLIBC_2.0)[LSB] | setenv(GLIBC_2.0)[SUSv3] | xdr_long(GLIBC_2.0)[SVID.3] |
getopt_long_only(GLIBC_2.0)[LSB] | seteuid(GLIBC_2.0)[SUSv3] | xdr_opaque(GLIBC_2.0)[SVID.3] |
getpagesize(GLIBC_2.0)[LSB] | setgid(GLIBC_2.0)[SUSv3] | xdr_opaque_auth(GLIBC_2.0)[SVID.3] |
getpeername(GLIBC_2.0)[SUSv3] | setgrent(GLIBC_2.0)[SUSv3] | xdr_pointer(GLIBC_2.0)[SVID.3] |
getpgid(GLIBC_2.0)[SUSv3] | setgroups(GLIBC_2.0)[LSB] | xdr_reference(GLIBC_2.0)[SVID.3] |
getpgrp(GLIBC_2.0)[SUSv3] | sethostname(GLIBC_2.0)[LSB] | xdr_rejected_reply(GLIBC_2.0)[SVID.3] |
getpid(GLIBC_2.0)[SUSv3] | setitimer(GLIBC_2.0)[SUSv3] | xdr_replymsg(GLIBC_2.0)[SVID.3] |
getppid(GLIBC_2.0)[SUSv3] | setlocale(GLIBC_2.0)[SUSv3] | xdr_short(GLIBC_2.0)[SVID.3] |
getpriority(GLIBC_2.0)[SUSv3] | setlogmask(GLIBC_2.0)[SUSv3] | xdr_string(GLIBC_2.0)[SVID.3] |
getprotobyname(GLIBC_2.0)[SUSv3] | setpgid(GLIBC_2.0)[SUSv3] | xdr_u_char(GLIBC_2.0)[SVID.3] |
getprotobynumber(GLIBC_2.0)[SUSv3] | setpgrp(GLIBC_2.0)[SUSv3] | xdr_u_int(GLIBC_2.0)[LSB] |
getprotoent(GLIBC_2.0)[SUSv3] | setpriority(GLIBC_2.0)[SUSv3] | xdr_u_long(GLIBC_2.0)[SVID.3] |
getpwent(GLIBC_2.0)[SUSv3] | setprotoent(GLIBC_2.0)[SUSv3] | xdr_u_short(GLIBC_2.0)[SVID.3] |
getpwnam(GLIBC_2.0)[SUSv3] | setpwent(GLIBC_2.0)[SUSv3] | xdr_union(GLIBC_2.0)[SVID.3] |
getpwnam_r(GLIBC_2.1.2)[SUSv3] | setregid(GLIBC_2.0)[SUSv3] | xdr_vector(GLIBC_2.0)[SVID.3] |
getpwuid(GLIBC_2.0)[SUSv3] | setreuid(GLIBC_2.0)[SUSv3] | xdr_void(GLIBC_2.0)[SVID.3] |
getpwuid_r(GLIBC_2.1.2)[SUSv3] | setrlimit(GLIBC_2.2)[SUSv3] | xdr_wrapstring(GLIBC_2.0)[SVID.3] |
getrlimit(GLIBC_2.2)[SUSv3] | setrlimit64(GLIBC_2.1)[LFS] | xdrmem_create(GLIBC_2.0)[SVID.3] |
getrlimit64(GLIBC_2.2)[LFS] | setservent(GLIBC_2.0)[SUSv3] | xdrrec_create(GLIBC_2.0)[SVID.3] |
getrusage(GLIBC_2.0)[SUSv3] | setsid(GLIBC_2.0)[SUSv3] | xdrrec_eof(GLIBC_2.0)[SVID.3] |
getservbyname(GLIBC_2.0)[SUSv3] | setsockopt(GLIBC_2.0)[LSB] | xdrstdio_create(GLIBC_2.0)[LSB] |
getservbyport(GLIBC_2.0)[SUSv3] | setstate(GLIBC_2.0)[SUSv3] | |
getservent(GLIBC_2.0)[SUSv3] | setuid(GLIBC_2.0)[SUSv3] |
The behavior of the interfaces in this library is specified by the following Standards.
ISO POSIX (2003) [SUSv3] |
The behavior of the interfaces in this library is specified by the following Standards.
ISO/IEC 23360 Part 1 [LSB] |
ISO POSIX (2003) [SUSv3] |
The behavior of the interfaces in this library is specified by the following Standards.
ISO/IEC 23360 Part 1 [LSB] |
Table A-5. libgcc_s Function Interfaces
_Unwind_Backtrace(GCC_3.3)[LSB] | _Unwind_GetDataRelBase(GCC_3.0)[LSB] | _Unwind_RaiseException(GCC_3.0)[LSB] |
_Unwind_DeleteException(GCC_3.0)[LSB] | _Unwind_GetGR(GCC_3.0)[LSB] | _Unwind_Resume(GCC_3.0)[LSB] |
_Unwind_FindEnclosingFunction(GCC_3.3)[LSB] | _Unwind_GetIP(GCC_3.0)[LSB] | _Unwind_Resume_or_Rethrow(GCC_3.3)[LSB] |
_Unwind_Find_FDE(GCC_3.0)[LSB] | _Unwind_GetLanguageSpecificData(GCC_3.0)[LSB] | _Unwind_SetGR(GCC_3.0)[LSB] |
_Unwind_ForcedUnwind(GCC_3.0)[LSB] | _Unwind_GetRegionStart(GCC_3.0)[LSB] | _Unwind_SetIP(GCC_3.0)[LSB] |
_Unwind_GetCFA(GCC_3.3)[LSB] | _Unwind_GetTextRelBase(GCC_3.0)[LSB] |
The behavior of the interfaces in this library is specified by the following Standards.
ISO C (1999) [ISOC99] |
ISO/IEC 23360 Part 1 [LSB] |
ISO POSIX (2003) [SUSv3] |
SVID Issue 3 [SVID.3] |
Table A-6. libm Function Interfaces
__finite(GLIBC_2.1)[LSB] | csinl(GLIBC_2.1)[SUSv3] | llroundf(GLIBC_2.1)[SUSv3] |
__finitef(GLIBC_2.1)[LSB] | csqrt(GLIBC_2.1)[SUSv3] | llroundl(GLIBC_2.1)[SUSv3] |
__finitel(GLIBC_2.1)[LSB] | csqrtf(GLIBC_2.1)[SUSv3] | log(GLIBC_2.0)[SUSv3] |
__fpclassify(GLIBC_2.1)[LSB] | csqrtl(GLIBC_2.1)[SUSv3] | log10(GLIBC_2.0)[SUSv3] |
__fpclassifyf(GLIBC_2.1)[LSB] | ctan(GLIBC_2.1)[SUSv3] | log10f(GLIBC_2.0)[SUSv3] |
__signbit(GLIBC_2.1)[LSB] | ctanf(GLIBC_2.1)[SUSv3] | log10l(GLIBC_2.0)[SUSv3] |
__signbitf(GLIBC_2.1)[LSB] | ctanh(GLIBC_2.1)[SUSv3] | log1p(GLIBC_2.0)[SUSv3] |
acos(GLIBC_2.0)[SUSv3] | ctanhf(GLIBC_2.1)[SUSv3] | log1pf(GLIBC_2.0)[SUSv3] |
acosf(GLIBC_2.0)[SUSv3] | ctanhl(GLIBC_2.1)[SUSv3] | log1pl(GLIBC_2.0)[SUSv3] |
acosh(GLIBC_2.0)[SUSv3] | ctanl(GLIBC_2.1)[SUSv3] | log2(GLIBC_2.1)[SUSv3] |
acoshf(GLIBC_2.0)[SUSv3] | drem(GLIBC_2.0)[LSB] | log2f(GLIBC_2.1)[SUSv3] |
acoshl(GLIBC_2.0)[SUSv3] | dremf(GLIBC_2.0)[LSB] | log2l(GLIBC_2.1)[SUSv3] |
acosl(GLIBC_2.0)[SUSv3] | dreml(GLIBC_2.0)[LSB] | logb(GLIBC_2.0)[SUSv3] |
asin(GLIBC_2.0)[SUSv3] | erf(GLIBC_2.0)[SUSv3] | logbf(GLIBC_2.0)[SUSv3] |
asinf(GLIBC_2.0)[SUSv3] | erfc(GLIBC_2.0)[SUSv3] | logbl(GLIBC_2.0)[SUSv3] |
asinh(GLIBC_2.0)[SUSv3] | erfcf(GLIBC_2.0)[SUSv3] | logf(GLIBC_2.0)[SUSv3] |
asinhf(GLIBC_2.0)[SUSv3] | erfcl(GLIBC_2.0)[SUSv3] | logl(GLIBC_2.0)[SUSv3] |
asinhl(GLIBC_2.0)[SUSv3] | erff(GLIBC_2.0)[SUSv3] | lrint(GLIBC_2.1)[SUSv3] |
asinl(GLIBC_2.0)[SUSv3] | erfl(GLIBC_2.0)[SUSv3] | lrintf(GLIBC_2.1)[SUSv3] |
atan(GLIBC_2.0)[SUSv3] | exp(GLIBC_2.0)[SUSv3] | lrintl(GLIBC_2.1)[SUSv3] |
atan2(GLIBC_2.0)[SUSv3] | exp10(GLIBC_2.1)[LSB] | lround(GLIBC_2.1)[SUSv3] |
atan2f(GLIBC_2.0)[SUSv3] | exp10f(GLIBC_2.1)[LSB] | lroundf(GLIBC_2.1)[SUSv3] |
atan2l(GLIBC_2.0)[SUSv3] | exp10l(GLIBC_2.1)[LSB] | lroundl(GLIBC_2.1)[SUSv3] |
atanf(GLIBC_2.0)[SUSv3] | exp2(GLIBC_2.1)[SUSv3] | matherr(GLIBC_2.0)[SVID.3] |
atanh(GLIBC_2.0)[SUSv3] | exp2f(GLIBC_2.1)[SUSv3] | modf(GLIBC_2.0)[SUSv3] |
atanhf(GLIBC_2.0)[SUSv3] | expf(GLIBC_2.0)[SUSv3] | modff(GLIBC_2.0)[SUSv3] |
atanhl(GLIBC_2.0)[SUSv3] | expl(GLIBC_2.0)[SUSv3] | modfl(GLIBC_2.0)[SUSv3] |
atanl(GLIBC_2.0)[SUSv3] | expm1(GLIBC_2.0)[SUSv3] | nan(GLIBC_2.1)[SUSv3] |
cabs(GLIBC_2.1)[SUSv3] | expm1f(GLIBC_2.0)[SUSv3] | nanf(GLIBC_2.1)[SUSv3] |
cabsf(GLIBC_2.1)[SUSv3] | expm1l(GLIBC_2.0)[SUSv3] | nanl(GLIBC_2.1)[SUSv3] |
cabsl(GLIBC_2.1)[SUSv3] | fabs(GLIBC_2.0)[SUSv3] | nearbyint(GLIBC_2.1)[SUSv3] |
cacos(GLIBC_2.1)[SUSv3] | fabsf(GLIBC_2.0)[SUSv3] | nearbyintf(GLIBC_2.1)[SUSv3] |
cacosf(GLIBC_2.1)[SUSv3] | fabsl(GLIBC_2.0)[SUSv3] | nearbyintl(GLIBC_2.1)[SUSv3] |
cacosh(GLIBC_2.1)[SUSv3] | fdim(GLIBC_2.1)[SUSv3] | nextafter(GLIBC_2.0)[SUSv3] |
cacoshf(GLIBC_2.1)[SUSv3] | fdimf(GLIBC_2.1)[SUSv3] | nextafterf(GLIBC_2.0)[SUSv3] |
cacoshl(GLIBC_2.1)[SUSv3] | fdiml(GLIBC_2.1)[SUSv3] | nextafterl(GLIBC_2.0)[SUSv3] |
cacosl(GLIBC_2.1)[SUSv3] | feclearexcept(GLIBC_2.2)[SUSv3] | nexttoward(GLIBC_2.1)[SUSv3] |
carg(GLIBC_2.1)[SUSv3] | fedisableexcept(GLIBC_2.2)[LSB] | nexttowardf(GLIBC_2.1)[SUSv3] |
cargf(GLIBC_2.1)[SUSv3] | feenableexcept(GLIBC_2.2)[LSB] | nexttowardl(GLIBC_2.1)[SUSv3] |
cargl(GLIBC_2.1)[SUSv3] | fegetenv(GLIBC_2.2)[SUSv3] | pow(GLIBC_2.0)[SUSv3] |
casin(GLIBC_2.1)[SUSv3] | fegetexcept(GLIBC_2.2)[LSB] | pow10(GLIBC_2.1)[LSB] |
casinf(GLIBC_2.1)[SUSv3] | fegetexceptflag(GLIBC_2.2)[SUSv3] | pow10f(GLIBC_2.1)[LSB] |
casinh(GLIBC_2.1)[SUSv3] | fegetround(GLIBC_2.1)[SUSv3] | pow10l(GLIBC_2.1)[LSB] |
casinhf(GLIBC_2.1)[SUSv3] | feholdexcept(GLIBC_2.1)[SUSv3] | powf(GLIBC_2.0)[SUSv3] |
casinhl(GLIBC_2.1)[SUSv3] | feraiseexcept(GLIBC_2.2)[SUSv3] | powl(GLIBC_2.0)[SUSv3] |
casinl(GLIBC_2.1)[SUSv3] | fesetenv(GLIBC_2.2)[SUSv3] | remainder(GLIBC_2.0)[SUSv3] |
catan(GLIBC_2.1)[SUSv3] | fesetexceptflag(GLIBC_2.2)[SUSv3] | remainderf(GLIBC_2.0)[SUSv3] |
catanf(GLIBC_2.1)[SUSv3] | fesetround(GLIBC_2.1)[SUSv3] | remainderl(GLIBC_2.0)[SUSv3] |
catanh(GLIBC_2.1)[SUSv3] | fetestexcept(GLIBC_2.1)[SUSv3] | remquo(GLIBC_2.1)[SUSv3] |
catanhf(GLIBC_2.1)[SUSv3] | feupdateenv(GLIBC_2.2)[SUSv3] | remquof(GLIBC_2.1)[SUSv3] |
catanhl(GLIBC_2.1)[SUSv3] | finite(GLIBC_2.0)[LSB] | remquol(GLIBC_2.1)[SUSv3] |
catanl(GLIBC_2.1)[SUSv3] | finitef(GLIBC_2.0)[LSB] | rint(GLIBC_2.0)[SUSv3] |
cbrt(GLIBC_2.0)[SUSv3] | finitel(GLIBC_2.0)[LSB] | rintf(GLIBC_2.0)[SUSv3] |
cbrtf(GLIBC_2.0)[SUSv3] | floor(GLIBC_2.0)[SUSv3] | rintl(GLIBC_2.0)[SUSv3] |
cbrtl(GLIBC_2.0)[SUSv3] | floorf(GLIBC_2.0)[SUSv3] | round(GLIBC_2.1)[SUSv3] |
ccos(GLIBC_2.1)[SUSv3] | floorl(GLIBC_2.0)[SUSv3] | roundf(GLIBC_2.1)[SUSv3] |
ccosf(GLIBC_2.1)[SUSv3] | fma(GLIBC_2.1)[SUSv3] | roundl(GLIBC_2.1)[SUSv3] |
ccosh(GLIBC_2.1)[SUSv3] | fmaf(GLIBC_2.1)[SUSv3] | scalb(GLIBC_2.0)[SUSv3] |
ccoshf(GLIBC_2.1)[SUSv3] | fmal(GLIBC_2.1)[SUSv3] | scalbf(GLIBC_2.0)[ISOC99] |
ccoshl(GLIBC_2.1)[SUSv3] | fmax(GLIBC_2.1)[SUSv3] | scalbl(GLIBC_2.0)[ISOC99] |
ccosl(GLIBC_2.1)[SUSv3] | fmaxf(GLIBC_2.1)[SUSv3] | scalbln(GLIBC_2.1)[SUSv3] |
ceil(GLIBC_2.0)[SUSv3] | fmaxl(GLIBC_2.1)[SUSv3] | scalblnf(GLIBC_2.1)[SUSv3] |
ceilf(GLIBC_2.0)[SUSv3] | fmin(GLIBC_2.1)[SUSv3] | scalblnl(GLIBC_2.1)[SUSv3] |
ceill(GLIBC_2.0)[SUSv3] | fminf(GLIBC_2.1)[SUSv3] | scalbn(GLIBC_2.0)[SUSv3] |
cexp(GLIBC_2.1)[SUSv3] | fminl(GLIBC_2.1)[SUSv3] | scalbnf(GLIBC_2.0)[SUSv3] |
cexpf(GLIBC_2.1)[SUSv3] | fmod(GLIBC_2.0)[SUSv3] | scalbnl(GLIBC_2.0)[SUSv3] |
cexpl(GLIBC_2.1)[SUSv3] | fmodf(GLIBC_2.0)[SUSv3] | significand(GLIBC_2.0)[LSB] |
cimag(GLIBC_2.1)[SUSv3] | fmodl(GLIBC_2.0)[SUSv3] | significandf(GLIBC_2.0)[LSB] |
cimagf(GLIBC_2.1)[SUSv3] | frexp(GLIBC_2.0)[SUSv3] | significandl(GLIBC_2.0)[LSB] |
cimagl(GLIBC_2.1)[SUSv3] | frexpf(GLIBC_2.0)[SUSv3] | sin(GLIBC_2.0)[SUSv3] |
clog(GLIBC_2.1)[SUSv3] | frexpl(GLIBC_2.0)[SUSv3] | sincos(GLIBC_2.1)[LSB] |
clog10(GLIBC_2.1)[LSB] | gamma(GLIBC_2.0)[LSB] | sincosf(GLIBC_2.1)[LSB] |
clog10f(GLIBC_2.1)[LSB] | gammaf(GLIBC_2.0)[LSB] | sincosl(GLIBC_2.1)[LSB] |
clog10l(GLIBC_2.1)[LSB] | gammal(GLIBC_2.0)[LSB] | sinf(GLIBC_2.0)[SUSv3] |
clogf(GLIBC_2.1)[SUSv3] | hypot(GLIBC_2.0)[SUSv3] | sinh(GLIBC_2.0)[SUSv3] |
clogl(GLIBC_2.1)[SUSv3] | hypotf(GLIBC_2.0)[SUSv3] | sinhf(GLIBC_2.0)[SUSv3] |
conj(GLIBC_2.1)[SUSv3] | hypotl(GLIBC_2.0)[SUSv3] | sinhl(GLIBC_2.0)[SUSv3] |
conjf(GLIBC_2.1)[SUSv3] | ilogb(GLIBC_2.0)[SUSv3] | sinl(GLIBC_2.0)[SUSv3] |
conjl(GLIBC_2.1)[SUSv3] | ilogbf(GLIBC_2.0)[SUSv3] | sqrt(GLIBC_2.0)[SUSv3] |
copysign(GLIBC_2.0)[SUSv3] | ilogbl(GLIBC_2.0)[SUSv3] | sqrtf(GLIBC_2.0)[SUSv3] |
copysignf(GLIBC_2.0)[SUSv3] | j0(GLIBC_2.0)[SUSv3] | sqrtl(GLIBC_2.0)[SUSv3] |
copysignl(GLIBC_2.0)[SUSv3] | j0f(GLIBC_2.0)[LSB] | tan(GLIBC_2.0)[SUSv3] |
cos(GLIBC_2.0)[SUSv3] | j0l(GLIBC_2.0)[LSB] | tanf(GLIBC_2.0)[SUSv3] |
cosf(GLIBC_2.0)[SUSv3] | j1(GLIBC_2.0)[SUSv3] | tanh(GLIBC_2.0)[SUSv3] |
cosh(GLIBC_2.0)[SUSv3] | j1f(GLIBC_2.0)[LSB] | tanhf(GLIBC_2.0)[SUSv3] |
coshf(GLIBC_2.0)[SUSv3] | j1l(GLIBC_2.0)[LSB] | tanhl(GLIBC_2.0)[SUSv3] |
coshl(GLIBC_2.0)[SUSv3] | jn(GLIBC_2.0)[SUSv3] | tanl(GLIBC_2.0)[SUSv3] |
cosl(GLIBC_2.0)[SUSv3] | jnf(GLIBC_2.0)[LSB] | tgamma(GLIBC_2.1)[SUSv3] |
cpow(GLIBC_2.1)[SUSv3] | jnl(GLIBC_2.0)[LSB] | tgammaf(GLIBC_2.1)[SUSv3] |
cpowf(GLIBC_2.1)[SUSv3] | ldexp(GLIBC_2.0)[SUSv3] | tgammal(GLIBC_2.1)[SUSv3] |
cpowl(GLIBC_2.1)[SUSv3] | ldexpf(GLIBC_2.0)[SUSv3] | trunc(GLIBC_2.1)[SUSv3] |
cproj(GLIBC_2.1)[SUSv3] | ldexpl(GLIBC_2.0)[SUSv3] | truncf(GLIBC_2.1)[SUSv3] |
cprojf(GLIBC_2.1)[SUSv3] | lgamma(GLIBC_2.0)[SUSv3] | truncl(GLIBC_2.1)[SUSv3] |
cprojl(GLIBC_2.1)[SUSv3] | lgamma_r(GLIBC_2.0)[LSB] | y0(GLIBC_2.0)[SUSv3] |
creal(GLIBC_2.1)[SUSv3] | lgammaf(GLIBC_2.0)[SUSv3] | y0f(GLIBC_2.0)[LSB] |
crealf(GLIBC_2.1)[SUSv3] | lgammaf_r(GLIBC_2.0)[LSB] | y0l(GLIBC_2.0)[LSB] |
creall(GLIBC_2.1)[SUSv3] | lgammal(GLIBC_2.0)[SUSv3] | y1(GLIBC_2.0)[SUSv3] |
csin(GLIBC_2.1)[SUSv3] | lgammal_r(GLIBC_2.0)[LSB] | y1f(GLIBC_2.0)[LSB] |
csinf(GLIBC_2.1)[SUSv3] | llrint(GLIBC_2.1)[SUSv3] | y1l(GLIBC_2.0)[LSB] |
csinh(GLIBC_2.1)[SUSv3] | llrintf(GLIBC_2.1)[SUSv3] | yn(GLIBC_2.0)[SUSv3] |
csinhf(GLIBC_2.1)[SUSv3] | llrintl(GLIBC_2.1)[SUSv3] | ynf(GLIBC_2.0)[LSB] |
csinhl(GLIBC_2.1)[SUSv3] | llround(GLIBC_2.1)[SUSv3] | ynl(GLIBC_2.0)[LSB] |
The behavior of the interfaces in this library is specified by the following Standards.
Large File Support [LFS] |
ISO/IEC 23360 Part 1 [LSB] |
ISO POSIX (2003) [SUSv3] |
Table A-8. libpthread Function Interfaces
_pthread_cleanup_pop(GLIBC_2.0)[LSB] | pthread_cond_signal(GLIBC_2.3.2)[SUSv3] | pthread_rwlock_timedrdlock(GLIBC_2.2)[SUSv3] |
_pthread_cleanup_push(GLIBC_2.0)[LSB] | pthread_cond_timedwait(GLIBC_2.3.2)[SUSv3] | pthread_rwlock_timedwrlock(GLIBC_2.2)[SUSv3] |
lseek64(GLIBC_2.2)[LFS] | pthread_cond_wait(GLIBC_2.3.2)[SUSv3] | pthread_rwlock_tryrdlock(GLIBC_2.1)[SUSv3] |
open64(GLIBC_2.2)[LFS] | pthread_condattr_destroy(GLIBC_2.0)[SUSv3] | pthread_rwlock_trywrlock(GLIBC_2.1)[SUSv3] |
pread(GLIBC_2.2)[SUSv3] | pthread_condattr_getpshared(GLIBC_2.2)[SUSv3] | pthread_rwlock_unlock(GLIBC_2.1)[SUSv3] |
pread64(GLIBC_2.2)[LFS] | pthread_condattr_init(GLIBC_2.0)[SUSv3] | pthread_rwlock_wrlock(GLIBC_2.1)[SUSv3] |
pthread_attr_destroy(GLIBC_2.0)[SUSv3] | pthread_condattr_setpshared(GLIBC_2.2)[SUSv3] | pthread_rwlockattr_destroy(GLIBC_2.1)[SUSv3] |
pthread_attr_getdetachstate(GLIBC_2.0)[SUSv3] | pthread_create(GLIBC_2.1)[SUSv3] | pthread_rwlockattr_getpshared(GLIBC_2.1)[SUSv3] |
pthread_attr_getguardsize(GLIBC_2.1)[SUSv3] | pthread_detach(GLIBC_2.0)[SUSv3] | pthread_rwlockattr_init(GLIBC_2.1)[SUSv3] |
pthread_attr_getinheritsched(GLIBC_2.0)[SUSv3] | pthread_equal(GLIBC_2.0)[SUSv3] | pthread_rwlockattr_setpshared(GLIBC_2.1)[SUSv3] |
pthread_attr_getschedparam(GLIBC_2.0)[SUSv3] | pthread_exit(GLIBC_2.0)[SUSv3] | pthread_self(GLIBC_2.0)[SUSv3] |
pthread_attr_getschedpolicy(GLIBC_2.0)[SUSv3] | pthread_getconcurrency(GLIBC_2.1)[SUSv3] | pthread_setcancelstate(GLIBC_2.0)[SUSv3] |
pthread_attr_getscope(GLIBC_2.0)[SUSv3] | pthread_getcpuclockid(GLIBC_2.2)[SUSv3] | pthread_setcanceltype(GLIBC_2.0)[SUSv3] |
pthread_attr_getstack(GLIBC_2.2)[SUSv3] | pthread_getschedparam(GLIBC_2.0)[SUSv3] | pthread_setconcurrency(GLIBC_2.1)[SUSv3] |
pthread_attr_getstackaddr(GLIBC_2.1)[SUSv3] | pthread_getspecific(GLIBC_2.0)[SUSv3] | pthread_setschedparam(GLIBC_2.0)[SUSv3] |
pthread_attr_getstacksize(GLIBC_2.1)[SUSv3] | pthread_join(GLIBC_2.0)[SUSv3] | pthread_setspecific(GLIBC_2.0)[SUSv3] |
pthread_attr_init(GLIBC_2.1)[SUSv3] | pthread_key_create(GLIBC_2.0)[SUSv3] | pthread_sigmask(GLIBC_2.0)[SUSv3] |
pthread_attr_setdetachstate(GLIBC_2.0)[SUSv3] | pthread_key_delete(GLIBC_2.0)[SUSv3] | pthread_spin_destroy(GLIBC_2.2)[SUSv3] |
pthread_attr_setguardsize(GLIBC_2.1)[SUSv3] | pthread_kill(GLIBC_2.0)[SUSv3] | pthread_spin_init(GLIBC_2.2)[SUSv3] |
pthread_attr_setinheritsched(GLIBC_2.0)[SUSv3] | pthread_mutex_destroy(GLIBC_2.0)[SUSv3] | pthread_spin_lock(GLIBC_2.2)[SUSv3] |
pthread_attr_setschedparam(GLIBC_2.0)[SUSv3] | pthread_mutex_init(GLIBC_2.0)[SUSv3] | pthread_spin_trylock(GLIBC_2.2)[SUSv3] |
pthread_attr_setschedpolicy(GLIBC_2.0)[SUSv3] | pthread_mutex_lock(GLIBC_2.0)[SUSv3] | pthread_spin_unlock(GLIBC_2.2)[SUSv3] |
pthread_attr_setscope(GLIBC_2.0)[SUSv3] | pthread_mutex_timedlock(GLIBC_2.2)[SUSv3] | pthread_testcancel(GLIBC_2.0)[SUSv3] |
pthread_attr_setstackaddr(GLIBC_2.1)[SUSv3] | pthread_mutex_trylock(GLIBC_2.0)[SUSv3] | pwrite(GLIBC_2.2)[SUSv3] |
pthread_attr_setstacksize(GLIBC_2.1)[SUSv3] | pthread_mutex_unlock(GLIBC_2.0)[SUSv3] | pwrite64(GLIBC_2.2)[LFS] |
pthread_barrier_destroy(GLIBC_2.2)[SUSv3] | pthread_mutexattr_destroy(GLIBC_2.0)[SUSv3] | sem_close(GLIBC_2.1.1)[SUSv3] |
pthread_barrier_init(GLIBC_2.2)[SUSv3] | pthread_mutexattr_getpshared(GLIBC_2.2)[SUSv3] | sem_destroy(GLIBC_2.1)[SUSv3] |
pthread_barrier_wait(GLIBC_2.2)[SUSv3] | pthread_mutexattr_gettype(GLIBC_2.1)[SUSv3] | sem_getvalue(GLIBC_2.1)[SUSv3] |
pthread_barrierattr_destroy(GLIBC_2.2)[SUSv3] | pthread_mutexattr_init(GLIBC_2.0)[SUSv3] | sem_init(GLIBC_2.1)[SUSv3] |
pthread_barrierattr_init(GLIBC_2.2)[SUSv3] | pthread_mutexattr_setpshared(GLIBC_2.2)[SUSv3] | sem_open(GLIBC_2.1.1)[SUSv3] |
pthread_barrierattr_setpshared(GLIBC_2.2)[SUSv3] | pthread_mutexattr_settype(GLIBC_2.1)[SUSv3] | sem_post(GLIBC_2.1)[SUSv3] |
pthread_cancel(GLIBC_2.0)[SUSv3] | pthread_once(GLIBC_2.0)[SUSv3] | sem_timedwait(GLIBC_2.2)[SUSv3] |
pthread_cond_broadcast(GLIBC_2.3.2)[SUSv3] | pthread_rwlock_destroy(GLIBC_2.1)[SUSv3] | sem_trywait(GLIBC_2.1)[SUSv3] |
pthread_cond_destroy(GLIBC_2.3.2)[SUSv3] | pthread_rwlock_init(GLIBC_2.1)[SUSv3] | sem_unlink(GLIBC_2.1.1)[SUSv3] |
pthread_cond_init(GLIBC_2.3.2)[SUSv3] | pthread_rwlock_rdlock(GLIBC_2.1)[SUSv3] | sem_wait(GLIBC_2.1)[SUSv3] |
The behavior of the interfaces in this library is specified by the following Standards.
ISO POSIX (2003) [SUSv3] |
Table A-9. librt Function Interfaces
clock_getcpuclockid(GLIBC_2.2)[SUSv3] | clock_settime(GLIBC_2.2)[SUSv3] | timer_delete(GLIBC_2.2)[SUSv3] |
clock_getres(GLIBC_2.2)[SUSv3] | shm_open(GLIBC_2.2)[SUSv3] | timer_getoverrun(GLIBC_2.2)[SUSv3] |
clock_gettime(GLIBC_2.2)[SUSv3] | shm_unlink(GLIBC_2.2)[SUSv3] | timer_gettime(GLIBC_2.2)[SUSv3] |
clock_nanosleep(GLIBC_2.2)[SUSv3] | timer_create(GLIBC_2.2)[SUSv3] | timer_settime(GLIBC_2.2)[SUSv3] |
The behavior of the interfaces in this library is specified by the following Standards.
ISO/IEC 23360 Part 1 [LSB] |
This specification is published under the terms of the GNU Free Documentation License, Version 1.1, March 2000
Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.
This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.
We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.
This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you".
A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.
A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.
The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.
The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.
A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".
Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.
The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.
You may also lend copies, under the same conditions stated above, and you may publicly display copies.
If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.
If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.
If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.
It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:
Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.
List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).
State on the Title page the name of the publisher of the Modified Version, as the publisher.
Preserve all the copyright notices of the Document.
Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.
Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.
Include an unaltered copy of this License.
Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.
Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.
In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.
Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.
Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version.
Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.
If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.
You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.
You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.
The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.
You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.
The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.
In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications". You must delete all sections entitled "Endorsements."
You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.
You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document.
If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.
Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.
You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.
The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.
Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.
To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation License".
If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.
If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.