PowerPC® Microprocessor Family:

The Programming Environments Manual for
32 and 64-bit Microprocessors

Version 2.3

March 31, 2005

© Copyright International Business Machines Corporation 1999, 2003, 2004, 2005

All Rights Reserved
Printed in the United States of America March-2005

The following are trademarks of International Business Machines Corporation in the United States, or other countries, or
both.

IBM IBM Logo

IBM Microelectronics PowerPC

PowerPC Logotype PowerPC Architecture
RS/6000 pSeries

System/370

AltiVec is a trademark of Freescale Semiconductor, Inc.
Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. In no event will IBM be
liable for damages arising directly or indirectly from any use of the information contained in this document.

IBM Systems and Technology Group
2070 Route 52, Bldg. 330
Hopewell Junction, NY 12533-6351

The IBM home page can be found at http://www.ibm.com

The IBM Microelectronics home page can be found at http://www.ibm.com/chips

pem_64bit_title.fm(2.3)
March 31, 2005

http://www.ibm.com
http://www.ibm.com/chips

Programming Environments Manual

PowerPC RISC Microprocessor Family

Contents

(©0] o] (T 01| £ PP 3
S 0 N = 1 =SSP . 13
LIST OF FIQUIES .ttt et e e e e e e e e e e e e e s s s bbbttt e e e e e e e e aeaeeeeas 19

ADOUL TRIS BOOK ...ttt ettt e e e e e e e e e e e e e e e e s bbb eeeees 23
F U o =0 ot PRI PUTUPPRN 24
L@ 10 =T 4> 1o] o 1 24
YU lo o [Ty (=To l Y= Y= o 1 o [P UT TP PPPPPT 25
1=t lcT = T 0] (o] 4 F= U1 To] o H TP PPPPP 25
POWEIPC DOCUMENTALIONeeiiiiiiiiiieeee e e ittt e e e e e e s s s sttt e e e e e e e s e s e neebaeeeeeeeeeeessaassnnrnsaeeeeaee nannes 26
L670] 0177 =T o1 1Te] o = ST TOTTPPPPPPPPN 27
ACronYMS and ADDIEVIALIONSeiiiiiiiiiiii ittt ettt e e e e e e s e e bbbt e et e e e e e e e e e e aannnbbesbeeees 2eeeaanannns 28
TErminolOgy CONVENTIONSoiiiiiiiiieeeiitiie ettt ettt ettt e e e et bt e e e st b et e e e e aa b et e e e e anbe e e e e e anbbeee e bbeeeeeannene 30
I @ YT TP .31
1.1 POWEIPC ArChit@CtUrE OVEIVIEWeeiiiieeiiiiii ittt e ee e e e e e ettt et e aee e e s s s antbaaeeeeeaaeeesassnnnennrenees seennnn 32
1.1.1 64-Bit PowerPC Architecture and the 32-Bit SUDSELcoveeiiiiiiiieeee e 33
1.1.1.1 Temporary 64-Bit BriAQEcccviiieeeiiiiiiiiiiiiiieie et e e e e e e e s s st e e e e e e e e e e e e s esaneanranaeeeeaaaeens 33
1.1.2 Levels of the POWEIrPC ArChitECIUr®eiiiiiiiiiiiiiiie e 34
1.1.3 Latitude Within the Levels of the PowerPC ArchiteCture ..o, 35
1.1.4 Features Not Defined by the POwerPC ArchiteCtureccceeeeiiiiiiiieiiiiiie e 35
1.2 The PowerPC Architectural MOEISooiiiiiiieee e e 36
1.2.1 PowerPC Registers and Programming Modelccccooeiiiiiiiiiiiiiiiiirss e 36
1.2.2 OPErand CONVENTIONSceeiiuuieieiiiiiete ettt e e st e e s asbb e e s bt et e e s asbe e e e s aabbe e e s aanbbeeeeaanbees sannnes 38
A =Y (= @ o [= T4 oo T PRSP PPPPRP PR 38
1.2.2.2 Data Organization in Memory and Data Transfersccccccccvvviviiiiiiieiieeee e 39
1.2.2.3 Floating-Point CONVENLIONSooiiiiiiieiiiiiiiee e e e e e e e eaees 39
1.2.3 PowerPC Instruction Set and AddressSing MOUESc.uueviiiiiiiiieiiiiie e 39
1.2.3.1 POWEIPC INSLIUCHION ST ...evtiiiiiiiieeee ettt r e e e e e e e e s e s s aeeeeeeaeees 39
1.2.3.2 Calculating EffeCtive AQAIrESSESuvuvviiiiiiiiiiiee e et e e e e e s e e e aeeae e e e enaans 41
1.2.4 POWEIPC CaChe MOAEIoeiiiiiiiiieii et e e e e e e e e e e e 41
1.2.5 POWErPC EXCePLiON MOUEIoiiiiiiiiiiieieet ettt e 42
1.2.6 PowerPC Memory Management MOAE!coooiiiiiiiiiiiiiiiiie e 42
1.3 Changes to thiS MANUAIoooiiiiiiiii e e e e e e e e e e et ettt e e e e e ae e e e ranaan s 43

2. POWEIrPC REQISIEr Setooiiiiiiiiiiicii 45
2.1 Overview of the POWEIPC UISA REJISIEIScciiiiiieeeieeeiei it e e e 45
2.1.1 General-Purpose RegiSters (GPRS)ocvvviiiiiiiiiiiiiii i e e e 48
2.1.2 Floating-Point RegISters (FPRS) ... s 48
2.1.3 Condition REGISLEN (CR) ...eeteiiiiiiee ettt e ettt e e e s bbb e e e et e e e e e anbres saneeee 49
2.1.3.1 Condition Register CRO Field DEfiNItIONcciviieeiiiiiiiiiiiiieiiee e a e 50
2.1.3.2 Condition Register CR1 Field Definitionccccceiiiiiiiiiiieicecieeeeeee e 50
2.1.3.3 Condition Register CRn Field—Compare INStructionccccceveeeiiiiiiiiiiiiiiiceeeeeee e, 51

pemTOC.fm.2.3

March 31, 2005 Page 3 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

2.1.4 Floating-Point Status and Control Register (FPSCR)ccoooeii i 51
2.1.5 XER REQISEr (XER) ittt ettt e e e e e et e e e e e e e e e e e e e e e e an 54
2.1.6 LiNK REGISIET (LR) ..eitiieiiiiiiee ettt ettt e ettt e e e e e e e ee e e e aneaeas 55
% A o 10 == To 15 (=T g (O3 I) SRR 56
2.2 PowerPC VEA Register Set—TIimMeE BASEccccuieiiiiiiiiie ettt e e e e e e e e e e nnneeeeeeeeas 57
2.2.1 Reading the TiME BaSEcuuiiiiiiiiiiia ettt e e e e e e s s et r e e e e e e e e e e annnnee aeeeas 60
2.2.1.1 Reading the Time Base in 64-Bit MOUEccuiiiiiiiiiiiieiii e 60
2.2.1.2 Reading the Time Base in 32-Bit MOAEcccoiiiiiiiiiiiiiiiiicce e 60
2.2.2 Computing Time of Day from the TiMe BaSEcccceeiiiiiiiiiiii i 60
2.3 POWEIPC OEA REJISIEI SELeeiiiiiiiiiiie ittt ettt e et bt e e s et e e e b 61
2.3.1 Machine State RegiSter (MSR)ccoiiiiiiiiiiiiie et 64
2.3.2 Processor Version REgIStEr (PVR)uuuiiiiiiiiiee it ee e e e e e st s snre e e e e e e e e e e ssnnnraaneeeaaaeee s 68
2.3.3 BAT Registers (32-bit IMpIemMeNntations)uuuuiiiiiiiiiiiiiiiiie e 68
2.3 SDRIL et h e h et b et e eh e e e ekt e e e bbe e e be e e et sabee e nabeeennnes 70
2.3.5 Address Space REGISIEN (ASR) ...ccciiiiiiiiiiiiiie ettt et 72
2.3.6 SEOMENT REQISIEIS oiiiiiiiiiitiiieie e e e e e e e e e e e s e e s e e e e e e e e e e s sa s nt e eerteeeeessaasnnnaaeeeenan 74
2.3.7 Data Address RegiStEr (DAR)oiiiiiiiiiiiiiiiiiit e res e s s s e s e e e e e e e e e e eaeaeaaeeeeeeeeeseesaeasrereraranranananees 75
2.3.8 Software Use SPRS (SPRGO—SPRG3)cccoiiiiiiiiiiiai ittt ettt stee e saee e 75
2.3.9 Data Storage Interrupt Status Register (DSISR)ccooiiiiiiiiiiiiiieeie e 76
2.3.10 Machine Status Save/Restore Register 0 (SRRO)ccccvviiiiiiiieeie e e e e e e e 76
2.3.11 Machine Status Save/Restore Register 1 (SRRL) ..cccoooiiiiiiiiiiiirrr e 77
2.3.12 Floating-Point Exception Cause Register (FPECR)ccccoiiiiiiiiiiiii e 77
2.3.13 Time Base Facility (TB)—OEA ...t 77
2.3.13.1 Writing t0 the TiME BASEccceeeiiiiiiiiieiiie ettt e e e e e r e e e e e e s e s e snanrraeeeeeae s 77
2.3.14 Decrementer ReQISIEr (DEC)ccooiiiiiiiiiieiet ettt e e e e eeaa e s 78
2.3.14.1 Decrementer OPEIALIONeieeiiiieiieeiiieie e ettt e e ettt e e st e e e s sase et e e s sbb e e e s abnee e e e s anneeeas 78
2.3.14.2 Writing and Reading the DECooiiiiiiiiiie ittt 79
2.3.14.3 Data AAAreSS COMPAIEcciiiieeeiiiiiiiiiirereeeee e s e e s asitrer e e e e e e aeessaassasresarareeaeeesssannrrnrnreeees 79
2.3.15 Data Address Breakpoint Register (DABR)ooiiiiiiiiiiiiiiiiiieiee e 79
2.3.16 External ACCess RegISIEr (EAR)oiuiiiiiiiiiiiie ettt 81
2.3.17 Processor Identification Register (PIR)uvii it 82
2.3.18 Synchronization Requirements for Special Registers and for Lookaside Buffers 82
2.3.18.1 Notes for Table 2-20 and Table 2-21cocceeiiiiiiiiie et 85

3. Operand CONVENTIONSccooiiiiiiiiiiiiiiiiiiiiiea e e e e e e e e e e e e e e eeeeeb b r e e e e e e eaaaeeeeeeeessnnnnns 87
3.1 Data Organization in Memory and Data TransSfers ... 87
3.1.1 Aligned and MiSaligNEd ACCESSESuuuuuuiiiiiieaa ettt e e e e e e e e e st e e e e e e e e e s e aannneebeeeeaaaaaaaaaas 87
K A =V (= @ o [=T o o o RO PPPPPTRO 88
3.1.2.1 Big-Endian BYt€ OrUEIINGccevieeeeeiiiiiiiiiieie e et e e e e e e e s s st e e e e e e e e e e s s sssnnnnnraeaeeeeaaaeeessnnns 88
3.1.2.2 Little-Endian Byte OrdEIINGcevvviiiiiiiiiiiiiiieie e e e e e e e e e ee et e s e e e e e e e aeaaaaaaaaaens 88
3.1.3 Structure Mapping EXAMPIES ..ottt e e e e e e e e s 88
3.1.3.1 Big-ENdian MapPINGgeeeeeeiiiiiiiie ittt ettt ettt nnan e 89
G0 I T 11 L= =t o 1= T I =T o] o 11 o PSSR 90
3.1.4 POWEIPC BYLE OFUEINGcceeiiiiiiiieiieieitieiiitii s e s e s e e e s e e e aeeaaeaaaeaeaeeeeeseasesessassssennnnnnnnann sennes 91
3.1.4.1 Aligned Scalars in Little-Endian MOAEccooiiiiiiiiiiiiiieee e 91
3.1.4.2 Misaligned Scalars in Little-Endian MOdecoooiiiiiiiiiiiiiiciee e 94
0 I B B o g [T 1= = PR T PP PP PP 95
T I = To [T 1= o [PR 95
3.1.4.5 PowerPC Instruction Addressing in Little-Endian Modecccceeiieeiiiiiiiinieee, 95
3.1.4.6 PowerPC Input/Output Data Transfer Addressing in Little-Endian Mode 96
pemTOC.fm.2.3

Page 4 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

3.2 Effect of Operand Placement on PerformanCe—VEA ... 97
3.2.1 Summary of Performance EffeCtS ... 97
3.2.2 INSIIUCHON RESIAIT ...ooiiiiiiiiii ittt ee et e e e e e e e et r e e e e e e e e e s eeeaaaaaaans 99

3.3 Floating-Point Execution MOdeIS—UISA ..o r e e e e e 100
3.3.1 Floating-Point Data FOIMALccooiiiiiiiiiiiiiece e e e e e s r e e e e e e s e s s nnnranneees oen 100

3.3.1.1 Value RePreSENIALIONcciviiiiiiiiiiiiiiis e e e e e e e e e e e e e e e e e e et ae s e s e e eaeaeaeaaaeeeaesennes 102
3.3.1.2 Binary Floating-Point NUMDEIS ... 103
3.3.1.3 Normalized NUmMbBEers (ENORM)ccoiiiiiiiiiiiiiie e 103
R N B =Y (o IR -1 18 ({0 PR 104
3.3.1.5 Denormalized Numbers (DENORM)oooiiiiiiiiiiiiiiiees e 104
3.3 1.6 INFINILIES (F8) .eeeiiieiiiiie ettt et e e e e e e ettt e e s e s e e 2eeannees 105
3.3.1.7 NOt @ NUMDBDEIS (NBNS) ...eeiiiiiiiiiiie ittt e e 105
G R S 1 o 0 = | PSR 106
3.3.3 Normalization and DenormaliZationcc.uuueeiiieiiaiieei e 107
3.3.4 Data Handling and PreCiSIONcuueiieiiiiiiiee ittt ettt e e e sinneee e e 107
KR NS = (o 18 o [T Vo PP PPR PP PPPPPPPR 109
3.3.6 Floating-Point Program EXCEPLIONSuuuiiiiiiieeeiiiiiiiiiiie e e ee e e e s s sssiiienreeee e e e e e e sssnnnnnnnnneeeeees 111
3.3.6.1 Invalid Operation and Zero Divide Exception Conditionsccccevvvvvviviiiiiiiiiciienenn, 117
3.3.6.2 Overflow, Underflow, and Inexact Exception Conditionsc.ccceveeiiiiiieeieiiiieeeenns 121
4. Addressing Modes and INStruction Set SUMMAIYeeveeeiiiiiiiiiiiieeeneeneeeennns 127

N R 0] 1Y/ 11T 1SR 128
4.1.1 Sequential EXeCULION MOEIoooiiiiiiiiiiiii e s 128
o A @ .41 010 = Vi To] 1Y, o T 1= SRR 128

4.1.2.1 64-Bit IMPIEMENTALIONSovviiiiiiiiie i e e e e e e e e e e e e e e e e 129
4.1.2.2 32-Bit IMPIEMENTALIONS e e e e e e e e e e ee s 129
4.1.3 Classes Of INSIIUCLIONScceeiiiiiiieiie et e e e e e e e e e s e s s st eeeeeaeee e eneeees 129
4.1.3.1 Definition of Boundedly Undefined ..o 129
4.1.3.2 Defined INSrUCLION CIASSuiiiiiiiiiieieee e 130
4.1.3.3 lllegal INStrUCLION CIASSocoieiiiiiiiiii et e e e e e e e e e e eee e 131
4.1.3.4 ReSErved INSIUCHIONSccoo it e et e e e e e e e e s e e e e e e e e e e e e e e asennnnneeneeees 132
Y =Y g T o VA AN (o [=TS o SRR 132
o O N Y 1= g To T YA @ o =T = T T £ 132
4.1.4.2 Effective Address CalCUlation ... 133
4.1.5 Synchronizing INSLIUCHIONSoiiuuiiiiiiiiiiie et a e e s 134
4.1.5.1 Context Synchronizing INSrUCHIONSooiiiiiiiiiiiiiece e e 134
4.1.5.2 Execution Synchronizing INSIFUCLIONSccooveiiiiiiiiceeeeeere e e e e e e e e e e aaaans 135
4.1.6 EXCEPLION SUMIMAIY ...tiiiiiiiiiiiiee ittt ettt ettt e ekt e st b e e e s abb e et e e s bbb et e e s aanbe e e e s annneeeeeees 135

4.2 POWEIPC UISA INSIIUCHIONS ..ooiiieiieeeiiieiee ettt ettt e e ettt e e e sttt e e e s snbeeae e s snbbeeeeseeeaenns 136

ot R 101 =T 1= [1= (0 T £ o] g PSSP 136
4.2.1.1 Integer Arithmetic INSITUCLIONSuuuiiii i e e e e e e e e e e e e e e e eeeeaeaeneaees 137
4.2.1.2 Integer Compare INSIIUCTIONScoiiuiiiieiiiiiiie ettt e s e e 141
4.2.1.3 Integer Logical INSIFUCLIONSuviiieiiiiiiii ettt 142
4.2.1.4 Integer Rotate and Shift INSITUCHIONSccuviiiiiiiiiiee e 145

4.2.2 Floating-Point INSITUCHIONSuuuiiiiiiiiiiie e e e e e s 149
4.2.2.1 Floating-Point Arithmetic INSIIUCLIONScuviiiiiiiiiii e 150
4.2.2.2 Floating-Point Multiply-Add INSIFUCLIONSciiiiiiiiiiieiiie e 152
4.2.2.3 Floating-Point Rounding and Conversion INStrUCtioNScccceevviiiiiiiiiiiiiiieeeeee e 153
4.2.2.4 Floating-Point Compare INSIIUCHONScccuuiiiiiiiiiiiiee et 155
4.2.2.5 Floating-Point Status and Control Register INStructionsccccovcvvveieiiiiieie i 155

pemTOC.fm.2.3

March 31, 2005 Page 5 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

4.2.2.6 Floating-Point MOVE INSIIUCLIONSccooiiiiiiii s e e e e e e e e e e e e e e eaaaaannes 157
4.2.3 Load and Store INSIIUCLIONSiiiiiiiiaiii ittt e e e e et e e e e e e e e e e e e aneen eeas 157
4.2.3.1 Integer Load and Store Address Generationcccooueeeieriiiieeeeniiiieeee s 158
4.2.3.2 Integer Load INSLIUCTIONSuuviiiiiiiieiieeeee it r e e e e e e e s s e e e e e e e e e s e sennnnreareeeeees 161
4.2.3.3 Integer StOre INSITUCHIONSvvvuiiiiiiiiiii e e e e e e e e e e e e e e e e e e e aeaareeennes 163
4.2.3.4 Integer Load and Store with Byte-Reverse INStruCtionSccccooeviiiiiiiiiiiiieieieeeeeen 165
4.2.3.5 Integer Load and Store Multiple INSIIUCHIONSooiiiiiiiiiiiiiiiiie e 166
4.2.3.6 Integer Load and Store String INSIrUCHIONScvvviiieeeiiiiiciieeir e 166
4.2.3.7 Floating-Point Load and Store Address Generationcooevvevviiviiiiiiiiininieneeeeeeens 167
4.2.3.8 Floating-Point Load INSIUCHONScoiiiiiiiiiieii et 169
4.2.3.9 Floating-Point Store INSIIUCHIONSvviiiiiiiiiei et 170
4.2.4 Branch and FIow Control INSTIUCHIONSc.oiiiiiiiiiiiiiiee e 171
4.2.4.1 Branch Instruction Address CalCUulation ... 171
4.2.4.2 Conditional Branch CONLIOLeeiiiiiiaaiii et 177
4.2.4.3 Branch INSIIUCHIONScooeiiiiiiiiiiee e e ee e e e et e e e e e e e e s e ee e e e e e e e e e e s annnnenn ees 180
4.2.4.4 Simplified Mnemonics for Branch Processor INStructionscccccccvvveevieieeeeneiiiinnns 181
4.2.4.5 Condition Register Logical INStrUCIONSccoooiiiiiiiiieerer e, 181
4.2.4.6 Trap INSITUCLIONSeiiiiiiiiiie ettt ettt e st e e et e e e s s b b e e e e anbaes snnes 182
4.2.4.7 System Linkage INSruCtioN—UISAooiiiiiiie e 182
4.2.5 Processor Control INStruCtiONS—UISAcooiiiiiiiiiiiiee e 183
4.2.5.1 Move to/from Condition Register INStrUCtioNScovvviiiiiiiiiiiiecee e, 183
4.2.5.2 Move to/from Special-Purpose Register Instructions (UISA)ccccceeeviiiiieeeniiiiieeene 183
4.2.6 Memory Synchronization INStruCtionS—UISAcooiiiiiiiiiii e 184
4.2.7 Recommended Simplified MNEMONICSccooiiiiiiiiiirice e a e e 186
4.3 POWEIPC VEA INSIIUCHIONS ..oeiiiiiiiiiiiiitieeiee e e e ettt et e e e e e s sttt e e e e e e e e e saaabbe st e eeaaaeeesaan seeeeaaeas 187
4.3.1 Processor Control INSrUCHONS—VEAuuiiiiiiiiiiae e 187
4.3.2 Memory Synchronization INStrUCtIONS—VEAoooiiiiiiiiiiiiee et 188
4.3.3 Memory Control INStTUCLIONS—VEAoooiiiiiie e a e e e 189
4.3.3.1 User-Level Cache INSruCtioNS—VEAoooiiie e 189
4.3.4 External Control INSIIUCHIONSccoiiiiiiiiiiieiiee ittt e e e e e e e e e e s eee aeas 193
4.4 POWEIPC OEA INSITUCLIONS ..iiiiiieiiiiiiee ettt ettt e e e s st e e e e st bae e e e s st e e e e e nnbaeeeeean eeeenneee 194
4.4.1 System Linkage INStruCtioNS—OEA ...t e e e 194
4.4.2 Processor Control INSruCtioNS—OEAuiiiiiiiiii e 197
4.4.2.1 Move to/from Machine State Register INStruCtionScoocviiiieiiiiiieieiiiece e 197
4.4.2.2 Move to/from Special-Purpose Register Instructions (OEA)ccocceeeviiiieeeeiiiiieenene 197
4.4.3 Memory Control INStruCtioNS—OEA ... e e e e 198
4.4.3.1 Supervisor-Level Cache Management INSIrUCLIONcociviiiiiiiiiiiiiiiiiiiiieeceee e 198
4.4.3.2 Segment Register Manipulation INSIIUCHIONScoooiiiiiiieiiiiiiie e 199
4.4.3.3 Translation and Segment Lookaside Buffer Management Instructionsccccce..... 200

5. Cache Model and Memory CONEIENCYouvuviuiiiiiiiiie e e e 203
5.1 The Virtual ENVIFONMENTiueiiiiiiiiiiii ettt ettt s bt e e e sttt a e s e nb e e e bbeeeeenneee 203
5.1.1 MemMOry ACCESS OFUEING ..uvveriieiieeeiiiiiiiiieiir et e e e e e e ss s st e e e aaeee s s s s asstaaaeeeeeeaeeesssnnnnnrnnnreees on 203
5.1.1.1 Enforce In-Order Execution of /O INSrUCHIONocoiiiiiiiiiiiiiieeeeee e 204
5.1.1.2 SYNChronize INSIIUCHIONueeiiiiiiiiieai ittt e e e e e e e e e eeeeas 204
I A AN (o] 41T Y PP TP P PR 205
I C R 0= Ted o 1= Y/ o To = RO 206
LT R Y 1= o g To] A O o 1 [=] (=1 o o) Y 206
5.1.4.1 Memory/Cache ACCESS MOUEScooiiiiiiiiiiiieiie ettt e e eeeaaaeeas 207
5.1.4.2 CONEIreNCY PrECAULIONScoiiuiiiiiiiiiieie ettt sttt e e e e e e nnnes 208
pemTOC.fm.2.3

Page 6 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

5.1.5 VEA Cache Management INSLIUCLIONScccooiiiiiiii i 209
5.1.5.1 Data Cache INSIIUCLIONSuuiiiiiiiieiiiii ittt e e e e e e e e e e eeeeeas 209
5.1.5.2 Instruction Cache INSIUCHIONSccceeiiiiiiiiiiiiiiie e e e e e e e e eee s 211

5.2 The Operating ENVIFONMENTuuuiiiii i r e e e e e e e e e aaae aeaaaaas 212

5.2.1 Memory/Cache ACCESS ALHDULESuuiiiiiiiiici e 213
5.2.1.1 Write-Through ADULE (W) oot a e 213
5.2.1.2 Caching-Inhibited ALtrDULE (1)oooiiieiiiee e 214
5.2.1.3 Memory Coherency ArBULE (M) ..o e e 214
5.2.1.4 W, I, and M Bit COMDINALIONSccooiiiiiiiiiiiiiie ittt 215
5.2.1.5 Guarded AIHDULE (G) ..ottt e e e e e e 215

5.2.2 1/O Interface CONSIAEIAIONScciiiieeiiiiiiiiiiiei et e e e e e s e e e e e e e es e e ee e e e e e e s e e snnnnnenee aeas 217

5.2.3 OEA Cache Management Instruction—Data Cache Block Invalidate (dcbi) 217

T (oY o] 10 o PR 219
L b CoT=T 0] T =TT PR 220

L O I o €= Tod T ol =T o] PSP 222

6.1.2 SYNCRIONIZATION ...eeiiiiiiiiiii ettt e e e e ettt e et e e e e e e s e e bbbt et e e e e aeeeseeaan eeeaaaaens 222
6.1.2.1 Context SYNCNIONIZALIONoiiiiiiiiiiei et 222
6.1.2.2 EXecution SYNCHIrONIZALIONcciiiiieeiiiiieciiiiiieiie e e e e e e e e e e e e e s e s eeeeees 223
6.1.2.3 SyNchronoUS/PreciSe EXCEPLIONSvvvuriiiiiiiiiie it e a e e e e e e 223
6.1.2.4 ASYNChroN0OUS EXCEPLIONSuueiiiiiiiiiiii ittt e e e e e e e ee s 224

6.1.3 IMPreCiSE EXCEPLIONS ...iuiiiiiiiiiiiiie ettt ettt ettt ettt e ettt e e rab et e e e aabb e e e e s sbbeeeeeaaan aeae 225
6.1.3.1 Imprecise Exception Status DESCIIPLIONccceeeieiiiiiiiiiiiee e e e e e crrrrrr e e e e e e e e 225
6.1.3.2 Recoverability of Imprecise Floating-Point EXCEPLIONSc.vvvviiiiiviiiiiiiiiiiiiieieee e, 226

6.1.4 Partially Executed INSIFUCLIONSooiiiiiiiiiieii et eee s 227

6.1.5 EXCEPLION PIIOMIES ...eiiiiiiiiiiiiitiiiee ettt ettt ettt e ettt e e et e e e e abbe e e e e eeeaeaaes 227

oI b Col=T [0 g T 0Tt E1 3 o SRR 229

6.2.1 Enabling and Disabling EXCEPLIONScovviiiiiiiiiiiiiiiiiicisisie s e s e s e e e e e e e e e aeeeaeeeeeeeeseeaeeseenrnennann 233

6.2.2 Steps for EXCEPLioN PrOCESSINGocuueiieiiiiiiieeiitiie ettt e e sbneee e 233

6.2.3 Returning from an EXception HanAIErccooiiiiiiiiiiiiii e 234

6.3 PrOCESS SWILCNING ..eveiiiiiiiiiiiiiiiii st e et e e s e e e e e e e e e e e e aaeaes taaaeaaaaaaaaens 235
6.4 EXCEPLioN DEfINITIONSviiiiiiiiiiie e e e st sbbe e e e e e 235

6.4.1 System Reset Exception (OX00L100)ccceiiiimiiieiiiiiieeeniiieeeeesstteee e et e e e sirre e e e e sinneeeae e 236

6.4.2 Machine Check Exception (OX00200)ccuuuiieeiiiirieeeiiiiieieeeerieeee e e sitreee e s sibeeeeesssineeeeeeanes 237

6.4.3 DSI EXCePtion (OXO0B00)cceiiuurieeeiitiieeeeitieieeestieeeeesnsteeeessssbeeeeesssbseeeesatseeeessnssseessssnees see 239

6.4.4 Data Segment Exception (OX00380)ccccuuririiiiiiiiae et e e e e e e eee e e e e e e e 241

6.4.5 I1S] EXCePLion (OX00400)ccciiuieieeiiiiiiee e it eee e ettt e e ettt e e e st e e e e s sbe e e e e s abbr e e e e ssbeeeeesanrnee sane 242

6.4.6 Instruction Segment EXCeption (X0480)coiiiiiiiiieeiiiiiiee ettt 243

6.4.7 External Interrupt (OX00500)ccceiiiiiuiiiiiieeie e e e e e es e st r e e e e e e s e s st e e e e e e e e e e s s s nnnrarrrreeaee sean 244

6.4.8 Alignment Exception (OX00600)coiuuuuiiiiiiiieeee ettt e e e e e e e e e e e e s e e abbbbreeeeaeeas 244
6.4.8.1 Integer AlIgNMENt EXCEPLIONSccciiuuiiiiieiiiiiiie ettt e s 247
6.4.8.2 Little-Endian Mode AlIgnment EXCEPLIONSvvvieiiiiiiiiieeiiiiiee et eireee e 248
6.4.8.3 Interpretation of the DSISR as Set by an Alignment EXceptioncccccccveeeeeiiiiiiinnnns 248

6.4.9 Program Exception (OX00700)cooiiuiuiiiiieeiaeee ettt e e e e et e e e e e e e e e s e s snbabseeeeeaeeas 250

6.4.10 Floating-Point Unavailable Exception (OX00800)c..eteeiiurimieeiiiiireeeiiiiee e eireeee e 252

6.4.11 Decrementer Exception (OX00900)coiiriiieiiiiiiieeeiiiee ettt e et sebee e e e e 252

6.4.12 System Call Exception (0X00C00)ccccururiiiiiirieeeee e e ss st e e e e e e e e e s e s ssnnnra e areaeaeeaees 253

6.4.13 Trace EXception (OXOODO0)cueeeiieeariiiaiiiitiiee ettt e e e e e e e e ettt e e e e e e e e e e s nsbbbbn e e eeeeaaeaeaeas 254

6.4.14 Performance Monitor Exception (OXO0FO00)oeveeiiiiiiieeiiiiieee et 255

pemTOC.fm.2.3

March 31, 2005 Page 7 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

7. MemMOry ManagEIMENTuuiiiiieiii et e e e e e e e e e e e e e e e 257
7.1 MMU FRALUIESeuieeiiieii oottt ettt e e e ettt e e ettt taa s e e et eetba e e e e e e een b e eeeeeen seebnnaaeeeaenes 258
7.2 MIMU OVEIVIEW ...ttt ste ettt ettt e em e see e s ekt e s e e et e e R e e e n et e s ne e e s ne e e s ne e e st e nnnneennnne e 260

A7 V1= o g To T VA A Lo =13 T T RSP 261
7.2.1.1 Effective Addresses in 32-Bit MOUEooviiiiiiiiiiiiiice e 261
7.2.1.2 Predefined Physical Memory LOCALIONScoooiiiiiiiiiiiiiiieeie et 262

7.2.2 MIMU OFQANIZATION ...eiiiiiiiiiee ettt e ettt e e e skt e e e e ek b b e e e e e sbe e e e e e anbbeeeeeanen e enees 262

7.2.3 Address Translation MeChAnISMSccoiiiiiiiiiiii e 266

7.2.4 Memory ProteCtion FACIItI®Suuiiiiieiiii i e e e e e e e aeaaaeas 268

7.2.5 Page History INFOrMAtIONoooiiiiiiiiiie ettt e e e e e ee e e e sean 269

7.2.6 General Flow of MMU Address Translationcoooiiioiiiiiiiiiiiee e 269
7.2.6.1 Real Addressing Mode and Block Address Translation Selectionccccccvvvvveeenen.. 269
7.2.6.2 Page Address Translation SEIECHIONuuuuiiiiiiiiiiii e 270

7.2.7 MMU EXCEPHONS SUMMIATYeiiiiiiiiieiieaae ettt et et e e e e e e e s e aibbaaeeeeaeaaeaeaaaannsesbeeeeaaaaaasaeaannnene 274

7.2.8 MMU Instructions and RegiSter SUMMAIYccoiiiiiiiiiiiiiiee ettt 276

7.2.9 TLB ENtry INVAlAALIONcviiiiiiiiie e e e e e e e e e e st ae e e e e e e e e e s e s nnnnnnnne eeeenans 278

7.3 Real AdAreSSING MOUEoooiiiiiieeee ettt ettt e e e e e e e e e e e e annb et e et e aaeaeeaean saeeeeaaaas 278
7.4 BIOCK AAAress TranSIatioNcc..uuieiiiiieeee et ir e e e e e s e e e e e e e e e e e e s sssnnnt e aeeeeaeeeeesaas sreeneenaeas 279

7.4.1 BAT AI1ay OFQANIZATIONcoeiiiiiiiieiiiiiiiee ettt ettt e e ettt e e e st e e e e abe et e e e sabbe e e e e abbeeeeesarbeee sane 280

7.4.2 Recognition of AAAresSes iN BAT AITAYSuuuuriiiiieeeeeiiisiiiiirieeeieereeeeeessssssssnsreneeeesaaaesessnnnns 282

7.4.3 BAT Register Implementation Of BAT AITAYuuuuuiiiiiiiiiiiie et 284

7.4.4 BIOCK MEMOTY PrOtECHIONuiiiiiiiiiiee ittt e e e e e e e e e e e e e e e e e e e anneneeee e s 286

7.4.5 Block Physical ADdress GENETAtIONcueiiiiiiiiiiieiiiiie ettt 289

7.4.6 Block Address Translation SUMMATYcocccuiiiiiiiiiee e e e e e e e e s s e ssnrnerereeaeeeeeeeennnnenes 290

7.5 MemOory SEGMENT MOUEI ...t e e s aan e e e neee 290

7.5.1 Recognition of AJdreSSes iN SEOMENLSoiiiiiiiiiieiiiie et e e ee e 291

7.5.2 Page Address Translation OVEIVIEWccuiiiiiiiiiiiiee ettt e e 291
7.5.2.1 Segment Lookaside BUfEr (SLB)cccccuriiiiiiiieiee e e e e e e e nen e e e e e e 294
7.5.2.2 Segment Descriptor Format—32-Bit Implementationscccceevviiiviiiiccceee e, 295
7.5.2.3 Page Table Entry (PTE) DefinitioNsScuueviiiiiiiiiieiiiieee et 297

7.5.3 Page HiStory RECOMMINGcoiiiiiiiiiiiiiiiiee ettt ettt e e e b e e e s nibeeee e s sbee s eaes 299
7.5.3.1 REEIENCEA Bt ...eeiiiieiiiie ittt nnre e s e 301
7.5.3.2 ChanQed Bilcooiiiiiiiie ittt nre e e 301
7.5.3.3 Scenarios for Referenced and Changed Bit Recordingccccooccuveeeiiiiiieeeiiniiieee e 302
7.5.3.4 Synchronization of Memory Accesses and Referenced and Changed Bit Updates 303

7.5.4 Page Memory ProteCHIONccoooi oo e araeaaae e 303

7.5.5 Page Address Translation SUMMETYocceiiioiiiiiieoiiiee e 306

A P2 1) g 1= To B o= o LT 1= T o] 1= 308

7.6.1 Page Table DEfiNITIONuuuiiiiieieeeiiiciciie e e s e e e e e e s s s s e e e e e e e s e s snnannrennee eeeenans 309
7.6.1.1 SDR1 Register DefinitioNSccuiiiiiiiiiiiiiiiiiie et 310
7.6.1.2 Page TabIe SiZ@ooooiiie s 312
7.6.1.3 Page Table Hashing FUNCLIONScoiiiiiiiiiiiiice e 314
7.6.1.4 Translation Lookaside BUfer (TLB)ccccuuiiiiiiieiiee e e et en e e e e e e 317
7.6.1.5 Page Table AQUIESSESeiiiiiiiiieeei ittt e e e e e e e e st eeeeaeaeeans 317
7.6.1.6 Page Table Structure SUMMANYcoooiiiiiiiiiiiiiiee et 321
7.6.1.7 Page Table Structure EXamPplesoooiiiiiiiiiii e 321
7.6.1.8 PTEG Address Mapping EXamPIESuuuuuiiiiiiiiii et e e 325

7.6.2 Page Table SEArCh PrOCESSccoiiiiiiiiiiiiiiie ettt e e e e e eeaaae e s 331
7.6.2.1 Page Table Search Process for 64-Bit Implementationscccccevviiiieeiniiiene e, 331
7.6.2.2 Page Table Search Process for 32-Bit Implementationsccccceeviiineeiiniiine e, 332

pemTOC.fm.2.3

Page 8 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

7.6.2.3 Flow for Page Table Search Operationcccccceeeiiiiiiiiiiee e 332
7.6.3 Page Table UPUAeS ...ttt e e e e e e e e ettt e e e e e e e e e e e nnnbanee 2eeeas 334
7.6.3.1 Adding @ Page Table ENIYooooii e 335
7.6.3.2 Modifying a Page Table ENLrYooooiiiiieeeceee et e e e e 335
7.6.3.3 Deleting a Page Table ENLIY ..o a e e e e 337
7.6.4 ASR and Segment Register UPAAtesc.euuiiiiiiiiiiiaaaiie e 337
7.7 Migration of Operating Systems from 32-Bit Implementations to 64-Bit Implementations 338
7.7.1 Segment Register Manipulation Instructions in the 64-Bit Bridgeccccccecveeeeeeiiiiiinnnnnnn. 339
7.7.2 64-Bit Bridge Implementation of Segment Register Instructions Previously Defined for
32-Bit Implementations ONIY ..o 340
7.7.2.1 Move from Segment REgIStEI—mMISTcoiiiiiiiiiiiie e 340
7.7.2.2 Move from Segment Register INdireCt—mfSrin ccccceeiiiiiiiiiiie e 341
7.7.2.3 Move to Segment RegiStEr—mMISTccooiiiiiiiieeeeeee e 342
7.7.2.4 Move to Segment Register INdireCt—mtSIiNccoceeiiiiiieeii e 343
8. INSITUCTION SEL v e e e e e e et e ettt b s e e e e e e e eeeeeeeeeeenennnnnes 34 5
LT [y (U o i T T g T o] 1 4 F= L £ 345
8.1.1 SPIt-FIeld NOTALIONciiiiiiiiie ittt e e et e e e s bbb e e e eeeae e 346
8.1.2 INSLIUCHION FIEIASeeiiiiiiiiiie ettt et e e e st e e e s s rbbaees heeeaenes 346
8.1.3 Notation and CONVENLIONSeuiiiiiiiiiiiiiitie ittt e e et e e e e e e s bbb e e e e e e e e s e e s aanneeeee eas 349
S I S @do g] o101 = 1 o] o 1Yo To 1= URT PP 352
8.2 POWEIPC INSIIUCLION S ..eiiiiiiiiieeiiitiie ettt ettt e e et e e e st e e e s e nb e e e e eeeeeennnees 353
Appendix A. PowerPC Instruction Set LiStiNgScccccoiiiiiiiiiiiiiiiiiieeeeeeeeee e 609
A.1 Instructions Sorted DY MNEMONICouueiiiiiiiiiiiee ittt e s ree s 609
YN @] o 1=Yo] 1= L= [1S3 £ U o 1T 1SR 617
A.3 Instructions Sorted DY OPCOUEoiivieiiiiii e e e r e e e e e e e e e e annnes 618
A.4 Instructions Grouped by Functional Categoriesccccvuriiiiiiiie e 626
A.5 INStructions Sorted DY FOIMM ... r e e e e e e e e e e e eeeeeeeeannnes 638
YN G [51 (U Tod o] g IS Y= =T = o o PR 651
Appendix B. Multiple-Precision ShiftSciiiiiiiiiiiie e 659
B.1 MUltiple-PrecisSion ShiftSciiiiiiiieee e e e e e e e e e e s s e e e e aee e 660
Appendix C. Floating-Point ModelSccccuuiiiiiiiiii e 663
C.1 Execution Model for IEEE OPEratiONSc..eiiiiiiiiiieiiiiie et 663
C.2 Execution Model for Multiply-Add Type INStIUCHIONSccveeeiiiiiiiiiieeeeeee e e e e 665
C.3 Floating-PoiNt CONVEISIONSuuiiiiiiiii e e e e e eeee ettt s s e s e e e e e e e e e e e e e e e e e eeeaata e e s an e s e e eaeaeaaaaees 666
C.3.1 Conversion from Floating-Point Number to Floating-Point Integerc.cccceeeeiviiiiviviininns 666
C.3.2 Conversion from Floating-Point Number to Signed Fixed-Point Integer Double Word 667
C.3.3 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Double Word ... 667
C.3.4 Conversion from Floating-Point Number to Signed Fixed-Point Integer Word 667
C.3.5 Conversion from Floating-Point Number to Unsigned Fixed-Point Integer Word 668
C.3.6 Conversion from Signed Fixed-Point Integer Double Word to Floating-Point Number 668
C.3.7 Conversion from Unsigned Fixed-Point Integer Double Word to Floating-Point Number ... 669
C.3.8 Conversion from Signed Fixed-Point Integer Word to Floating-Point Number 669
C.3.9 Conversion from Unsigned Fixed-Point Integer Word to Floating-Point Number 669
C.4 Floating-POINt MOUEISoeveiiiiiiiiieiceee sttt e e e e e n e e aaeaaaaaaaaes 670
C.4.1 Floating-Point Round to Single-Precision Modelccccooeiiiiiieeerer e 670
pemTOC.fm.2.3

March 31, 2005 Page 9 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

C.4.2 Floating-Point Convert to Integer MOluuiiiiiiiiiii e 674
C.4.3 Floating-Point Convert from Integer MOlueiiiiiiiiiiii e 677
OR (o -V o B = o[o] BT =1 [=Tox 1o o 679
ORI O] g g o =T 7o 1 12 (o 174 =T o TSP 679
C.5.2 MiniMUM @Nd MaXIMUIMuuiiiiiiiiiieee ettt e e e e e e e e e s e e aabbbbbeeeeeeaaaeeeeeaaan 679
C.5.3 Simple If-Then-ElIse CONSIIUCLIONSuvvuiiiiiiiiiiiiiiie i e e e e eaeaeae s 680
OB (0] (=1 ST O PP P PP PPPPPPPN 680
C.6 Floating-Point Load INSIIUCLIONScccoiiiiiiec e e e e e e e e e e e e e e as 681
C.7 Floating-Point Store INSIIUCLIONSuuiiiiiiiiiieie et e e e e e e e e e e e e beeeeeeaeas 682
Appendix D. Synchronization Programming EXamplesccccccccoiiiiieeninniiiiiinnnn. 683

D.1 General INFOIMALIONcooiiiiiiiiii ettt e e e e e e e e s s bbb b e et e e e e e e e s e annbn eeeeaeeeseannn 683
D.2 Synchronization PHMILIVESeeiiiiiiiiii et e et e e e e e e e e e e rababe eeeeaeeaans 684
D R = (ol g 1= T (o [A [0 O o PP TSP PR 684

D A = (ol g 1= g (o [0S o] = TP PP 684
D.2.3 FtCh @nd Add ... oottt e e e e e e et e e e e e e e e e e e nnanae e 684
D.2.4 FEtCh @nd ANDttt e e e e e et e e e e e e e e e e e b e e e e e aa e e nrneeees 685
D.2.5 TOSE ANU SO ..oiiiiiiiiiite ettt oottt e e e e e e e s e e ettt e e e aa e e e e e e nnrnnaeeee sannnreees 685

D.3 COMPAIE AN SWAD ..eeiiiieiiiiiiiiitieiit it e e e e e ettt e et e e aa e e e e e s e saeebee et aeaaaeaeaaaaasnbeeeeeaeaaaaesaaaannnt eaeaaseaanns 685
D.4 Lock ACQUISItION @Nd REIEASEcoiuiiiiiii ittt e s e e 686
D.4.1 Lock Acquisition and IMPOrt BArTIEISc.uuiiiiiiiiiiiieiiiiiiee et 686
D.4.1.1 Acquire Lock and Import Shared MEmOTYcooiiiiiiiiiiiiiiiiee e 686
D.4.1.2 Obtain Pointer and Import Shared MEMOIYccccvviiiiiiiieeee e e e 687

D.4.2 Lock Release and EXPOIt BAITIEISuuuiieiiiiiieeeeeiiiiiciiirieeeee et e e e e e e s s s ssineaasereeeaaeeeesensnannnnes 687
D.4.2.1 Export Shared Memory and Release LOCKcccccuviiiiiiiiiiee s 687
D.4.2.2 Export Shared Memory and Release Lock using EIEIO or LYSYNCccccccvvvveeeen. 688

D.4.3 SAFE FEICH .o e 688

DR I [TS 5 (o o PRSP 689
(DG N (o] (= S PP PP PPPPPPPPPPPPPRPTPN 689

Appendix E. Simplified MNEMONICSuuvuiiiiiiiiiiiee e e e e e e e 691

S S V0 o T SRR 691
E.2 Simplified Mnemonics for Subtract INSIrUCLIONScccooeiiiii i e e ee e 692
E.2.1 SUuBLraCt IMMEMIALEeeiiiiiieiii ettt e e e e e e e s bbb e e e ee e e e e aene e 692
E.2.2 SUDLIACT ...ttt et e e e e s e s e bbbttt e e e e e e e e e aabnbbe £ e e e annnree e 692

E.3 Simplified Mnemonics for Compare INSITUCHONScooiiiiiiiiiiiiiie e 692
E.3.1 Double-Word COMPATISONSocciiiiiiiiieiea ettt e e e e e e ettt e e e e e e e e e s e e annbbeeeeeeaaaeaeaaaannns 692

SRS B2 ViV o] (o I @F0]0] o =T <To] o <O PEPP PR 693

E.4 Simplified Mnemonics for Rotate and Shift INStrUCHIONSoooiiiiiiiiii e 693
E.4.1 Operations 0n DoUbBIE WOIAS ...t a e e e 694
E.4.2 OpErations 0N WOITSoooiiiiiiiiiii ettt e e et e e e e e e e e e e e e eannbeeeeeeeaaaeeeaaan seeeee 695

E.5 Simplified Mnemonics for Branch INSIFUCIONSeeiiiiiiiiiiieiiiiiiee et 696
T = 1 2= T To I = = o R RS 696
E.5.2 BasiC Branch MNEMONICScoiiieiiiiiiiiiiiie et e et e e e e e e e e e s s s sttt e e e e e e aeeeeeesannnnnes 696
E.5.3 Branch Mnemonics Incorporating ConditioNScuueeiiiiiiiiiieiiiiiee e 700
E.5.4 Branch PrediClionoooiiiiooiiiiiiieir et s et e e e e e e e e s s e e e eeeeaee e nennneees 704
E.5.4.1 Examples of Branch PrediCtion ... 704

E.6 Simplified Mnemonics for Condition Register Logical INStruCtionscccccveveeeviiviiiciiiinieeeneeeenn, 704
E.7 Simplified Mnemonics for Trap INSIIUCHIONScuviiieieiiiiiiiciiiie e e e e e e e e e e e s ennne s 705
E.8 Simplified Mnemonics for Special-Purpose RegIStErScoooviiiiiiiiiiiiiiiere e, 707
pemTOC.fm.2.3

Page 10 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

E.9 Recommended Simplified MNEMONICSuuuiiiiiiiiiii it e e e e e e e e e e e eeeeeeaeaaenns 708
[T I\ o @ I (o] o) I 708
[T2 o = (o I T a1 To L= (= () I 708
e TG I o = (o I Yo [0 [=TT (=) R 708
e IR |V [o)Y =T Lo 1] (T (2 1 I 709
E.9.5 Complement REQISIEN (NOL)ueueiiiiiiiiiie et aea e e e aaeaaas 709
E.9.6 Move to/from Condition Register (MtCr/mfCr) ..o 709
Appendix F. Glossary of Terms and Abbreviationsccccoevvviiiiiiiiiieee e, 711

Revision Log

pemTOC.fm.2.3
March 31, 2005

Page 11 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

THIS PAGE INTENTIONALLY LEFT BLANK

Page 12 of 721

pemTOC.fm.2.3
March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

List of Tables

Table i. Acronyms and ADDIeviated TEIMSoiiiiiiiiie e e e e e e e e neneas 28
Table ii. Terminology CONVENLIONS eiiiiiiiiiiii ittt ettt et e e e e e e s e e s babbb bt e e e e aaaaaeae s e annnbeeneees 30
Table iii. INstruction Field CONVENTIONSciiiiiiiiiiie e e e e e e e nnnes 30
Table 2-1. Bit Settings for CRO Field Of CRcoiiiiiiiiiiice e 50
Table 2-2. Bit Settings for CR1 Field Of CR ...t 50
Table 2-3. CRn Field Bit Settings for Compare INSIIUCLIONSccooiiiiiiiiiiiiiiiie e 51
Table 2-4. FPSCR Bit SEIINGSeeeeiiiiiiiieitiiiii ettt ettt e e ettt e et e e s aaebe e e e s anbee sasnbaeeesannneeas 52
Table 2-5. Floating-Point Result FIags iN FPSCR ... 54
Table 2-6. XER Bit DEfiNItIONScc.uuiiiiiiiiiieee et e e e e e s e s s e e e e e e e e e assnan seeaeeeseennsnnreees 55
Table 2-7. MSR Bit SEIINGSueiiiiiiiiiiiiie ittt ettt e e st e e e e s bbb et e e s bbb e et e s aane £eeaanbneeesannneeas 65
Table 2-8. Floating-Point EXCeption MOAE BILScccoieiiiiiiiiiieeeeeirs e e 67
Table 2-9. State 0f MSR @t POWET UDcoiiiiiiiiiiiit ettt et e e st e e e e 67
Table 2-10. BAT Registers—Field and Bit DeSCIPLONScccuuuiiiiiiiiiaieeeee e 69
Table 2-11. BAT Area LENQGLNS ..ot e e e e e e e e e e e e et e e e e e e e te b et s e e aeaeaaaaaas 70
Table 2-12. SDR1 Bit Settings—64-Bit IMPleMENAtiONSooiiiiiiiiiiii e 71
Table 2-13. SDR1 Bit Settings—32-Bit IMPleMENtatioNScooiiiiiiiiiiiiiiie e 72
Table 2-15. ASR Bit SettingsS——64-Bit Bridgeccooeiiiiiiieeeeerrs e 73
Table 2-14. ASR Bit SEIINGSveeiieiiiiiiie ittt ettt e e s et e e s s abb et e e s aabe £eesnnbneeesannneeas 73
Table 2-16. Segment RegiSter Bit SELHNQSooooeiiiiiiiiiieie e e e e e e e e eeeeas 74
Table 2-17. Conventional Uses of SPRGO-SPRG3ooiiiiiiieiiiiie e 75
Table 2-18. DABR—BIt SEIINGSccciuttiitiiiiii ettt e st bt e e s et b e e e s aabeee sebreeeeeanenees 80
Table 2-19. External Access Register (EAR)—BIt SELHNGSc..vvuiiiiiiiiieaaaie i 81
Table 2-20. Data ACCESS SYNCHIONIZALIONcc.uvuiiiiiiiiiee e e e e e e e s r e e e e e e s e e s s rnrrnrrnaeeees 83
Table 2-21. Instruction ACCESS SYNCNIOMIZALIONoiiiiiiiiiiiiiiiiie e e e 84
Table 3-1. Memory Operand AlIGNMENT ... e e e e e e e e e e e s e e e aabebbbebeeeeeeas 87
Table 3-2. Little Endian Effective Address Modifications for Individual Aligned Scalarsccccccvvvveneeen. 92
Table 3-3. Performance Effects of Memory Operand Placement, Big-Endian Modeccccoocciiieeinnnn. 97
Table 3-4. Performance Effects of Memory Operand Placement, Little-Endian Modeccccceeeiieienennn. 98
Table 3-5. IEEE FIoating-PoOiNt FIEIASccviiiiiiiii et e e e e ar e e e e e e e e e s e e snnnnes 101
Table 3-6. Biased EXPONENT FOMMALoouiiiiiiiiiiie ettt ettt e e e et e e s aan e e e e e annneas 102
Table 3-7. Recognized FIoating-Point NUMDEISccooiiiiiii s e e e 103
Table 3-8. FPSCR Bit SettingS—RN FIeltuuiiiiiiiiee e e e e e err e e e e e e e e snrenes 109
Table 3-9. FPSCR Bit SEIINGS ...eeeiiiiitiiiieiiiiie ettt et et e e e e e e e e et et e e e e nbe e sbbeeeeeannneeas 112
Table 3-10. Floating-Point Result Flags — FPSCR[FPRF]coviiiiiiieereen e 114
Table 3-11. MSR[FEOQ] and MSR[FE1] Bit Settings for FP EXCEPLIONSc..uevviiiiiiiiiiiiiiice e 116
Table 3-12. Additional Actions Performed for Invalid FP Operationsccccouiuiiiieiiiiieiieiiieee e 120
Table 3-13. Additional Actions Performed for Zero DIVIAEcoccvviriiiiiiiie e 121
Table 3-14. Additional Actions Performed for Overflow Exception Conditioncccceeviiiieeeiiiiiieeeennns 123
pemLOT.fm.2.3 List of Tables

March 31, 2005 Page 13 of 721

Programming Environments Manual

PowerPC R

Table 3-15
Table 3-16
Table 4-1.
Table 4-2.
Table 4-3.
Table 4-4.
Table 4-5.
Table 4-6.
Table 4-7.
Table 4-8.
Table 4-9.
Table 4-10
Table 4-11
Table 4-12
Table 4-13
Table 4-14
Table 4-15
Table 4-16
Table 4-17
Table 4-18
Table 4-19
Table 4-20
Table 4-21
Table 4-22
Table 4-23
Table 4-24
Table 4-25
Table 4-26
Table 4-27
Table 4-28
Table 4-29
Table 4-30
Table 4-31
Table 4-32
Table 4-33
Table 4-34
Table 4-35
Table 4-36
Table 4-37

List of Tables

ISC Microprocessor Family
. Target Result for Overflow Exception Disabled Casecccceevviiieeeeeiiiiiiccccr e, 123
. Actions Performed for Underflow ConditioNSoocueiiiiiiiiiiiiiiiiic e 124
Integer ArithmEtiC INSITUCHIONSuiiiiiiiiiii e e e e e e e e as 137
Integer Compare INSITUCHIONSooiiiiiieeeeee s e e e e e e e e et s e s e e e e e e e aeeeseanesnnenes 142
Integer LOGICal INSIIUCHIONSveiiiiiiiiiiie ettt e e e e snnnee s 143
Integer ROtate INSIIUCTIONS ...t e e e e e e e e eeeeaaaeeeas 146
INnteger Shift INSITUCTIONScoiiii e e s s e s e e e e aaaaaaaeeeeeeeeeeeeeannenes 148
Floating-Point ArithmetiC INSIIUCHIONSocuuviiiiiiiiiiii e e 150
Floating-Point Multiply-Add INSIFUCLIONSoooiiiiiieeeee e 152
Floating-Point Rounding and Conversion INSrUCHIONScccvvvviiiiiieeee e e 154
CR BIE SEHINGS .vtieieiiiiiitee ittt e e ettt e e e st bt e e e s sa b bt e e e e abe e e e e e e e e aabbeeeeeenrees 155
. Floating-Point Compare INSIFUCLIONScoviiiiiiiiiiiii e e e e e e e e e e aanens 155
. Floating-Point Status and Control Register INStrUCtIONScevviiiiieeeiiiiiiiieereeee e 156
. Floating-Point MOVE INSIIUCHIONSoiiiiiiiiiiee ittt 157
INnteger Load INSIIUCLIONSciiiiiie i s e e e e e e e e e e e e e e e e e e eeeeee seeeeaeeaanenes 161
. INteger StOre INSIIUCHIONScooieieieeeeeee e e e s e e e e e e e e e s e s s n e e eeaeeees 163
. Integer Load and Store with Byte-Reverse INStruCtionSccccccveiiiiiiiiie i 165
. Integer Load and Store Multiple INStFUCLIONSuuuuiiiiiiiiii e e 166
. Integer Load and Store String INSIIUCHIONSuuviiiiiiiiiiie e 167
. Floating-Point Load INSTIUCHIONSuiiiiiiiiiiiieeitieee ettt 169
. Floating-Point Store INSIUCLIONSooviiiiiiiieiiicces e e e e e e et s e e e s e e e e e e e eeaeeaaneens 170
. BO Operand ENCOINGS ...coooiiiiiiiieiiiiiiie ettt ettt e e st e e s s e e e e s nnneeees 177
fa” and ‘1" Bits 0f the BO FIEldvvveiiiiiiiiiee e 177
B =1 o =Y o =g oo o [o =PRI 178
B =T - g o] 1 1 o 1o PR 180
. Condition Register Logical INSITUCHIONSccooiiiiiiiiiiiiiieie sttt 181
B = o 0 [1 (U Tod T PRSP 182
. System Linkage INStrUCtION—UISA ..o e 182
. Move to/from Condition Register INSITUCHONSooiiiiiiiiiiiie e 183
. Move to/from Special-Purpose Register Instructions (UISA) ..., 183
. Memory Synchronization INStruCtioNS—UISAcooiiiiiiiiii e 185
. Move from Time Base INSIIUCLIONcooiiiiiiiiiiiiiiiiit et e e e e e e e e e e e 187
. User-Level TBR ENCOAINGS (VEA) ...oeviiiiiiiiiiiie ettt s e s e e e e e e e e e aaaaeeeneeesnnnnns 187
. Supervisor-Level TBR ENCOAINGS (VEA)uiiiiiiiiieie ettt ettt 188
. Memory Synchronization INStrUCtIONS—VEAoooi i 188
. User-Level Cache INSIIUCHIONSouuiiiiiiiiiiiiee ettt e e nanee s 190
. External Control INSIFUCLIONSuiiiiiiiiiee ettt e e e e e e e s st eeeeeaaeeeas 193
. System Linkage INStruCtONS—OEAoooiiiiiiie et e e e e e e e e e 195
. Move to/from Machine State Register INStrUCIONSccccvviieiiiiieeee e 197
pemLOT.fm.2.3

Page 14 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 4-38. Move to/from Special-Purpose Register Instructions (OEA)ooovvviiiiiiiiiiiiiiiiiiinen e 198
Table 4-39. Cache Management Supervisor-Level INStrUCHIONoooiiiiiiiiiiiirieee e 199
Table 4-40. Segment Register Manipulation INSrUCHIONSuuiiiiiiiiiiaiii e 199
Table 4-41. Translation Lookaside Buffer Management INSrUCLIONSooovviviiiiiiiiiiiiiiiiii e 201
Table 5-1. Combinations Of W, [, @Nd M BItScciceuuiiiiiiiiiiei et e e e e e e e et s e e s ee b e e e e e eaaaanss 215
Table 6-1. PowerPC Exception ClasSifiCAtiONSc...uuiiiiiiiiiiiaeiii et e e e e e e reneeees 220
Table 6-2. Exceptions and ConditioNS—OVEIVIEWcccoiiiiiiiiieeiiii s e e e e e e e e e e s 220
Table 6-3. IEEE Floating-Point Program Exception Mode BitScccccccoiiiiiiiiiiiiiiiie e 226
Table 6-4. EXCEPLON PIIOILIESuuiiiiiiiiiieii ittt et e e e e e e e s bbbttt e e e e e e s e e s e aababs teaeaeeesassannnnes 228
Table 6-5. MSR Bit SEHINGSciicciiiiiiiiiiee s e e e e s s s e e e eee e e s s st teaareeaeeesesaaassnten seaeeeessesnnnnnns 231
Table 6-6. MSR Setting DUE t0 EXCEPLIONuiiiiiiiiiiii ittt 235
Table 6-7. System Reset Exception—Register SEtiNGSccoovviiiiiiiiiiiiees e 236
Table 6-8. Machine Check Exception—RegiSter SEttiNgSccccuvviiiiiiiieie e 238
Table 6-9. DSI EXCeption—REGISIEr SELHNTSooiiiiiiiiiiiiie e 240
Table 6-10. Data Segment Exception—Register Settingsccoviiiiiiiiiiiiieccrr e, 241
Table 6-11. ISI EXCeptioN—REQIStEr SEHINGS ...icccveririiiiiieie e e iirre e e e e e e s e s rreraeaeeeesesannnnnrenes 242
Table 6-12. Instruction Segment Exception—Register SEttNgScveviiiiiiiiiiiie e 243
Table 6-13. External Interrupt—RegiSter SENGScooeeeeeiieieeeeeeee e 244
Table 6-14. Alignment EXception—RegiSter SEtHNGScieiiiiiiiieiiiiie e 245
Table 6-15. DSISR(15-21) Settings to Determine Misaligned INStructionccccccceeeiiiiiiiciiiiiiiieeeneeenn. 248
Table 6-16. Program EXception—RegiSter SElNGScccooiiiiiiiiieeeeeeirrs e e e e e e s 251
Table 6-17. Floating-Point Unavailable Exception—Register Settingsccccovcveeieeiiiiieieiiniieiee e 252
Table 6-18. Decrementer Exception—RegiSter SEttiNgSccuuviiiiiiiiiiieiiie e 253
Table 6-19. System Call Exception—RegiSter SEtHNQScooiiiiiiiiiiiiiie e e e e 254
Table 6-20. Trace EXCeption—REQISIEr SEHNGSviiiiiiiiiiieiiiiie e 255
Table 7-1. MMU FEATUIES SUMMIBIYoiiiiiiiiiie ettt ettt e ettt e e et b e e e et et e e e et e e e e e s e anb e e e e e anrneas 259
Table 7-2. Predefined Physical MEmOry LOCAtIONScoooiiiiiiiiiiiiiiiiiiss s e e e e e e e e e e e e e e e e e eeeaaaaae s 262
Table 7-3. Access Protection OptioNS fOr PAOESooiiiiiiiiiiiiee et s 268
Table 7-4. Translation EXception CONGITIONSuuuiiiiiiiiiiieea i e e e e e e e e e e e e e e s aeneenes 275
Table 7-5. Other MMU EXCeption CONILIONSuuuuiiiiiiei e s e e e e e e e e e e e e e e e e e e e srnranan e eeeas 276
Table 7-6. Instruction SUMMAry—CoNtrol MIMUcooiiiiiiiiiiiie e e 277
Table 7-7. MIMU REQISLEIS ...ttt ettt e e e e e ettt e et e e ee e e e e s e s abbbbeeeeaaaeeaseaaabbbbes taaaeaesaeaaannrnes 278
Table 7-8. BAT Registers—Field and Bit Descriptions for 32-Bit Implementationsccccccccceeeiieeeeennn. 285
Table 7-9. Upper BAT Register Block Size Mask ENCOAINGSccooiiiiiiiiiiiiiiiiee e 286
Table 7-10. Access Protection Control for BIOCKSooiiiiiiiiii s 287
Table 7-11. Access Protection Summary for BAT AITAYcccccvviiiiiiiieeee et e e e e e e s seanvnaneeeeaaae s 287
Table 7-12. SLB Entry Bit Description — 64-bit Implementationsccccouviiiiiiiie e 294
Table 7-13. Segment Register Bit Definition for Page Address Translation—32-Bit Implementations 296
Table 7-14. Segment Register Instructions—32-Bit Implementationscccccvcveeeeeeeei s, 296
pemLOT.fm.2.3 List of Tables

March 31, 2005 Page 15 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 7-15. PTE Bit Definitions—64-Bit Implementationscooiiiiiiiiccre e 298
Table 7-16. PTE Bit Definitions—32-Bit IMPIEMENLAtIONScuviiiiiiieieeeiis e 299
Table 7-17. Table Search Operations to Update HiStory BitS ... 300
Table 7-18. Model for Guaranteed R and C Bit SEettiNgSccooiiiiiiiiiiiiicccrr e 302
Table 7-19. Access Protection Control With KEYcooiiiiiiiiii e 304
Table 7-20. Exception Conditions for Key and PP Combinationsccccuiiiiiiiiiiiiiiiiiiiieeeee e 304
Table 7-21. Access Protection Encoding of PP Bits for Ks=0and Kp = 1ccoceiiiiiiiiiiiiiiiiiie, 305
Table 7-22. SDR1 Register Bit Settings—64-Bit Implementationscccccviiiiiieieee e 310
Table 7-23. SDR1 Register Bit Settings—32-Bit Implementationscccccuiiiiiiiiiiii e 311
Table 7-24. Minimum Recommended Page Table Sizes—64-Bit Implementationscccccevvvvviiiieennnn. 313
Table 7-25. Minimum Recommended Page Table Sizes—32-Bit Implementationscccccoevciiveennnnee 314
Table 7-26. Contents of rD after EXeCULINg MFSI ... 340
Table 7-27. Contents of rD after Executing mtsr, mtsrd , or mtsrdin ... 341
Table 7-28. SLB Entry selected DY SR ..o e 342
Table 7-29. SLB Entry selected by bitS [32-35] OF IBuuiiiiiiiiiii e 343
Table 8-1. Split-Field Notation and CONVENLIONSccceeiiiiiiiiiiiiiieeee e e e e e e e s ss s e e e e e e e e e e s s s s sanenraeeesrneeees 346
Table 8-2. INStruction SYNtax CONVENTIONSccoiiiiiiiiiiiiiiiie ettt e st e e s s ibbe e e e e sneees 346
Table 8-3. Notation and CONVENTIONSciiiiiiiieiiiiii et e s e s e e e s e e e e e e annes 349
Table 8-4. Instruction Field CONVENLIONScuiiiiiiiirie et 351
LI o Lo S BT o =T ot Yo [T Lo N U 1= 351
Table 8-6. ENcodings of the TH FIEldouuuiiiiiiii s e e e s 388
Table 8-7. freS OPErand VAIUESeuiiiiiieiiiiiiiiiiiiiie e e e e e s s e st e e e e e e e e s s s st rreeaeeessssassntaneereeaeeeeeannnn os 430
Table 8-8. frsqrte OPErand VAIUESooiiiiiiiieiiiiiii ettt et e e e st e e e st b e e e e e s sabneeeenaas 433
Table 8-9. frsqrt with Special Operand ValUES ... e e e e e e e e e e 436
Table 8-10. frsqrts with Special Operand VAlIUEScccuuiiiiiiiiiiiee e 437
Table 8-11. PowerPC UISA SPR Encodings for MISPIueiiiiiiiiiii e 489
Table 8-12. PowerPC OEA SPR ENncodings for MISProooiiiii i 490
Table 8-13. GPR Content Format FOIHOWING MFSIooiiiiiii e 492
Table 8-14. GPR Content Format FOIOWING MTSIIN coiiiiiiiiiiiii e 495
Table 8-15. TBR Encodings for Mfth ... e e e e e e e e e e e e e e e e e e e aaaaaans 496
Table 8-16. PowerPC UISA SPR ENcodings fOr MESPIoveiiiiiiiiiiic it 507
Table 8-17. PowerPC OEA SPR ENcodings fOr MESPIuuiiiiiiiiiiiie it 508
Table 8-18. SLB ENtry FOIOWING MUESEccoiiiieciicee s s s s s s e s e e e e e e e e e e e aeaaeeeeeeeeeeeseassesennnes 511
Table 8-19. SLB Entry FOHOWING MUESIA ooiiiiiiiiiiiiiiiii ettt 512
Table 8-20. SLB Entry folloWing MESIAIN oooiiiiiiiie e e e eeaa e 513
Table 8-21. SLB Entry FOIOWING MUESHIN cccoei i s s e s e e e e e e e e e e e aeaeaeeaeeeeeeeeasesennnes 514
Table A-1. Complete Instruction List Sorted by MNeMONICoeviiiiiiiiii e 609
Table A-2. Complete Instruction List Sorted by MNEMONICoooiiiiiiiiiiicrcr e 617
Table A-3. Complete Instruction List Sorted by OpCOAeccuuiiiiiiiiiiii e 618
List of Tables pemLOT.fm.2.3

Page 16 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

Table A-4. Integer ArithmetiC INSITUCHIONSvuuiiiiicce e e e e e e e eaeeas 626
Table A-5. Integer Compare INSIIUCTIONScooiiiiiiieiiiiiie ettt e e e e st e e e e e nnnneas 627
Table A-6. Integer LOgIiCal INSITUCLIONSuuuuieiiiiiiiiiiei i s e s e e e e e e s e s e e e e e e e e aeeas 627
Table A-7. Integer ROAte INSIIUCLIONSooituiiiiiiiiiie ettt e et e e e e e nnnaeas 628
Table A-8. Integer Shift INSIIUCLIONSovviiiiiiiiree e ra s e e e e e eaeeas 628
Table A-9. Floating-Point Arithmetic INSIUCLIONScoiiiiiiiiiiii e e 629
Table A-10. Floating-Point Multiply-Add INStIUCLIONSccooiiiiiiieeeee e s 629
Table A-11. Floating-Point Rounding and Conversion INSIIUCLIONScuuviieiiiiiiieeiiiee e 630
Table A-12. Floating-Point Compare INSTIUCLIONSccccooiiiiiiiiieceeeeeeee s e e e e e e e e e e e 630
Table A-13. Floating-Point Status and Control Register INStruCtioNSoviiiiiiiieiiiiiee e 630
Table A-14. Integer LOAd INSITUCHIONSuuuiieiiiiiii it et e e e e e aeaaaas 631
Table A-15. Integer StOre INSIIUCTIONScoiuiiiie ittt e et e e st e e e e e nnnneas 632
Table A-16. Integer Load and Store with Byte Reverse INStrUCtiONScooovviiiiiiiiiiiiiiicrcie e 632
Table A-17. Integer Load and Store Multiple INSTIUCHIONScooiiiiiiiiiiiiii e 632
Table A-18. Integer Load and Store String INSIIUCLIONScccooieiiiiiiieeceeeee e e s 633
Table A-19. Memory Synchronization INSIFUCLIONSc.ueiiiiiiiiiiieiiiie e 633
Table A-20. Floating-Point LOad INSITUCHIONSuuuuiiiiiiii e as 633
Table A-21. Floating-Point STOre INSIIUCHIONSvviiiiiiiiiiie et 634
Table A-22. Floating-Point MOVE INSLIUCLIONSccoiiiiiiii eeas 634
Table A-23. BranCh INSIFUCLIONSuiiiiiiiiiiiiiiiie ettt e e e e e s e e e e e e e e e s s s sannberaeees 2eeeeseesnnnenes 634
Table A-24. Condition Register Logical INSIIUCLIONSccooiiiiiiiieeeccr e s 635
Table A-25. System LinKage INSIIUCTIONScooiiiiiiiiiiiiiiie ettt 635
Table A-26. Trap INSIIUCLIONSciiiiiiiiiieeeie s e e e s e e e e e e e e e aeae e et eeeaeaeaeaeaeeeeerensasnnaaan s asaaaeeeaeens 635
Table A-27. Processor CONtrol INSIUCHIONSuuuiiiiiiiieeeie ittt e e e e e e s s r e e e e e e s e senanbeeeeeeeees seennrenes 636
Table A-28. Cache Management INSITUCLIONScccoiiiiiii i e e e e e e e e 636
Table A-29. Segment Register Manipulation INSIIUCHIONScooiiiiiiiii e 637
Table A-30. Lookaside Buffer Management INSIFUCLIONScooiviiiiiiiiiiiiiiiiies e e e 637
Table A-31. External Control INSLIUCLIONScooiiiiiiiiiieeie it e e e e e s er e e e e e e e e e s e e snneenes 637
Lo Lo - B o] 1 o I PP PPPPUPPTPRN 638
LI o Lo e 1 T T o T o P PPERRPRR 638
TADIE A-34. SC-FOIM .ottt et e e e e e e b bbb ettt et e e e e ee s e ab bbbt b et e e e e e e e e s aaannn teeaaaaeesaesannnenes 638
LI o Lo e LT I T o o o PRSPPI 639
TADIE A-36. DS-FOM ...eeiiiiiiiie ittt e e e e e e e b ettt et e e e e e s e b e bbb bt e e e e e e e e e s aaaann teeaaaaeesaeaaanrnns 640
LI Lo Lo e A o o P PPERUPRR 641
TaADIE A-38. XL-FOIM .ottt e e ettt et e e e e e e o s s e b e e et e e e aeeeeeeaaaabn teeeeaaeeesaeaannnrnes 646
TaADIE A-39. XFX-FOIMN oottt ettt e e e e e e s e e et b ettt eeaeeeess s s teebeeeeeeaeeesesaaasssbs saaaaeeesessnnsnnes 647
TaBIE A-40. XFL-FOIM ..ottt oo e ettt e e e e e e s e s e bbbt be e et e eaeeeseaaabbes teeeeaeeesaesannrnes 647
QLI o Lo S T o o P PPURRPRR 647
TADIE A-42. XO-FOIM oottt e e oo oottt et e e e e e e s e ab b be b et e et e e e e e e s aaaann teeeeaaeesaesannrnns 648
LI o Lo R T A e T o PP PPURRPRR 649
TADIE A-A4. M-FOIMN ..ottt ettt e e e e e e e e et bbb ettt e e e e e e ae s e a b b be b et e e eeeeeeeaaabn teeeeaaaeesaeaannnnes 650
pemLOT.fm.2.3 List of Tables

March 31, 2005

Page 17 of 721

Programmin

g Environments Manual

PowerPC RISC Microprocessor Family
TaDIE A-45. MD-FOIMN .ottt e oo oo b bttt e et e e e e e e s e s bbbt e e et e e eeaeaeesa b abbes 2eeee e s nnanrrneeeas 650
LI o Lo A LT Y 1 1 T o o o RSO 650
Table A-47. POWerPC INStruction St LEGENdiiiiiiii i e e e e e e e e s 651
Table B-1. Multiple-Precision Shifts (64-bit Mode vs. 32-bit MOAE)coccuviiiiiiiiiiiie e 660
Table C-1. Interpretation of G, R, @nd X BitSccciiiiiiiiiiic et 663
Table C-2. Location of the Guard, Round, and Sticky Bits—IEEE Execution Modelcccccvveeennnn.n. 664
Table C-3. Location of the Guard, Round, and Sticky Bits—Multiply-Add Execution Model 665
Table C-4. COMPAIISON 10 ZEIO ...eeiiiiiiiieie ittt ettt et e e s s bt e e s st bt e e s e bbb e e e e s aabbe e e e e abbreeeeeannees 679
Table C-5. Minimum and MaXIMUIMoooiiiiiiiie ittt r e e e e e e e bbb e e et e aeeesssaaebabeeeeeeaeeas e anrrnneees 679
Table C-6. SIMPIE If-TREN-EISE ...t e e enns 680
Table E-1. Condition Register Bit and Identification Symbol DescCriptionsouvvviiiiiiiiiiiiiieeeeeeeeeee, 691
Table E-2. Simplified Mnemonics for Double-Word Compare INStructionscccocvveieeiiiieie e 692
Table E-3. Simplified Mnemonics for Word Compare INStrUCIONSooviviiiiiiiiiiiiicccee e 693
Table E-4. Double-Word Rotate and Shift INSTTUCLIONSuuiiiiiiiiiiiee e 694
Table E-5. Word Rotate and Shift INSIFUCLIONSeiiiiiiiiiiiiieee e 695
Table E-6. Simplified Branch MNEMONICScoiiiiiiiiiiiiiiii et ienes 697
Table E-7. Simplified Branch Mnemonics for bc and bca Instructions without Link Register Update 698
Table E-8. Simplified Branch Mnemonics for bclr and bcclr Instructions without Link Register Update ...698
Table E-9. Simplified Branch Mnemonics for bcl and bcla Instructions with Link Register Update 699
Table E-10. Simplified Branch Mnemonics for bclrl and bectrl Instructions with Link Register Update699
Table E-11. Standard Coding for Branch CONItiONScoooiiiiiiiiiieeerrs e 700
Table E-12. Simplified Branch Mnemonics with Comparison Conditionscccooviiiieieiiiiieeee e 700
Table E-13. Simplified Branch Mnemonics for bc and bca Instructions without Comparison Conditions and
[T] Q=T o T (=T g o T =] o N 701
Table E-14. Simplified Branch Mnemonics for bclr and bectr Instructions without Comparison Conditions and
LiNK REQISEr UPALINGovveeieeiiiiiiee ettt ettt ettt e et eesnbb e e e s annbe e e e 702
Table E-15. Simplified Branch Mnemonics for bcl and bcla Instructions with Comparison Conditions and Link
[LT[E5] (= gL oo = < 703
Table E-16. Simplified Branch Mnemonics for bclrl and bectl Instructions with Comparison Conditions and
LiNK REQISIEr UPAALEeeeiiiiiiiie ittt e e e e e st er e e e e e e s e e s e st aeeeeeaeeeee e eeees 703
Table E-17. Condition Register Logical MNEMONICScooiiiiiiiiiiiiiiieeiee e 704
Table E-18. Standard Codes for Trap INSrUCHIONScoeeiiiiiiiiieee e e e e eeeees 705
Table E-19. Trap MNEIMONICSuuiiiiiiieeaie ittt ettt a e e e e e ettt et e e e e e e e s o e ba bbb ettt eeaaeeesaaasnnbesbeeeeeae seaaasnnbrenees 706
LI o] L3 =594 0 M W@ I @] o =1 = U o 8 =1 af =t o To 1o SO 707
Table E-21. Simplified MNemMONICS fOr SPRSuuuiiiiiii i 707
List of Tables pemLOT.fm.2.3

Page 18 of 721 March 31, 2005

PowerPC RISC Microprocessor Family

List of Figures

Figure 1-1. Programming Model—PoWEerPC REQISIEIScoiuuiiiiiiiiiie ittt 37
Figure 1-2. Big-Endian Byte and Bit Orderingoooiiiiiiiiiiiiiiie e e e e e e e aa e e e 38
Figure 2-1. UISA Programming Model—User-Level REJISErSccccciiiieiiiiieeeii i e e 46
Figure 2-2. General-Purpose ReQIStEIS (GPRS)cciiiiiiiiiiiiiiiie ettt ettt e e e e sib e ee e e 48
Figure 2-3. Floating-Point REQISIErS (FPRS)cciiiiiiiiiie ettt e e e e e e e e 49
Figure 2-4. Condition REGISLEN (CR) ...ciiiiiiiiiiiiiiee ettt e ettt e e st e e e sttt e e e sanbe e e e e e sabs seesssbneeeesanes 49
Figure 2-5. Floating-Point Status and Control Register (FPSCR)occuiiiiiiiiiiiieeiiee e 52
Figure 2-6. XER Register—64-Bit IMPIEMENTALIONSuuiiiiiiiiiiiaiii e 54
Figure 2-7. LINK REGISEN (LR) ...ueiiiiiiiiiiee ettt ettt e et bt e e s sttt e e e e et e e e e nnbae e e s eneee 55
Figure 2-8. CoUNt REGISIEN (CTR) ...uiiiiiiiiiiee ittt ettt ettt e et e e e st bt e e e s ke e e e e s abbe e e e e aant eeesanbneeeesaans 56
Figure 2-9. VEA Programming Model—User-Level Registers Plus Time Basecccccccccciiiiiiiiiiinieieeeeeenn, 58
Figure 2-10. TiMe BASE (TB) ..iiiiiiiiiiieiiiiiie ettt e e et e et e e e st bt e e e s e bt e e e e nbr e e e e e teeeeannbaeeeeennee 59
Figure 2-11. OEA Programming Model—All REQISIEISoiiiiiiiiiiiiiiiie et a e 62
Figure 2-12. Machine State Register (MSR)—64-Bit Implementationscccccoevviieieeeeiiiiiieceeee, 64
Figure 2-13. Processor Version REGIStEr (PVR)c.oiiiiiiiiiiiiiie ittt st e e 68
Figure 2-14. Upper BAT Register—32-Bit IMplementationsc..uueeiiiiiiiiiniiiieeeee e 68
Figure 2-15. Lower BAT Register—32-Bit IMplementationscccoeeiiiiiiiie e 69
Figure 2-16. SDR1—64-Bit IMPIEMENTALIONSciiiiiiiiiiieiiiiii ettt e e s sbbeeee e e e 70
Figure 2-17. SDR1—32-Bit IMPIEMENTALIONScciiiiiiiiiiit e e e e e e e e e 72
Figure 2-18. Address Space Register (ASR)—64-Bit Implementations Onlyccoevvvvviviiiiicciccieee e, 72
Figure 2-19. Address Space Register (ASR)—64-Bit Bridgecoooiiiiiiiiiiiiiiiee e 73
Figure 2-20. Segment REGISIEr FOMMALiiiiiiiiiaii ittt e e e e s e e e e aaaaeaaaeas 74
Figure 2-21. Data Address ReGIStEr (DAR) ...cooiiiiieiii ittt e e e e e e e e e e e s e s st e e e e e e e aeaaaaaaaaen 75
Figure 2-22. SPRGO-SPRGS3 ... ittt ettt ettt te e st e e s bt e e e abe e e aabe e e sabeeaabbeeesabeeaans 2anbeeeanbeeaans 75
FIQUIE 2-23. DSISR ...ttt ettt skttt ea ket e et bt e s st e e e e kbt e e abe e e e be e e e be e nheeeanbeeenbeeeanneeen 76
Figure 2-24. Machine Status Save/Restore Register 0 (SRRO)cccccviiiiiiiiieee e 76
Figure 2-25. Machine Status Save/Restore Register 1 (SRRL)ooiiiiiiiiiiiiiiiiee e 77
Figure 2-26. Decrementer RegiSter (DEC)cooiiiiiiiiiecie st s e e e e e e e e aaaeaeaeaaes 78
Figure 2-27. Data Address Breakpoint Register (DABR)oooviiiiiiiiiiicee e 79
Figure 2-28. External ACCeSS REGISIEr (EAR)eiiiiiiiiiiiie ittt st e sbb e e e e aaes 81
Figure 3-1. C Program Example—Data SITUCLUIE Seuuiiiiiiiiiiiiis et e e e e ee e e e e e ee e eees 88
Figure 3-2. Big-Endian Mapping Of SITUCIUIE Suuiiiiiiiiie e e e e e e e s s e e e e e e e e e s e s annnrenneees
Figure 3-3. Little-Endian Mapping Of STIUCIUIE S ...t
Figure 3-4. Little-Endian Mapping of Structure S—Alernate VIEWooovviviiiiiiiiiiiiiiissesn e 91
Figure 3-5. Munged Little-Endian Structure Sas Seen by the Memory Subsystemcccccccceeiiiiieeeinine. 92
Figure 3-6. Munged Little-Endian Structure Sas Seen by ProCeSSOrc..ceieiiiiiiiiiiiiiiieee it 93
Figure 3-7. True Little-Endian Mapping, Word Stored at Address 05cccoeeveiiiiiiiiiiiiiieiiecee e 94
Figure 3-8. Word Stored at Little-Endian Address 05 as Seen by the Memory Subsystemcccveeeee. 95

Programming Environments Manual

pemLOF.fm.2.3
March 31, 2005

List of Figures
Page 19 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 3-9. Floating-Point Single-PrecCision FOrMALouuuiiiiiiiiiiiiie e e 101
Figure 3-10. Floating-Point Double-PreciSion FOIMALcuiviieioii i e e e e e e e e e 101
Figure 3-11. Approximation to Real NUMDEIScooiiiiiiiiiie e e e e e e 102
Figure 3-12. Format for Normalized NUMDEISooiriiiiiicc e 103
Figure 3-13. Format for ZEro NUMDEIScoiiuiiiiiiiiiiiee ettt et e e sttt e e e s nbbeeee e sabeeeeenes 104
Figure 3-14. Format for Denormalized NUMDEIS ... 104
Figure 3-15. Format for Positive and Negative INfINILIESovvviiiiiiiiiiiiiie e e 105
Figure 3-16. FOrmMat fOr NGNSueiiiiiiiiiiie ettt ettt e e sttt e e e s sttt e e e e an eeeesabbeeeeenaes 105
Figure 3-17. Representation of Generated QNANccuuiiiiiiiiiiiii e e e e e 106
Figure 3-18. Single-Precision Representation in @an FPRccooiiiiiiiiiiiiiiicccec e 108
Figure 3-19. Relation Of Z1 @Nnd Z2ooiiiiiiiiie ettt st e et eeeenabaeeee e 109
Figure 3-20. Selection of Z1 and Z2 for the Four Rounding MOAESccceviiiiiiiiiiieiiiiieeeeeee e 110
Figure 3-21. Rounding FIags iN FPSCRuuiiiiiiiiicii sttt e e e e e e e s e st rneeaeeeeaaeees 111
Figure 3-22. Floating-Point Status and Control Register (FPSCR)c..oviiiiiiiiiiiiiiie e 111
Figure 3-23. Initial Flow for Floating-Point Exception CoNditioNSuvvviviiiiiiiiiiie e 118
Figure 3-24. Checking of Remaining Floating-Point Exception Conditionsccccccccvverveeee v, 122
Figure 4-1. Register Indirect with Immediate Index Addressing for Integer Loads/Storescccceeeeene 158
Figure 4-2. Register Indirect with Index Addressing for Integer Loads/Storescccceeeeeevviiiivieeeeevininnnns 159
Figure 4-3. Register Indirect Addressing for Integer LoadS/SIOresoooiviiiiieeiiiiiiie e 160
Figure 4-4. Register Indirect (Contents) with Immediate Index Addressing for

Floating-Point LOAAS/SIOIESoiiiiiiiiiie ittt e e e e 168
Figure 4-5. Register Indirect with Index Addressing for Floating-Point Loads/Storescccccvvvvvvvevinnns 168
Figure 4-6. Branch Relative AAAreSSING ...c.cooiiiieiiiiiiiiee ettt e e e st ee s sebeeeeenes 172
Figure 4-7. Branch Conditional Relative AAAreSSINgocveiiiiiiiiiiiiiiiiee e 173
Figure 4-8. Branch to AbSOIUte AArESSINGueveiiiiieeeiiiiiiiiie e r e e e e e e e s st eerereaaaeeas 173
Figure 4-9. Branch Conditional to AbSolute AdAreSSINGccoeiiiiiiiiiiiiiiie e 174
Figure 4-10. Branch Conditional to Link Register AddreSSiNgccoiourrieeiiiiiiieeiniiiee et 175
Figure 4-11. Branch Conditional to Count Register AAAreSSIiNguuuueiiiiiiiieiiieeeeeeeeeeeeeeeeeve s 176
Figure 6-1. Machine Status Save/Restore REGISIEr Oocuviiiiiiiiiiiiieiiiiieee et 230
Figure 6-2. Machine Status Save/Restore REQISIEr 1uuui it e e e e e e 230
Figure 6-3. Machine State Register (MSR)—64-Bit Implementationscccoovvvviiiiiiiiiiiii e, 230
Figure 7-1. MMU Conceptual Block Diagram—~64-Bit Implementationsccccovviiieiiniiieenenieee e 263
Figure 7-2. MMU Conceptual Block Diagram—32-Bit Implementationsooooiiiiiieiiieieeeeeeiie 265
Figure 7-3. Address Translation Types—64-Bit Implementationsccccceeeveiirieeeee e 267
Figure 7-4. General Flow of Address Translation (Real Addressing Mode and BIOCK)ccccooivieeeenne 270
Figure 7-5. General Flow of Page Address TranSIation ... 271
Figure 7-6. Location of SEgMENt DESCIIPLOIS ...ccciiiiiiiiiieeeieers e e e e et et e e e e e e aaaaees 273
Figure 7-7. BAT Array Organization—32-Bit IMplementationscccoceiiiiiiiiieiiiii e 281
Figure 7-8. BAT Array Hit/Miss Flow—232-Bit Implementationseeeeiiiiiiiiiiiiiiiieee e 283
List of Figures pemLOF.fm.2.3

Page 20 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 7-9. Format of Upper BAT Registers—32-Bit Implementationsccccceeeeiiiiiiiieiveeiiiiceeeenn 284
Figure 7-10. Format of Lower BAT Registers—32-Bit Implementationscccccccvivieieee e, 285
Figure 7-11. Memory Protection Violation FIOw for BIOCKSc.oooiiiiiiiiii e 288
Figure 7-12. Block Physical Address Generation—32-Bit Implementationscccceoevvvviviiviviiviinnnnnnn. 289
Figure 7-13. Block Address Translation Flow—32-Bit Implementationscccccocveiiiin i 290
Figure 7-14. Page Address Translation Overview—64-Bit Implementationscccccccciiieeiiiniiiiiinns 292
Figure 7-15. Page Address Translation Overview—32-Bit Implementationsccccevvvvviiiiicciiiiien e, 293
FIGUIE 7-16. SLB ENLIY ..ooiiitiiiiie ittt ettt e s ettt e e s sttt e e e ettt e e e s nbe et e e s nbtee s anbbneeessnnneeaess 294
Figure 7-17. Segment Register Format for Page Address Translation—32-Bit Implementations 295
Figure 7-18. Page Table Entry Format—64-Bit IMpleMENtationscccccceeeeeiiiiiiiiiiiiieceee e 298
Figure 7-19. Page Table Entry Format—32-Bit IMplementationscccooviiiiiiiiiiiie e 299
Figure 7-20. Memory Protection Violation FIOW fOr PAgescoeeuviiiiiiiiiiiii e 306
Figure 7-21. Page Address Translation Flow for 64-Bit Implementations—TLB Hitc.ccoooeiiivvnnnen. 307
Figure 7-22. Page Memory Protection Violation Conditions for Page Address Translation 308
Figure 7-23. Page Table DefiNItiONSccooiiiiiiiie et s e e e e e e e e e e e aaaeaeaees 309
Figure 7-24. SDR1 Register Format—64-Bit IMplementationscccccveiiiiiieeee e 310
Figure 7-25. SDR1 Register Format—32-Bit IMplemMentationsccccceviiiiiieeiiiiiieeee e 311
Figure 7-26. Hashing Functions for Page Tables—64-Bit Implementations (4KB page size) 315
Figure 7-27. Hashing Functions for Page Tables—32-Bit Implementationscccccoviviieniiiiieee e, 316
Figure 7-28. Generation of Addresses for Page Tables—64-Bit Implementationsccccccvvivvieeinnnnn. 318
Figure 7-29. Generation of Addresses for Page Tables—32-Bit Implementationsccccevvvvvvvvivnnnnnnn. 320
Figure 7-30. Example Page Table Structure—64-Bit Implementationsccccoviiiieiiiiee e, 323
Figure 7-31. Example Page Table Structure—32-Bit Implementationsccccoviiieiiiiiiiie e, 324
Figure 7-32. Example Primary PTEG Address Generation—64-Bit Implementationcccccccccvvveeeeennnn, 326
Figure 7-33. Example Secondary PTEG Address Generation—64-Bit Implementationccccecuveeenn. 327
Figure 7-34. Example Primary PTEG Address Generation—32-Bit Implementationcccccccevviiiienenn. 329
Figure 7-35. Example Secondary PTEG Address Generation—32-Bit Implementationscc....... 330
Figure 7-36. Page Table SEarch FIOWco e 333
Figure 7-37. GPR Contents for mfsr, mfsrin , mtsrd , and mtsrdin ..., 341

Figure 7-38. GPR Contents for mtsr and MISHNoooiiiiiiiiiiie s e e e e e e e e e e e e e e e e eeeeeeeaaneen 342

Figure 8-1. INStrUCLION DESCIIPLIONeeiiiiiiiiieiiiiiit ettt ettt et e e st e e s et et e e s sabe e e e e breeeesannneeeess 353
Figure C-1. IEEE 64-Bit EXECULION MOEIccoiiiiiiiiiiiee et 663
Figure C-2. Multiply-Add 64-Bit EXeCUtion MOGEIcooumiiiiiiiiiiiis e e e eeaens 665

pemLOF.fm.2.3
March 31, 2005

List of Figures
Page 21 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

THIS PAGE INTENTIONALLY LEFT BLANK

List of Figures
Page 22 of 721

pemLOF.fm.2.3
March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

About This Book

The primary objective of this manual is to help programmers provide software that is compatible across the
family of PowerPC™ processors. Because the PowerPC Architecture is designed to be flexible to support a
broad range of processors, this book provides a general description of features that are common to PowerPC
processors and indicates those features that are optional or that may be implemented differently in the design
of each processor.

This book describes both the 32 and 64-bit portions of the PowerPC Architecture from the perspective of the
64-bit architecture. For information that pertains only to the 32-bit architecture refer to the PowerPC Micropro-
cessor Family: The Programming Environments for 32-Bit Microprocessors. To locate any published errata or
updates for this manual, refer to the world-wide web at http://www.ibm.com/powerpc. For programmers
working with a specific processor, this book should be used in conjunction with the user’'s manual for that
processor.

This manual distinguishes between the three levels, or programming environments, of the PowerPC Architec-
ture, which are as follows:

» PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level software should conform.

« PowerPC virtual environment architecture (VEA)—The VEA, which is the smallest component of the
PowerPC Architecture, defines additional user-level functionality that falls outside typical user-level soft-
ware requirements.

Implementations that conform to the PowerPC VEA also adhere to the UISA, but may not necessarily
adhere to the OEA.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level resources typi-
cally required by an operating system.
Implementations that conform to the PowerPC OEA also conform to the PowerPC UISA and VEA.

Refer to Section 1.1.2 on page 34 for additional information on the PowerPC Architecture levels.

TEMPORARY 64-BIT BRIDGE

The OEA defines optional features to simplify the migration of 32-bit operating systems to a 64-bit imple-
mentations.

It is important to note that some resources are defined more generally at one level in the architecture and
more specifically at another. For example, conditions that can cause a floating-point exception are defined by
the UISA, while the exception mechanism itself is defined by the OEA.

This book does not attempt to replace the PowerPC Architecture specification (version 2.01), which defines
the architecture from the perspective of the three programming environments and which remains the defining
manual for the PowerPC Architecture.

For ease in reference, this book and the processor user’'s manuals have arranged the architecture informa-
tion into topics that build upon one another, beginning with a description and complete summary of registers
and instructions (for all three environments) and progressing to more specialized topics such as the cache,

pemO_preface.fm.2.3 About This Book
March 31, 2005 Page 23 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

exception, and memory management models. As such, chapters may include information from multiple levels
of the architecture; for example, the discussion of the cache model uses information from both the VEA and
the OEA.

It is beyond the scope of this manual to describe individual PowerPC processors. It must be kept in mind that
each PowerPC processor may be unique in its implementation of the PowerPC Architecture.

The information in this book is subject to change without notice, as described in the disclaimers on the title
page of this book. As with any technical documentation, it is the readers’ responsibility to be sure they are
using the most recent version of the documentation. For more information contact your sales representative
or visit our web site at: http://www.ibm.com/powerpc.

Audience

This manual is intended for system software and hardware developers and application programmers who
want to develop 32 and 64-bit products using IBM’s 64-bit PowerPC processors. It is assumed that the reader
understands operating systems, microprocessor system design, and the basic principles of RISC processing.

This book describes both the 32 and the 64-bit portions of the PowerPC Architecture, primarily from the
perspective of the 64-bit architecture. The information in this manual that pertains only to the 32-bit architec-
ture is presented separately in the PowerPC Microprocessor Family: The Programming Environments for 32-
Bit Microprocessors.

Organization

Following is a summary and a brief description of the major sections of this manual:

» Chapter 1, “Overview," is useful for those who want a general understanding of the features and functions
of the PowerPC Architecture. This chapter describes the flexible nature of the PowerPC Architecture def-
inition and provides an overview of how the PowerPC Architecture defines the register set, operand con-
ventions, addressing modes, instruction set, cache model, exception model, and memory management
model.

« Chapter 2, “PowerPC Register Set," is useful for software engineers who need to understand the Pow-
erPC programming model for the three programming environments and the functionality of the PowerPC
registers.

» Chapter 3, “Operand Conventions," describes PowerPC conventions for storing data in memory, includ-
ing information regarding alignment, single and double-precision floating-point conventions, and big and
little-endian byte ordering.

« Chapter 4, “Addressing Modes and Instruction Set Summary," provides an overview of the PowerPC
addressing modes and a description of the PowerPC instructions. Instructions are organized by function.

» Chapter 5, “Cache Model and Memory Coherency," provides a discussion of the cache and memory
model defined by the VEA and aspects of the cache model that are defined by the OEA.

» Chapter 6, “Exceptions," describes the exception model defined in the OEA.

e Chapter 7, “Memory Management,” provides descriptions of the PowerPC address translation and mem-
ory protection mechanism as defined by the OEA.

« Chapter 8, “Instruction Set," functions as a handbook for the PowerPC instruction set. Instructions are
sorted by mnemonic. Each instruction description includes the instruction formats and an individualized

About This Book pem0O_preface.fm.2.3
Page 24 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

legend that provides such information as the level(s) of the PowerPC Architecture in which the instruction
may be found and the privilege level of the instruction.

» Appendix A, “PowerPC Instruction Set Listings," lists all the PowerPC instructions. Instructions are
grouped according to mnemonic, opcode, function, and form.

« Appendix B, “Multiple-Precision Shifts," describes how multiple-precision shift operations can be pro-
grammed as defined by the UISA.

« Appendix C, “Floating-Point Models," gives examples of how the floating-point conversion instructions
can be used to perform various conversions as described in the UISA.

» Appendix D, “Synchronization Programming Examples," gives examples showing how synchronization
instructions can be used to emulate various synchronization primitives and how to provide more complex
forms of synchronization.

« Appendix E, “Simplified Mnemonics," provides a set of simplified mnemonic examples and symbols.

« This manual also includes a glossary.

Suggested Reading

This section lists additional reading that provides background for the information in this manual, as well as
general information about the PowerPC Architecture.

General Information
The following documentation provides useful information about the PowerPC Architecture and computer
architecture in general:

» The following books are available via many online bookstores.

— The PowerPC Architecture: A Specification for a New Family of RISC Processors, Second Edition, by
International Business Machines, Inc.1994.
Note: This book has been superseded with the PowerPC Architecture Books I-lll, Version 2.01 and
is available at www.ibm.com/powerpc.

— PowerPC Microprocessor Common Hardware Reference Platform: A System Architecture, by Apple
Computer, Inc., International Business Machines, Inc., and Motorola, Inc.

— Macintosh Technology in the Common Hardware Reference Platform, by Apple Computer, Inc.

— Computer Architecture: A Quantitative Approach, Second Edition, by
John L. Hennessy and David A. Patterson,

« Inside Macintosh: PowerPC System Software, Addison-Wesley Publishing Company, One Jacob Way,
Reading, MA, 01867.

» PowerPC Programming for Intel Programmers, by Kip McClanahan; IDG Books Worldwide, Inc., 919
East Hillsdale Boulevard, Suite 400, Foster City, CA, 94404.

pemO_preface.fm.2.3 About This Book
March 31, 2005 Page 25 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

PowerPC Documentation

The PowerPC documentation is organized in the following types of documents:

User’'s manuals—These books provide details about individual PowerPC implementations and are
intended to be used in conjunction with The Programming Environments Manual. Chapter 1, Overview is
equivalent to previously released Technical Summaries.

Addenda/errata to user's manuals—Because some processors have follow-on parts, an addendum may
be provided that describes the additional features and changes to functionality of the follow-on part.
These addenda are intended for use with the corresponding user’'s manuals.

Programming environments manuals (PEM)—These books provide information about resources defined
by the PowerPC Architecture that are common to PowerPC processors. There are several PEM versions
available, this version of the PEM which includes both the 32-bit and 64-bit PowerPC Architecture; the
PowerPC Microprocessor Family: The Programming Environments for 32-Bit Microprocessors that
describes only the 32-bit model; and the PowerPC Microprocessor Family: Altivec ™" Technology Pro-
gramming Environments Manual which describes the vector/SIMD architecture.

Datasheets—Datasheets provide specific data regarding bus timing, signal behavior, and AC, DC, and
thermal characteristics, as well as other design considerations for each PowerPC implementation.

PowerPC Microprocessor Family: The Programmer’s Reference Guide: MPRPPCPRG-01 is a concise
reference that includes the register summary, memory control model, exception vectors, and the Pow-
erPC instruction set.

PowerPC Quick Reference Guide: This brochure is a Quick Reference Guide to IBM's portfolio of indus-
try-leading PowerPC technology. It includes highlights and specifications for the PowerPC 405, PowerPC
440, PowerPC 750, and PowerPC 970 based standard products.

Book I: PowerPC User Instruction Set Architecture (Version 2.01)-This book defines the instructions, reg-
isters, etc., typically used by application programs (for example, Branch, Load, Store, and Arithmetic
instructions; general purpose and floating-point registers). All Book | facilities and instructions are non-
privileged (are available in problem state).

Book II: PowerPC Virtual Environment Architecture (Version 2.01)-This book defines the storage model
(caches, storage access ordering, etc.) and related instructions, such as the instructions used to manage
caches and to synchronize storage accesses when storage is shared among programs running on differ-
ent processors. All Book Il facilities and instructions are non-privileged, but they are typically used via
operating-system-provided library subroutines, which application programs call as needed.

Book Ill: PowerPC Operating Environment Architecture (Version 2.01) —This book defines the privileged
facilities and related instructions (address translation, storage protection, interruptions, etc.). Nearly all
Book Ill facilities and instructions are privileged. (Those that are non-privileged are described also in
Book | or I, but only at the level needed by application programmers.)

Application notes—These short documents contain useful information about specific design issues useful
to programmers and engineers working with PowerPC processors.

Documentation for support chips.

For a current list of PowerPC documentation, refer to the world-wide web at http://www.chips.ibm.com. Addi-
tional literature on PowerPC implementations is being released to the web as new processors become avail-
able.

About This Book pem0O_preface.fm.2.3
Page 26 of 721 March 31, 2005

Conventions

Programming Environments Manual

PowerPC RISC Microprocessor Family

This manual uses the following notational conventions:

mnemonics

italics

0x0

0b0

rA, rB

rb

frA, frB, frC
frD

n

REG[FIELD]

0000

Instruction mnemonics are shown in lowercase bold.

Italics indicate variable command parameters, for example, bcctr x.
Book titles in text are set in italics.

Prefix to denote hexadecimal number

Prefix to denote binary number

Instruction syntax used to identify a source GPR
Instruction syntax used to identify a destination GPR
Instruction syntax used to identify a source FPR
Instruction syntax used to identify a destination FPR
Used to express an undefined numerical value

Abbreviations or acronyms for registers are shown in uppercase text. Specific bits,
fields, or ranges appear in brackets. For example, MSR[LE] refers to the little-
endian mode enable bit in the machine state register.

In certain contexts, such as a signal encoding, this indicates a don't care.
NOT logical operator

AND logical operator

OR logical operator

Indicates reserved bits or bit fields in a register. Although these bits may be written
to as either ones or zeroes, they are always read as zeros.

TEMPORARY 64-BIT BRIDGE

Text that pertains to the optional 64-bit bridge defined by the OEA is presented with a box, as shown

here.

Additional conventions used with instruction encodings are described in Table 8-2 on page 346. Conventions
used for pseudocode examples are described in Table 8-3 on page 349.

pemO_preface.fm.2.3

March 31, 2005

About This Book
Page 27 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

Acronyms and Abbreviations

Table i contains acronyms and abbreviations that are used in this manual. Note that the meanings for some
acronyms (such as SDR1 and XER) are historical, and the words for which an acronym stands may not be

intuitively obvious.

Table i. Acronyms and Abbreviated Terms

Term
ALU
ASR
BIST
BPU
BUID
CR
CTR
DABR
DAR
DEC
DSISR
DTLB
EA
EAR
ECC
FIFO
FPECR
FPR
FPSCR
FPU
GPR
IEEE®
ITLB

L2
LIFO
LR
LRU
LSB
Isb

Isq
MERSI

About This Book
Page 28 of 721

Meaning

Arithmetic logic unit

Address space register

Built-in self test

Branch processing unit

Bus unit ID

Condition register

Count register

Data address breakpoint register

Data address register

Decrementer register

Register used for determining the source of a DSI exception
Data translation lookaside buffer
Effective address

External access register

Error checking and correction
First-in-first-out

Floating-point exception cause register
Floating-point register

Floating-point status and control register
Floating-point unit

General-purpose register

Institute of Electrical and Electronics Engineers
Instruction translation lookaside buffer
Integer unit

Secondary cache

Last-in-first-out

Link register

Least recently used

Least-significant byte

Least-significant bit

Least-significant quad word

Modified/exclusive/reserved/shared/invalid—cache coherency protocol

pemO_preface.fm.2.3
March 31, 2005

Table i. Acronyms and Abbreviated Terms (Continued)

SRRO
SRR1
STE
B
TLB
UIMM
UISA
VA
VEA
WAR
WAW
WIMG
XER

Meaning
Modified/exclusive/shared/invalid—cache coherency protocol
Memory management unit
Most-significant byte
Most-significant bit

Most-significant quad word
Machine state register

Not a number

Next instruction address

No operation

Operating environment architecture
Processor identification register
Page table entry

Page table entry group

Processor version register
Reduced instruction set computing
Register transfer language

Read with intent to modify

Programming Environments Manual

PowerPC RISC Microprocessor Family

Register that specifies the page table base address for virtual-to-physical address translation

Single instruction stream, multiple data streams
Signed immediate value

Segment lookaside buffer
Special-purpose register

Registers available for general purposes
Segment register

Machine status save/restore register 0
Machine status save/restore register 1
Segment table entry

Time base register

Translation lookaside buffer

Unsigned immediate value

User instruction set architecture

Virtual address

Virtual environment architecture
Write-after-read

Write-after-write

Write-through/caching-inhibited/memory-coherency enforced/guarded — memory attribute bits

Register used primarily for indicating conditions such as carries and overflows for integer operations

pemO_preface.fm.2.3

March 31, 2005

About This Book
Page 29 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

Terminology Conventions

Table ii lists certain terms used in this manual that differ from the architecture terminology conventions.

Table ii. Terminology Conventions

The Architecture Specification
Data storage interrupt (DSI)
Extended mnemonics

Instruction storage interrupt (1SI)
Interrupt

Privileged mode (or privileged state)
Problem mode (or problem state)
Real address

Relocation

Storage (locations)

Storage (the act of)

Swizzling

This Manual

DSl exception
Simplified mnemonics
ISI exception
Exception
Supervisor-level privilege
User-level privilege
Physical address
Translation

Memory

Access

Double-word swap

Table iii describes instruction field notation conventions used in this manual.

Table iii. Instruction Field Conventions

The Architecture Specification
BA, BB, BT

BF, BFA

D

DS

FLM

FRA, FRB, FRC, FRT, FRS
FXM

RA, RB, RT, RS

SI

u

ul

100

About This Book
Page 30 of 721

Equivalent to:

crb A, crb B, crb D (respectively)
crfD, crf S (respectively)

d

ds

FM

frA, frB, frC, frD, frS (respectively)
CRM

rA, rB, rD, rS (respectively)
SIMM

IMM

UiMM

0...0 (shaded)

pemO_preface.fm.2.3
March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

1. Overview

The PowerPC Architecture provides a software model that ensures software compatibility among implemen-
tations of the PowerPC family of microprocessors. In this manual, and in other PowerPC documentation as
well, the term ‘implementation’ refers to a hardware device (typically a microprocessor) that complies with the
specifications defined by the architecture.

The PowerPC Architecture is a 64-bit architecture with a 32-bit subset. The 32 and 64 pertain to the size of
the integer register width and its supporting registers. In both implementations the floating point registers
have always been 64 bits.

In general, the architecture defines the following:

« Instruction set—The instruction set specifies the families of instructions (such as load/store, integer arith-
metic, and floating-point arithmetic instructions), the specific instructions, and the forms used for encod-
ing the instructions. The instruction set definition also specifies the addressing modes used for accessing
memory.

» Programming model—The programming model defines the register set and the memory conventions,
including details regarding the bit and byte ordering, and the conventions for how data (such as integer
and floating-point values) are stored.

« Memory model—The memory model defines the size of the address space and of the subdivisions
(pages and blocks) of that address space. It also defines the ability to configure pages and blocks of
memory with respect to caching, byte ordering (big or little-endian), coherency, and various types of
memory protection.

» Exception model—The exception model defines the common set of exceptions and the conditions that
can generate those exceptions. The exception model specifies characteristics of the exceptions, such as
whether they are precise or imprecise, synchronous or asynchronous, and maskable or nonmaskable.
The exception model defines the exception vectors and a set of registers used when exceptions are
taken. The exception model also provides memory space for implementation-specific exceptions. (Note
that exceptions are referred to as interrupts in the architecture specification.)

* Memory management model—The memory management model defines how memory is partitioned, con-
figured, and protected. The memory management model also specifies how memory translation is per-
formed, the real, virtual, and physical address spaces, special memory control instructions, and other
characteristics. (Physical address is referred to as real address in the architecture specification.)

» Time-keeping model—The time-keeping model defines facilities that permit the time of day to be deter-
mined and the resources and mechanisms required for supporting time-related exceptions.

These aspects of the PowerPC Architecture are defined at different levels of the architecture, and this chapter
provides an overview of those levels—the user instruction set architecture (UISA), the virtual environment
architecture (VEA), and the operating environment architecture (OEA).

peml_overview.fm.2.3 Overview
March 31, 2005 Page 31 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

1.1 PowerPC Architecture Overview

The PowerPC Architecture takes advantage of recent technological advances in such areas as process tech-
nology, compiler design, and reduced instruction set computing (RISC) microprocessor design. It provides
software compatibility across a diverse family of implementations, primarily single-chip microprocessors,
intended for a wide range of systems, including battery-powered personal computers; embedded controllers;
high-end scientific and graphics workstations; and multiprocessing, microprocessor-based mainframes. To
provide a single architecture for such a broad assortment of processor environments, the PowerPC Architec-
ture is both flexible and scalable.

The flexibility of the PowerPC Architecture offers many price/performance options. Designers can choose
whether to implement architecturally-defined features in hardware or in software. For example, a processor
designed for a high-end workstation has a greater need for the performance gained from implementing
floating-point normalization and denormalization in hardware than a battery-powered, general-purpose
computer might.

The PowerPC Architecture is scalable to take advantage of continuing technological advances—for example,
the continued miniaturization of transistors makes it more feasible to implement more execution units and a
richer set of optimizing features without being constrained by the architecture.

The PowerPC Architecture defines the following features:

» Separate 32-entry register files for integer and floating-point instructions. The general-purpose registers
(GPRs) hold source data for integer arithmetic instructions, and the floating-point registers (FPRs) hold
source and target data for floating-point arithmetic instructions.

« Instructions for loading and storing data between the memory system and either the FPRs or GPRs.

« Uniform-length instructions to allow simplified instruction pipelining and parallel processing instruction
dispatch mechanisms.

» Nondestructive use of registers for arithmetic instructions in which the second, third, and sometimes the
fourth operand, typically specify source registers for calculations whose results are typically stored in the
target register specified by the first operand.

« A precise exception model (with the option of treating floating-point exceptions imprecisely).
 Floating-point support that includes IEEE-754 floating-point operations.

» A flexible architecture definition that allows certain features to be performed in either hardware or with
assistance from implementation-specific software depending on the needs of the processor design.

» The ability to perform both single and double-precision floating-point operations.

» User-level instructions for explicitly storing, flushing, and invalidating data in the on-chip caches. The
architecture also defines special instructions (cache block touch instructions) for speculatively loading
data before it is needed, reducing the effect of memory latency.

 Definition of a memory model that allows weakly-ordered memory accesses. This allows bus operations
to be reordered dynamically, which improves overall performance and in particular reduces the effect of
memory latency on instruction throughput.

» Support for separate instruction and data caches (Harvard architecture) and for unified caches.
« Support for both big and little-endian addressing modes.

e Support for 64-bit addressing. The architecture supports both 32-bit or 64-bit implementations. This man-
ual typically describes the architecture in terms of the 64-bit implementation. Additional information
regarding the 32-bit definition is provided where needed.

Overview peml_overview.fm.2.3
Page 32 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

This chapter provides an overview of the major characteristics of the PowerPC Architecture in the order in
which they are addressed in this book:

» Register set and programming model
* Instruction set and addressing modes
» Cache implementations

» Exception model

« Memory management

1.1.1 64-Bit PowerPC Architecture and the 32-Bit Subset

The PowerPC Architecture is a 64-bit architecture with a 32-bit subset. It is important to distinguish the
following modes of operations:

* 64-bit implementations/64-bit mode—The PowerPC Architecture provides 64-bit addressing, 64-bit inte-
ger data types, and instructions that perform arithmetic operations on those data types, as well as other
features to support the wider addressing range. The processor is configured to operate in 64-bit mode by
setting the MSR[SF] bit.

» Processors that implement only the 32-bit portion of the PowerPC Architecture provide 32-bit effective
addresses, which is also the maximum size of integer data types.

* 64-bit implementations/32-bit mode—For compatibility with 32-bit implementations, 64-bit implementa-
tions can be configured to operate in 32-bit mode by clearing the MSR[SF] bit. In 32-bit mode, the effec-
tive address is treated as a 32-bit address, condition bits, such as overflow and carry bits, are set based
on 32-bit arithmetic (for example, integer overflow occurs when the result exceeds 32 bits), and the count
register (CTR) is tested by branch conditional instructions following conventions for 32-bit implementa-
tions. All applications written for 32-bit implementations will run without modification on 64-bit processors
running in 32-bit mode.

This book describes the full 64-bit architecture (for example, instructions are described from a 64-bit perspec-
tive). In most cases, details of the 32-bit subset can easily be determined from the 64-bit descriptions. Signif-
icant differences in the 32-bit subset are highlighted and described separately as they occur.

1.1.1.1 Temporary 64-Bit Bridge

The OEA defines an additional, optional bridge that may make it easier to migrate a 32-bit operating system
to the 64-bit architecture. This bridge allows 64-bit implementations to use a simpler memory management
model to access 32-bit effective address space. Processors that implement this bridge may implement
resources, such as instructions, that are not supported, and in some cases not permitted by the 64-bit archi-
tecture.

For processors that implement the address translation portion of the bridge, segment descriptors take the
form of the STEs defined for 64-bit MMUSs; however, only 16 STEs are required to define the entire 4-Gbyte
address space. Like 32-bit implementations, the effective address space is entirely defined by 16 contiguous
256-Mbyte segment descriptors. Rather than using the set of 16, 32-bit segment registers as is defined for
the 32-bit MMU, the 16 STEs are implemented and are maintained in 16 SLB entries.

These resources are described more fully in Section 7.7 Migration of Operating Systems from 32-Bit Imple-
mentations to 64-Bit Implementations. These resources are not to be considered a permanent part of the
PowerPC Architecture.

peml_overview.fm.2.3 Overview
March 31, 2005 Page 33 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

1.1.2 Levels of the PowerPC Architecture

The PowerPC Architecture is defined in three levels that correspond to three programming environments,
roughly described from the most general, user-level instruction set environment, to the more specific, oper-
ating environment. This layering of the architecture provides flexibility, allowing degrees of software compati-
bility across a wide range of implementations. For example, an implementation such as an embedded
controller will support the user instruction set, whereas it may be impractical for it to adhere to the memory
management, exception, and cache models.

The three levels of the PowerPC Architecture are defined as follows:

« PowerPC user instruction set architecture (UISA)—The UISA defines the level of the architecture to
which user-level (referred to as problem state in the architecture specification) software should conform.
The UISA defines the base user-level instruction set, user-level registers, data types, floating-point mem-
ory conventions and exception model as seen by user programs, and the memory and programming
models. The icon shown in the margin identifies text that is relevant with respect to the UISA.

« PowerPC virtual environment architecture (VEA)—The VEA defines additional user-level functionality
that falls outside typical user-level software requirements. The VEA describes the memory model for an
environment in which multiple devices can access memory, defines aspects of the cache model, defines
cache control instructions, and defines the time base facility from a user-level perspective. The icon
shown in the margin identifies text that is relevant with respect to the VEA.

» PowerPC operating environment architecture (OEA)—The OEA defines supervisor-level (referred to as
privileged state in the architecture specification) resources typically required by an operating system. The
OEA defines the PowerPC memory management model, supervisor-level registers, synchronization
requirements, and the exception model. The OEA also defines the time base feature from a supervisor-
level perspective. The icon shown in the margin identifies text that is relevant with respect to the OEA.

Implementations that adhere to the VEA level are guaranteed to adhere to the UISA level, but may not neces-
sarily adhere to the OEA level; likewise, implementations that conform to the OEA level are also guaranteed
to conform to the UISA and the VEA levels.

All PowerPC devices adhere to the UISA, offering compatibility among all PowerPC application programs.
However, there may be different versions of the VEA and OEA than those described here. For example,
some devices, such as embedded controllers, may not require some of the features as defined by this VEA
and OEA, and may implement a simpler or modified version of those features.

The general-purpose PowerPC microprocessors comply both with the UISA and with the VEA and OEA
discussed here. In this book, these three levels of the architecture are referred to collectively as the PowerPC
Architecture. The distinctions between the levels of the PowerPC Architecture are maintained clearly
throughout this manual, using the conventions described in the Section Conventions on page 27.

Overview peml_overview.fm.2.3
Page 34 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

1.1.3 Latitude Within the Levels of the PowerPC Architecture

The PowerPC Architecture defines those parameters necessary to ensure compatibility among PowerPC
processors, but also allows a wide range of options for individual implementations. These are as follows:

« The PowerPC Architecture defines some facilities (such as registers, bits within registers, instructions,
and exceptions) as optional.

» The PowerPC Architecture allows implementations to define additional privileged special-purpose regis-
ters (SPRs), exceptions, and instructions for special system requirements (such as power management
in processors designed for very low-power operation).

« There are many other parameters that the PowerPC Architecture allows implementations to define. For
example, the PowerPC Architecture may define conditions for which an exception may be taken, such as
alignment conditions. A particular implementation may choose to solve the alignment problem without
taking the exception.

» Processors may implement any architectural facility or instruction with assistance from software (that is,
they may trap and emulate) as long as the results (aside from performance) are identical to that specified
by the architecture.

» Some parameters are defined at one level of the architecture and defined more specifically at another.
For example, the UISA defines conditions that may cause an alignment exception, and the OEA specifies
the exception itself.

1.1.4 Features Not Defined by the PowerPC Architecture

Because flexibility is an important design goal of the PowerPC Architecture, there are many aspects of the
processor design, typically relating to the hardware implementation, that the PowerPC Architecture does not
define, such as the following:

» System bus interface signals—Although numerous implementations may have similar interfaces, the
PowerPC Architecture does not define individual signals or the bus protocol. For example, the OEA
allows each implementation to determine the signal or signals that trigger the machine check exception.

» Cache design—The PowerPC Architecture does not define the size, structure, the replacement algo-
rithm, or the mechanism used for maintaining cache coherency. The PowerPC Architecture supports, but
does not require, the use of separate instruction and data caches. Likewise, the PowerPC Architecture
does not specify the method by which cache coherency is ensured.

* The number and the nature of execution units—The PowerPC Architecture is a reduced instruction set
computing (RISC) architecture, and as such has been designed to facilitate the design of processors that
use pipelining and parallel execution units to maximize instruction throughput. However, the PowerPC
Architecture does not define the internal hardware details of implementations. For example, one proces-
sor may execute load and store operations in the integer unit, while another may execute these instruc-
tions in a dedicated load/store unit.

» Other internal microarchitecture issues—The PowerPC Architecture does not prescribe which execution
unit is responsible for executing a particular instruction; it also does not define details regarding the
instruction fetching mechanism, how instructions are decoded and dispatched, and how results are writ-
ten back. Dispatch and write-back may occur in-order or out-of-order. Also while the architecture speci-
fies certain registers, such as the GPRs and FPRs, implementations can implement register renaming or
other schemes to reduce the impact of data dependencies and register contention.

peml_overview.fm.2.3 Overview
March 31, 2005 Page 35 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

1.2 The PowerPC Architectural Models
This section provides overviews of aspects defined by the PowerPC Architecture, following the same order as
the rest of this book. The topics include the following:

» PowerPC registers and programming model

» PowerPC operand conventions

» PowerPC instruction set and addressing modes

» PowerPC cache model

» PowerPC exception model

* PowerPC memory management model

1.2.1 PowerPC Registers and Programming Model

The PowerPC Architecture defines register-to-register operations for computational instructions. Source
operands for these instructions are accessed from the architected registers or are provided as immediate
values embedded in the instruction. The three-register instruction format allows specification of a target
register distinct from two source operand registers. This scheme allows efficient code scheduling in a highly
parallel processor. Load and store instructions are the only instructions that transfer data between registers
and memory. The PowerPC registers are shown in Figure 1-1.

Overview peml_overview.fm.2.3
Page 36 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 1-1. Programming Model—PowerPC Registers

f SUPERVISOR MODEL—OEA \

Configuration Registers

/ * Machine State Register (MSR)
/ USER MODEL—UISA \ » Processor Version Register (PVR)
» 32 General-Purpose Registers (GPRSs)
» 32 Floating-Point Registers (FPRSs) Memory Management Registers
» Condition Register (CR) « Instruction BAT Registers (IBATx):3
+ Floating-Point Status and Control Register (FPSCR) « Data BAT Registers (DBATx)13
» Fixed-Point Exception Register (XER) « SDR1
* Link Register (LR) * Segment Registers (SRx)1
! Count Register (CTR) / ¢ Address Space Register (ASR)

Exception Handling Registers
» Data Address Register (DAR)

¢ DSISR
* Save and Restore Registers (SRR0O/SRR1)
« Time Base Facility (TBU and TBL) (For reading) » Floating-Point Exception Cause Register (FPECR)

Miscellaneous Registers
* Time Base Facility (TBU and TBL) (For writing)
K / « Decrementer Register (DEC)
- Data Address Breakpoint Register (DABR)?
* Processor Identification Register (PIR)2
« External Access Register (EAR)2

* Control Register (CTRL)
- Instruction Address Breakpoint Register (IABR)3 /

_

1. 32-bit implementations only
2. Optional
3. Implementation specific register

The programming model incorporates 32 GPRs, 32 FPRs, special-purpose registers (SPRs), and several
miscellaneous registers. Each implementation may have its own unique set of hardware implementation
(HID) registers that are not defined by the architecture.

PowerPC processors have two levels of privilege:

« Supervisor mode—used exclusively by the operating system. Resources defined by the OEA can be
accessed only by supervisor-level software.

« User mode—used by the application software and operating system software. (Only resources defined by
the UISA and VEA can be accessed by user-level software.)

peml_overview.fm.2.3 Overview
March 31, 2005 Page 37 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

These two levels govern the access to registers, as shown in Figure 1-1. The division of privilege allows the
operating system to control the application environment (providing virtual memory and protecting operating
system and critical machine resources). Instructions that control the state of the processor, the address trans-
lation mechanism, and supervisor registers can be executed only when the processor is operating in super-
visor mode.

« User Instruction Set Architecture Registers—All UISA registers can be accessed by all software with
either user or supervisor privileges. These registers include the 32 general-purpose registers (GPRs) and
the 32 floating-point registers (FPRs), and other registers used for integer, floating-point, and branch
instructions.

« Virtual Environment Architecture Registers—The VEA defines the user-level portion of the time base
facility, which consists of the two 32-bit time base registers. These registers can be read by user-level
software, but can be written to only by supervisor-level software.

» Operating Environment Architecture Registers—SPRs defined by the OEA are used for system-level
operations such as memory management, exception handling, and time-keeping.

The PowerPC Architecture also provides room in the SPR space for implementation-specific registers, typi-
cally referred to as HID registers. Individual HIDs are not discussed in this manual.
1.2.2 Operand Conventions

Operand conventions are defined in two levels of the PowerPC Architecture—user instruction set architecture
(UISA) and virtual environment architecture (VEA). These conventions define how data is stored in registers
and memory.

1.2.2.1 Byte Ordering

The default mapping for PowerPC processors is big-endian, but the UISA provides the option of operating in
either big or little-endian mode. Big-endian byte ordering is shown in Figure 1-2.

Figure 1-2. Big-Endian Byte and Bit Ordering

MSB

Byte O Byte 1 | x |

Big-Endian Byte Ordering

Byte N (max) |

The OEA defines two bits in the MSR for specifying byte ordering—LE (little-endian mode) and ILE (exception
little-endian mode). The LE bit specifies whether the processor is configured for big-endian or little-endian
mode; the ILE bit specifies the mode when an exception is taken by being copied into the LE bit of the MSR.
A value of 0 specifies big-endian mode and a value of 1 specifies little-endian mode.

Note: Little endian mode is optional. If the processor does not support little endian mode, then MSR[LE] and
MSR[ILE] are treated as resered.

Refer to Section 3.1.2 Byte Ordering for details on big-endian and little-endian modes.

Overview peml_overview.fm.2.3
Page 38 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

1.2.2.2 Data Organization in Memory and Data Transfers

Bytes in memory are numbered consecutively starting with 0. Each number is the address of the corre-
sponding byte.

Memory operands may be bytes, half-words, words, or double-words, or for the load/store string/multiple
instructions, a sequence of bytes or words. The address of a multiple-byte memory operand is the address of
its first byte (that is, of its lowest-numbered byte). Operand length is implicit for each instruction.

The operand of a single-register memory access instruction has a natural alignment boundary equal to the
operand length. In other words, the natural address of an operand is an integral multiple of the operand
length. A memory operand is said to be aligned if it is aligned at its natural boundary; otherwise it is
misaligned.

1.2.2.3 Floating-Point Conventions

The PowerPC Architecture adheres to the IEEE-754 standard for 32 and 64-bit floating-point arithmetic:

» Double-precision arithmetic instructions may have single or double-precision operands but always pro-
duce double-precision results.

» Single-precision arithmetic instructions require all operands to be single-precision values and always pro-
duce single-precision results. Single-precision values are stored in double-precision format in the FPRs—
these values are rounded such that they can be represented in 32-bit, single-precision format (as they
are in memory).

1.2.3 PowerPC Instruction Set and Addressing Modes

All PowerPC instructions are encoded as single-word (32-bit) instructions. Instruction formats are consistent
among all instruction types, permitting decoding to occur in parallel with operand accesses. This fixed instruc-
tion length and consistent format greatly simplifies instruction pipelining.

1.2.3.1 PowerPC Instruction Set

Although these categories are not defined by the PowerPC Architecture, the PowerPC instructions can be
grouped as follows:

« Integer instructions—These instructions are defined by the UISA. They include computational and logical
instructions. For example, integer arithmetic instructions, integer compare instructions, logical instruc-
tions, and integer rotate and shift instructions.

 Floating-point instructions—These instructions, defined by the UISA, include floating-point computational
instructions, as well as instructions that manipulate the floating-point status and control register (FPSCR).
For example, floating-point arithmetic instructions, floating-point multiply/add instructions, floating-point
compare instructions, floating-point status and control instructions, floating-point move instructions, and
optional floating-point instructions.

» Load/store instructions—These instructions, defined by the UISA, include integer and floating-point load
and store instructions. For example, integer load and store instructions, integer load and store with byte
reverse instructions, integer load and store multiple instructions, integer load and store string instructions,
and floating-point load and store instructions.

peml_overview.fm.2.3 Overview
March 31, 2005 Page 39 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

* The UISA also provides a set of load/store with reservation instructions (lwarx /ldarx and stwcx. /stdcx.)
that can be used as primitives for constructing atomic memory operations in multiprocessing environ-
ments. These are grouped under synchronization instructions.

» Synchronization instructions—The UISA and VEA define instructions for memory synchronizing, espe-
cially useful for multiprocessing. For example, load and store with reservation instructions (these UISA-
defined instructions provide primitives for synchronization operations such as test and set, compare and
swap, and compare memory). The synchronization instruction (sync) is useful for synchronizing load and
store operations on a memory bus that is shared by multiple devices. The Enforce In-Order Execution of
I/O (eieio) instruction provides an ordering function for the effects of load and store operations executed
by a processor.

» Flow control instructions—These include branching instructions, condition register logical instructions,
trap instructions, and other instructions that affect the instruction flow. The UISA defines numerous
instructions that control the program flow, including branch, trap, and system call instructions, as well as
instructions that read, write, or manipulate bits in the condition register. The OEA defines two flow control
instructions that provide system linkage (sc, rfid). These instructions are used for entering and returning
from supervisor level.

» Processor control instructions—These instructions are used for synchronizing memory accesses and
managing caches and translation lookaside buffers (TLBs) (and segment registers in 32-bit implementa-
tions). These instructions include move to/from special-purpose register instructions (mtspr and mfspr).

« Memory/cache control instructions—These instructions provide control of caches, SLBs, TLBs, and seg-
ment registers (in 32-bit implementations). The VEA defines several cache control instructions. The OEA
defines several memory control instructions.

« External control instructions—The VEA defines two optional instructions (eciwx , ecowx) for use with
special input/output devices.

TEMPORARY 64-BIT BRIDGE

« The 64-bit bridge allows several instructions to be used in 64-bit implementations that are otherwise
defined for use in 32-bit implementations only. These include the following:

— Move to Segment Register (mtsr) and Move to Segment Register Indirect (mtsrin)
— Move from Segment Register (mfsr) and Move from Segment Register Indirect (mfsrin)
All four of these instructions are implemented as a group and are never implemented individually.

Attempting to execute one of these instructions on a 64-bit implementation on which these instruc-
tions are not supported causes program exception.

Note: This grouping of the instructions does not indicate which execution unit executes a particular instruc-
tion or group of instructions. This is not defined by the PowerPC Architecture.

Overview peml_overview.fm.2.3
Page 40 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

1.2.3.2 Calculating Effective Addresses

The effective address (EA), also called the logical address, is the address computed by the processor when
executing a memory access or branch instruction or when fetching the next sequential instruction. Unless
address translation is disabled, this address is converted by the MMU to the appropriate physical address.

Note: The architecture specification uses only the term effective address and not logical address.

The PowerPC Architecture supports the following simple addressing modes for memory access instructions:
e EA = (rA|O) (register indirect)
« EA = (rA|0) + offset (including offset = 0) (register indirect with immediate index)
« EA = (rA|0) + rB (register indirect with index)

These simple addressing modes allow efficient address generation for memory accesses.

1.2.4 PowerPC Cache Model

The VEA and OEA portions of the architecture define aspects of cache implementations for PowerPC proces-
sors. The PowerPC Architecture does not define hardware aspects of cache implementations. For example,
some PowerPC processors may have separate instruction and data caches (Harvard architecture), while
others have a unified cache.

The PowerPC Architecture allows implementations to control the following memory access modes on a page
or block basis:

» Write-back/write-through mode
« Caching-inhibited mode
« Memory coherency

« Guarded/not guarded against speculative accesses

Coherency is maintained on a cache block basis, and cache control instructions perform operations on a
cache block basis. The size of the cache block is implementation-dependent. The term cache block should
not be confused with the notion of a block in memory, which is described in Section 1.2.6 PowerPC Memory
Management Model.

The VEA portion of the PowerPC Architecture defines several instructions for cache management. These can
be used by user-level software to perform such operations as touch operations (which cause the cache block
to be speculatively loaded), and operations to store, flush, or clear the contents of a cache block. The OEA
portion of the architecture defines one cache management instruction—the Data Cache Block Invalidate
(dcbi) instruction.

Note: The instruction, dcbi, which is illegal in the PowerPC Architecture (version 2.01), may be implemented
in 32-bit designs prior to Version 2.01 of the architecture.

peml_overview.fm.2.3 Overview
March 31, 2005 Page 41 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

1.2.5 PowerPC Exception Model

The PowerPC exception mechanism, defined by the OEA, allows the processor to change to supervisor state
as a result of external signals, errors, or unusual conditions arising in the execution of instructions. When
exceptions occur, information about the state of the processor is saved to various registers and the processor
begins execution at an address (exception vector) predetermined for each type of exception. Exception
handler routines begin execution in supervisor mode. The PowerPC exception model is described in detail in
Chapter 6, Exceptions.

Note: Some aspects regarding exception conditions are defined at other levels of the architecture. For exam-
ple, floating-point exception conditions are defined by the UISA, whereas the exception mechanism is defined
by the OEA.

The PowerPC Architecture requires that exceptions be handled in program order (excluding the optional
floating-point imprecise modes and the reset and machine check exception); therefore, although a particular
implementation may recognize exception conditions out of order, they are handled strictly in order. When an
instruction-caused exception is recognized, any unexecuted instructions that appear earlier in the instruction
stream, including any that have not yet begun to execute, are required to complete before the exception is
taken. Any exceptions caused by those instructions must be handled first. Likewise, exceptions that are asyn-
chronous and precise are recognized when they occur, but are not handled until all instructions currently
executing successfully complete processing and report their results.

The OEA supports four types of exceptions:
» Synchronous, precise
e Synchronous, imprecise
« Asynchronous, maskable

« Asynchronous, nonmaskable

1.2.6 PowerPC Memory Management Model

The PowerPC memory management unit (MMU) specifications are provided by the PowerPC OEA. The
primary functions of the MMU in a PowerPC processor are to translate logical (effective) addresses to phys-
ical addresses for memory accesses and I/O accesses (most I/O accesses are assumed to be memory-
mapped), and to provide access protection on a block or page basis.

Note: Many aspects of memory management are implementation-dependent. The description in Chapter 7,
Memory Management describes the conceptual model of a PowerPC MMU; however, PowerPC processors
may differ in the specific hardware used to implement the MMU model of the OEA.

PowerPC processors require address translation for two types of transactions—instruction accesses and
data accesses to memory (typically generated by load and store instructions).

The memory management specification of the PowerPC OEA includes models for both 32 and 64-bit imple-
mentations. The MMU of a 64-bit PowerPC processor provides 254 pytes of effective address space acces-
sible to supervisor and user programs with support for two page sizes; a 4-Kbyte page size (212) and a large
page whose size is implementation dependent (2° where 13 < p < 28). PowerPC 32-bit processors also have
a block address translation (BAT) mechanism for mapping large blocks of memory. Block sizes range from
128 Kbyte to 256 Mbyte and are software-selectable. The MMU of 64-bit PowerPC processors uses an
interim virtual address (between 65 and 80 bits) and hashed page tables in the generation of physical
addresses that are < 62 bits in length.

Overview peml_overview.fm.2.3
Page 42 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

The MMU of a 32-bit PowerPC processor is similar except that it provides 4 Ghytes of effective address
space, a 52-bit interim virtual address and physical addresses that are < 32 bits in length. Table 7-1 MMU
Features Summary summarizes the features of PowerPC MMUs for 64-bit implementations and highlights
the differences for 32-bit implementations.

Two types of accesses generated by PowerPC processors require address translation: instruction accesses,

and data accesses to memory generated by load and store instructions. The address translation mechanism

is defined in terms of segment tables (or segment registers in 32-bit implementations) and page tables used

by PowerPC processors to locate the logical-to-physical address mapping for instruction and data accesses.
The segment information translates the logical address to an interim virtual address, and the page table infor-
mation translates the virtual address to a physical address.

Translation lookaside buffers (TLBs) are commonly implemented in PowerPC processors to keep recently-
used page table entries on-chip. Although their exact characteristics are not specified by the architecture, the
general concepts that are pertinent to the system software are described. Similarly, 64-bit implementations
contain segment lookaside buffers (SLBs) on-chip that contain recently-used segment table entries, however
the PowerPC Architecture does not define the exact characteristics for SLBs.

The block address translation (BAT) mechanism is a software-controlled array that stores the available block
address translations on-chip. BAT array entries are implemented as pairs of BAT registers that are accessible
as supervisor special-purpose registers (SPRs); refer to Section 7.4 Block Address Translation, for more
information.

TEMPORARY 64-BIT BRIDGE

The 64-bit bridge provides resources that may make it easier for a 32-bit operating system to migrate to
a 64-bit processor. The nature of these resources are largely determined by the fact that in a 32-bit
address space, only 16 segment descriptors are required to define all 4 Gbytes of memory. That is,
there are sixteen 256-Mbyte segments, as is the case in the 32-bit architecture description.

1.3 Changes to this Manual

This manual reflects changes made to the PowerPC Architecture, Version 2.01.

peml_overview.fm.2.3 Overview
March 31, 2005 Page 43 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

THIS PAGE INTENTIONALLY LEFT BLANK

Overview
Page 44 of 721

peml_overview.fm.2.3
March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

2. PowerPC Register Set

This chapter describes the register organization defined by the three levels of the PowerPC Architecture:

« User instruction set architecture (UISA)
« Virtual environment architecture (VEA), and
» Operating environment architecture (OEA).

The PowerPC Architecture defines register-to-register operations for all computational instructions. Source
data for these instructions are accessed from the on-chip registers or are provided as immediate values
embedded in the opcode. The three-register instruction format allows specification of a target register distinct
from the two source registers, thus preserving the original data for use by other instructions and reducing the
number of instructions required for certain operations. Data is transferred between memory and registers with
explicit load and store instructions only.

Note: The handling of reserved bits in any register is implementation-dependent. Software is permitted to
write any value to a reserved bit in a register. However, a subsequent reading of the reserved bit returns O if
the value last written to the bit was 0 and returns an undefined value (may be 0 or 1) otherwise. This means
that even if the last value written to a reserved bit was 1, reading that bit may return 0.

2.1 Overview of the PowerPC UISA Registers

The PowerPC UISA registers, shown in Figure 2-1, can be accessed by either user or supervisor-level
instructions (the architecture specification refers to user-level and supervisor-level as problem state and priv-
ileged state respectively). The general-purpose registers (GPRs) and floating-point registers (FPRs) are
accessed as instruction operands. Access to registers can be explicit (that is, through the use of specific
instructions for that purpose such as Move to Special-Purpose Register (mtspr) and Move from Special-
Purpose Register (mfspr) instructions) or implicit as part of the execution of an instruction. Some registers
are accessed both explicitly and implicitly.

The number to the right of the register name indicates the number that is used in the syntax of the instruction
operand to access the register (for example, the number used to access the XER is SPR 1).

Note: The general-purpose registers (GPRSs), link register (LR), fixed point exception register (XER), and
count register (CTR) are 64 bits wide on 64-bit implementations and 32 bits wide on 32-bit implementations.

pem?2_regset.fm.2.3 PowerPC Register Set
March 31, 2005 Page 45 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 2-1. UISA Programming Model—User-Level Registers

SUPERVISOR MODEL — OEA

\

Configuration Registers

/ USER MODEL (UISA)

General-Purpose Floating-Point Machine State Register ProcessorF;/erzi%n Il?egister 1
Registers Registers (Read Only)
MSR (64/32) PVR (32) SPR 287
GPRO (64/32) FPRO (64) " " Redist
emory Management Registers
GPR1 (64/32) FPR1 (64) _ y 92 . 9
. Instruction BAT Registers 2 Data BAT Registers 24
L]
. : IBATOU (32) SPR 528 DBATOU (32) SPR 536
GPR31 (64/32) FPR31 (64) IBATO'L (32) SPR 529 DBAT(')L (32) SPR 537
Condition Register 1 _ _
CR (32) IBATXU (32) SPR xxx DBATxU (32) SPR xxx
IBATXL (32) SPR xxx DBATXL (32) SPR xxx
Floating-Point Status
and Control Register . 12
Segment Registers
FPSCR (32) SDR1 SRO (32)
XER Register SDR1 (64/32) SPR 25 SR1 (32)
Address Space Register 3 .
XER (64/32 PR 1
(64/32) |S ASR (64) |SPR 280 d
Link Register SR15 (32)
LR (64/32) |SPR8 Exception Handling Registers
; 1
Count Register Data Address Register DSISR
DAR (64/32 PR 1 DSISR (32 SPR 18
CTR (64/32) |SPR9 (64/32) 5 ° (32)
K / SPRGs Save and Restore Registers
SPRGO (64/32) | SPR 272 SRRO (64/32) |SPR 26
SPRGL (64/32) SPR 273 SRR1 (64/32) |SPR 27
USER MODEL . . .
VEA SPRG2 (64/32) | SPR 274 FIoatlng-Po_lnt Exceptlon
Time Base FaCIIIty 1 SPRG3 (64/32) SPR 275 Cause Register (Optlonal)
(For Reading) FPECR SPR 1022
TBL (32) TBR 268 Miscellaneous Registers
TBU (32) TBR 269 Time Base Facility * Data Address Breakpoint
(For Writing) Register (Optional)
1B (32) SPR 284 DABR (64/32) | SPR 1013
Processor Identification TBU (32) SPR 285 ()
Register (Optional) Decrementer * External Aci:ess Register
PIR SPR 1023 (Optional)
DEC (32) |SPR22 EAR (32) |SPR 282

abhwN R

PowerPC Register Set
Page 46 of 721

These registers are 32-bit registers only.
. These registers are on 32-bit implementations only.

. These registers are on 64-bit implementations only.

. These registers are implementation dependent.

. 64-bit registers operating in 32-bit mode clear the high order 32-bits.

pem2_regset.fm.2.3
March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

The user-level registers can be accessed by all software with either user or supervisor privileges. The user-
level registers are:

General-purpose registers (GPRs). The general-purpose register file consists of 32 GPRs designated as
GPRO-GPR31. The GPRs serve as either the data source or the destination registers for all integer
instructions and provide data for generating addresses. For more information see Section 2.1.1 General-
Purpose Registers (GPRs) on page 48.

Floating-point registers (FPRs). The floating-point register file consists of 32 FPRs designated as FPRO—
FPR31,; these registers serve as either the data source or the destination for all floating-point instructions.
While the floating-point model includes data objects of either single or double-precision floating-point for-
mat, the FPRs only contain data in double-precision format. For more information, see Section 2.1.2
Floating-Point Registers (FPRs) on page 48.

Condition register (CR). The condition register is a 32-bit register that is divided into eight 4-bit fields,
CRO-CRY. This register stores the results of certain arithmetic operations and provides a mechanism for
testing and branching. For more information, see Section 2.1.3 Condition Register (CR) on page 49.

Floating-point status and control register (FPSCR). The floating-point status and control register contains
all floating-point exception signal bits, exception summary bits, exception enable bits, and rounding con-
trol bits needed for compliance with the IEEE 754 standard. For more information, see Section 2.1.4
Floating-Point Status and Control Register (FPSCR) on page 51.

Note: The architecture specification refers to exceptions as interrupts.

Fixed point exception register (XER). The fixed point exception register indicates overflows and carry
conditions for integer operations and the number of bytes to be transferred by the load/store string
indexed instructions. For more information, see Section 2.1.5 XER Register (XER) on page 54.

Link register (LR). The link register provides the branch target address for the Branch Conditional to Link
Register (bclr x) instructions, and can optionally be used to hold the effective address of the instruction
that follows a branch with link update instruction in the instruction stream, typically used for loading the
return pointer for a subroutine. For more information, see Section 2.1.6 Link Register (LR) on page 55.

Count register (CTR). The count register holds a loop count that can be decremented during execution of
appropriately coded branch instructions. The CTR can also provide the branch target address for the
Branch Conditional to Count Register (bcctr x) instructions. For more information, see Section 2.1.7
Count Register (CTR) on page 56.

pem?2_regset.fm.2.3 PowerPC Register Set
March 31, 2005 Page 47 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

2.1.1 General-Purpose Registers (GPRs)

Integer data is manipulated in the processor’'s 32 GPRs shown in Figure 2-2. These registers are 64-bit regis-
ters in 64-bit implementations and 32-bit registers in 32-bit implementations. The GPRs are accessed as
either source or destination registers in the instruction syntax.

Figure 2-2. General-Purpose Registers (GPRS)

GPRO

GPR1

GPR31

2.1.2 Floating-Point Registers (FPRS)

The PowerPC Architecture provides thirty-two 64-bit FPRs as shown in Figure 2-3. These registers are
accessed as either source or destination registers for floating-point instructions. Each FPR supports the
double-precision floating-point format. Every instruction that interprets the contents of an FPR as a floating-
point value uses the double-precision floating-point format for this interpretation.

Note: FPRs are 64 bits on both 64-bit and 32-bit processor implementations.

Instructions for all floating-point arithmetic operations use the data located in the FPRs and, with the excep-
tion of compare instructions, place the result into a FPR. Information about the status of floating-point opera-
tions is placed into the FPSCR and in some cases, into the CR after the completion of instruction execution.
For information on how the CR is affected for floating-point operations, see Section 2.1.3 Condition Register
(CR).

Instructions to load and to store floating-point double precision values transfer 64 bits of data between
memory and the FPRs with no conversion.

Instructions to load floating-point single precision values are provided to read single-precision floating-point
values from memory, convert them to double-precision floating-point format, and place them in the target
floating-point register.

Instructions to store single-precision values are provided to read double-precision floating-point values from a
floating-point register, convert them to single-precision floating-point format, and place them in the target
memory location.

Instructions for single and double-precision arithmetic operations accept values from the FPRs in double-
precision format. For instructions of single-precision arithmetic and store operations, all input values must be
representable in single-precision format; otherwise, the results placed into the target FPR (or the memory
location) and the setting of status bits in the FPSCR and in the condition register (if the instruction’s record bit,
Rc, is set) are undefined.

PowerPC Register Set pem?2_regset.fm.2.3
Page 48 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

The floating-point arithmetic instructions produce intermediate results that may be regarded as infinitely
precise and with unbounded exponent range. This intermediate result is normalized or denormalized if
required, and then rounded to the destination format. The final result is then placed into the target FPR in the
double-precision format or in fixed-point format, depending on the instruction. Refer to Section 3.3 Floating-
Point Execution Models—UISA on page 100 for more information.

Figure 2-3. Floating-Point Registers (FPRS)

FPRO
FPR1

FPR31

2.1.3 Condition Register (CR)

The condition register (CR) is a 32-bit register that reflects the result of certain operations and provides a
mechanism for testing and branching. The bits in the CR are grouped into eight 4-bit fields, CRO—CR7, as
shown in Figure 2-4.

Figure 2-4. Condition Register (CR)

CRO CR1 CR2 CR3 CR4 CR5 CR6 CR7

0 34 7 8 11 12 15 16 19 20 23 24 27 28 31

The CR fields can be set in one of the following ways:
» Specified fields of the CR can be set from a GPR by using the mtcrf and mtocrf instruction.
» The contents of the XER[0-3] can be moved to another CR field by using the mcrf instruction.
» A specified field of the XER can be copied to a specified field of the CR by using the mcrxr instruction.
» A specified field of the FPSCR can be copied to a specified field of the CR by using the mcrfs instruction.

 Logical instructions of the condition register can be used to perform logical operations on specified bits in
the condition register.

¢ CRO can be the implicit result of an integer instruction.
* CR1 can be the implicit result of a floating-point instruction.

» A specified CR field can indicate the result of either an integer or floating-point compare instruction.

Note: Branch instructions are provided to test individual CR bits.

pem?2_regset.fm.2.3 PowerPC Register Set
March 31, 2005 Page 49 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

2.1.3.1 Condition Register CRO Field Definition

For all integer instructions, when the CR is set to reflect the result of the operation (that is, when Rc = 1), and
for addic. , andi., and andis. , the first three bits of CRO are set by an algebraic comparison of the result to
zero; the fourth bit of CRO is copied from XER[SO]. For integer instructions, CR bits [0-3] are set to reflect the
result as a signed quantity.

The CR bits are interpreted as shown in Table 2-1. If any portion of the result is undefined, the value placed
into the first three bits of CRO is undefined. The stwcx. and stdcx. instructions also set the CRO field.

Table 2-1. Bit Settings for CRO Field of CR

CRO Bit Description
0 Negative (LT)—This bit is set when the result is negative.
1 Positive (GT)—This bit is set when the result is positive (and not zero).
2 Zero (EQ)—This bit is set when the result is zero or when a stwex. or stdex. successfully completes.
3 Summary overflow (SO)—This is a copy of the final state of XER[SQO] at the completion of the instruction.

Note: If overflow occurs, CRO may not reflect the true (infinitely precise) result.
CRO bits [0-2] are undefined if Rc = 1 for the mulhw , mulhwu , divw , and divwu instructions in 64-bit mode.

2.1.3.2 Condition Register CR1 Field Definition

In all floating-point instructions when the CR is set to reflect the result of the operation (Rc=1), CR1 (bits [4-7]
of the CR) is copied from bits [0-3] of the FPSCR and indicates the floating-point exception status. For more
information about the FPSCR, see Section 2.1.4 Floating-Point Status and Control Register (FPSCR). The bit
settings for the CRL1 field are shown in Table 2-2.

Table 2-2. Bit Settings for CR1 Field of CR

CR1 Bit Description

Floating-point exception summary (FX)—This is a copy of the final state of FPSCR[FX] at the completion of the

4 instruction.

Floating-point enabled exception summary (FEX)—This is a copy of the final state of FPSCR[FEX] at the comple-

5 tion of the instruction.
6 Floating-point invalid operation exception summary (VX)—This is a copy of the final state of FPSCR[VX] at the
completion of the instruction.
7 Floating-point overflow exception (OX)—This is a copy of the final state of FPSCR[OX] at the completion of the
instruction.
PowerPC Register Set pem?2_regset.fm.2.3

Page 50 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

2.1.3.3 Condition Register CR n Field—Compare Instruction

For a compare instruction, when a specified CR field is set to reflect the result of the comparison, the bits of
the specified field are interpreted as shown in Table 2-3.

Table 2-3. CRn Field Bit Settings for Compare Instructions

CRn Bit1 |Description 2

Less than or floating-point less than (LT, FL).
0 For integer compare instructions: rA < SIMM or rB (signed comparison) or rA < UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA < frB.

Greater than or floating-point greater than (GT, FG).
1 For integer compare instructions: rA > SIMM or rB (signed comparison) or rA > UIMM or rB (unsigned comparison).
For floating-point compare instructions: frA > frB.

Equal or floating-point equal (EQ, FE).
2 For integer compare instructions: rA = SIMM, UIMM, or rB.
For floating-point compare instructions: frA = frB.

Summary overflow or floating-point unordered (SO, FU).
3 For integer compare instructions: This is a copy of the final state of XER[SO] at the completion of the instruction.
For floating-point compare instructions: One or both of frA and frB is a Not a Number (NaN).

Notes:

1. Here, the bit indicates the bit number in any one of the 4-bit subfields, CRO-CR?7.
2. For a complete description of instruction syntax conventions, refer to Table 8-2 on page 346.

2.1.4 Floating-Point Status and Control Register (FPSCR)

The Floating-Point Status and Control Register (FPSCR), shown in Figure 2-5, is used for:
* Recording exceptions generated by floating-point operations
* Recording the type of the result produced by a floating-point operation
« Controlling the rounding mode used by floating-point operations

» Enabling or disabling the reporting of exceptions (that is, invoking the exception handler)

Bits [0—-23] are status bits. Bits [24—31] are control bits. Status bits in the FPSCR are updated at the comple-
tion of the instruction execution.

Except for the floating-point enabled exception summary (FEX) and floating-point invalid operation exception
summary (VX), the exception condition bits in the FPSCR (bits [3—12] and [21-23]) are sticky. Once set,
sticky bits remain set until they are cleared by the relevant mcrfs , mtfsfi , mtfsf , or mtfsb0 instruction.

FEX and VX are the logical ORs of other FPSCR bits. Therefore, these two bits are not listed among the
FPSCR bits directly affected by the various instructions.

pem?2_regset.fm.2.3 PowerPC Register Set
March 31, 2005 Page 51 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

Figure 2-5. Floating-Point Status and Control Register (FPSCR)

I:l Reserved

VXIDI VXZDZz ——— VXSOFT

VXISI VXIMZ — VXSQRT

VXSNAN VXVC VXCVI
FX|FEX VX |OX| UX| ZX| XX FR| FI FPRF 0 VE|OE|UE|ZE|XE|NI| RN
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 1920 21 22 23 24 25 26 27 28 29 30 31

A listing of FPSCR bit settings is shown in Table 2-4.

Table 2-4. FPSCR Bit Settings

Bit(s)

10

11

12

13

Name

FX

FEX

VX

OX

UXx
ZX

XX

VXSNAN

VXISI

VXIDI

VXzZDZz

VXIMZ

VXVC

FR

PowerPC Register Set
Page 52 of 721

Description

Floating-point exception summary. Every floating-point instruction, except mtfsfi and mtfsf , implicitly sets
FPSCR[FX] if that instruction causes any of the floating-point exception bits in the FPSCR to transition from 0
to 1. The mcrfs , mtfsfi , mtfsf , mtfsb0 , and mtfsb1l instructions can alter FPSCR[FX] explicitly. This is a sticky
bit.

Floating-point enabled exception summary. This bit signals the occurrence of any of the enabled exception
conditions. It is the logical OR of all the floating-point exception bits masked by their respective enable bits
(FEX = (VX & VE) » (OX & OE) ~ (UX & UE) * (ZX & ZE) ™ (XX & XE)). The mcrfs , mtfsf , mtfsfi , mtfsb0 , and
mtfsb1 instructions cannot alter FPSCR[FEX] explicitly. This is not a sticky bit.

Floating-point invalid operation exception summary. This bit signals the occurrence of any invalid operation
exception. It is the logical OR of all of the invalid operation exceptions. The mcrfs , mtfsf , mtfsfi , mtfsbO , and
mtfsb1 instructions cannot alter FPSCR[VX] explicitly. This is not a sticky bit.

Floating-point overflow exception. This is a sticky bit. See Section 3.3.6.2 Overflow, Underflow, and Inexact
Exception Conditions on page 121.

Floating-point underflow exception. This is a sticky bit. See Underflow Exception Condition on page 124.
Floating-point zero divide exception. This is a sticky bit. See Zero Divide Exception Condition on page 120.

Floating-point inexact exception. This is a sticky bit. See Inexact Exception Condition on page 125.

FPSCR[XX] is the sticky version of FPSCR[FI]. The following rules describe how FPSCR[XX] is set by a given
instruction:

 If the instruction affects FPSCR[FI], the new value of FPSCR[XX] is obtained by logically ORing the old
value of FPSCR[XX] with the new value of FPSCR[FI].

« If the instruction does not affect FPSCR[FI], the value of FPSCR[XX] is unchanged.

Floating-point invalid operation exception for SNaN. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 119.

Floating-point invalid operation exception for o — o0, This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 119.

Floating-point invalid operation exception for « + . This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 119.

Floating-point invalid operation exception for 0 + 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 119.

Floating-point invalid operation exception for * 0. This is a sticky bit. See Invalid Operation Exception Condi-
tion on page 119.

Floating-point invalid operation exception for invalid compare. This is a sticky bit. See Invalid Operation Excep-
tion Condition on page 119.

Floating-point fraction rounded. The last arithmetic or rounding and conversion instruction that rounded the
intermediate result incremented the fraction. See Section 3.3.5 Rounding. This bit is not sticky.

pem2_regset.fm.2.3
March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 2-4. FPSCR Bit Settings (Continued)

Bit(s) Name
14 FI
15-19 FPRF
20 —
21 VXSOFT
22 VXSQRT
23 VXCVI
24 VE
25 OE
26 UE
27 ZE
28 XE
29 NI
30-31 RN

pem2_regset.fm.2.3

March 31, 2005

Description

Floating-point fraction inexact. The last arithmetic or rounding and conversion instruction either rounded the
intermediate result (producing an inexact fraction) or caused a disabled overflow exception. See Section 3.3.5
Rounding. This is not a sticky bit. For more information regarding the relationship between FPSCRI[FI] and
FPSCR[XX], see the description of the FPSCR[XX] bit.

Floating-point result flags. For arithmetic, rounding, and conversion instructions, the field is based on the result
placed into the target register, except that if any portion of the result is undefined, the value placed here is
undefined.

15 Floating-point result class descriptor (C). Arithmetic, rounding, and conversion instructions may set
this bit with the FPCC bits to indicate the class of the result as shown in Table 2-5.

16-19 Floating-point condition code (FPCC). Floating-point compare instructions always set one of the
FPCC bits to one and the other three FPCC bits to zero. Arithmetic, rounding, and conversion instruc-
tions may set the FPCC bits with the C bit to indicate the class of the result. Note that in this case the
high-order three bits of the FPCC retain their relational significance indicating that the value is less
than, greater than, or equal to zero.

16 Floating-point less than or negative (FL or <)
17 Floating-point greater than or positive (FG or >)
18 Floating-point equal or zero (FE or =)

19 Floating-point unordered or NaN (FU or ?)

Note: These are not sticky bits.
Reserved

Floating-point invalid operation exception for software request. This is a sticky bit. This bit can be altered only
by the mcrfs , mtfsfi , mtfsf , mtfsbO , or mtfsb1 instructions. For more detailed information, refer to Invalid
Operation Exception Condition on page 119.

Floating-point invalid operation exception for invalid square root. This is a sticky bit. For more detailed informa-
tion, refer to Invalid Operation Exception Condition on page 119.

Note: If the implementation does not support the optional Floating Square Root or Floating Reciprocal Square
Root Estimate instruction, software can simulate the instruction and set this bit to reflect the exception.

Floating-point invalid operation exception for invalid integer convert. This is a sticky bit. See Invalid Operation
Exception Condition on page 119.

Floating-point invalid operation exception enable. See Invalid Operation Exception Condition on page 119.

|IEEE floating-point overflow exception enable.
See Section 3.3.6.2 Overflow, Underflow, and Inexact Exception Conditions on page 121.

|IEEE floating-point underflow exception enable. See Underflow Exception Condition on page 124.
IEEE floating-point zero divide exception enable. See Zero Divide Exception Condition on page 120.
Floating-point inexact exception enable. See Inexact Exception Condition on page 125.

Floating-point non-IEEE mode. If this bit is set, results need not conform with IEEE standards and the other
FPSCR bits may have meanings other than those described here. If the bit is set and if all implementation-spe-
cific requirements are met and if an IEEE-conforming result of a floating-point operation would be a denormal-
ized number, the result produced is zero (retaining the sign of the denormalized number). Any other effects
associated with setting this bit are described in the user's manual for the implementation (the effects are imple-
mentation-dependent).

Note: When the processor is in floating-point non-IEEE mode, the results of floating-point operations may be
approximate, and performance for these operations may be better, more predictable, or less data-dependent
than when the processor is not in non-IEEE mode. For example, in non-IEEE mode an implementation may
return O instead of a denormalized number, and may return a large number instead of an infinity.

Floating-point rounding control. See Section 3.3.5 Rounding.

00 Round to nearest

01 Round toward zero

10 Round toward +infinity
11 Round toward —infinity

PowerPC Register Set
Page 53 of 721

Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 2-5 illustrates the floating-point result flags used by PowerPC processors. The result flags correspond
to FPSCR bits [15-19].

Table 2-5. Floating-Point Result Flags in FPSCR

Result Flags (Bits [15-19])
Result Value Class
< >

1
-~

Quiet NaN

—Infinity

—Normalized number
—Denormalized number
-Zero

+Zero

+Denormalized number

+Normalized number

oo r O kR Ll o O | O
o o o o Ok + = o
P P P O O O o ol o
o O O|kFr BB | O O o o
P o o o o o o r|

+Infinity

2.1.5 XER Register (XER)

The fixed-point exception register (XER) is a 64-bit register in 64-bit implementations (refer to Figure 2-6) and
a 32-bit register in 32-bit implementations. The XER register is a user-level register.

Figure 2-6. XER Register—64-Bit Implementations

|:| Reserved

0000 0000 0000 0000 0000 0000 0000 0000 | SO|OV|CA 0 0000 0000 0000 0000 O Byte count
0 31 32 33 34 35 56 57 63

The bit definitions for XER, shown in Table 2-6, are based on the operation of an instruction considered as a
whole, not on intermediate results. For example, the result of the Subtract from Carrying (subfc x) instruction
is specified as the sum of three values. This instruction sets bits in the XER based on the entire operation, not
on an intermediate sum.

PowerPC Register Set pem?2_regset.fm.2.3
Page 54 of 721 March 31, 2005

Programming Environments Manual

PowerPC RISC Microprocessor Family

Table 2-6. XER Bit Definitions

Bit(s) Name |Description
0-31 - Reserved (in 64-bit implementations)

Summary overflow. The summary overflow bit [SO] is set whenever an instruction (except mtspr) sets the overflow
bit [OV]. Once set, the [SQO] bit remains set until it is cleared by an mtspr instruction (specifying the XER) or an

32 SO mcrxr instruction. It is not altered by compare instructions, nor by other instructions (except mtspr to the XER, and
mcrxr) that cannot overflow. Executing an mtspr instruction to the XER, supplying the values zero for [SO] and one
for [OV], causes [SQO] to be cleared and [OV] to be set.

Overflow. The overflow bit [OV] is set to indicate that an overflow has occurred during execution of an instruction.
Add, subtract from, and negate instructions having OE = 1 set the [OV] bit if the carry out of the msb is not