
DWARF3: Better than DWARF2

David B. Anderson

December 26, 2001

Abstract

The Debugging Information Format DWARF Version 3 is an enhance-
ment of DWARF Version 2. New features for correctly representing every-
thing in the current C++ and C and Fortran standards. DWARF Version
3 provides new features to allow significant space-compression and allows
generation of debug-information larger than 4GBytes. Yet it is compati-
ble with DWARF Version 2 in that a DWARF reader (such as a debugger)
can easily read both DWARF Version 2 and DWARF Version 3. DWARF
Version 3 provides some basic support for and eliminates obstacles to
using DWARF for Ada and Java.

1 Introduction

A debugger, such as dbx or gdb, requires debugging information and DWARF is
an information format in wide current use. DWARF Version 2 (DWARF2) was
published in 1993 and recent standards developments encouraged the DWARF
committee to reform and to update DWARF.

Volunteers from various companies participated beginning in 1999, culminat-
ing in the January 2002 release of the DWARF Version 3 (DWARF3) document
for public comment. Committee membership was open to anyone throughout
the process.

Here we describe the new features of DWARF3 and mention some correc-
tions and clarifications. We are assuming familiarity with the terminology of
DWARF2. We refer to the 1999 C standard as C99. We refer to the C++
Standard as C++. We refer to the Fortran 90 and 95 standards as Fortran.

2 Overriding Goal

The intent of the committee was to preserve compatibility with DWARF2. Con-
sequently the recording format was not changed. By the end of the deliberations
enough had been changed that the committee changed the DWARF version
numbers and renamed it DWARF3. This was not an easy decision: there was
considerable sentiment to keep the existing version number(s). However in the
end consensus was reached that version numbers should change. An existing

1



consumer (such as a debugger) will therefore not be able to use DWARF3. How-
ever it is easy for a slightly modified consumer to read DWARF2 and DWARF3
mixed into the same executable, so backward compatibility is maintained.

One impetus for the version change was that the C++ changes meant a
DWARF2 consumer would be completely unable to get any useful info from a
compilation unit which implemented DWARF C++ namespace support.

3 Major New Features

3.1 C++ , including Namespaces

DWARF2 was completed before the C++ Standard and before C++ names-
paces were even considered. DWARF3 provides a complete set of features
using DW TAG namespace, DW TAG imported declaration, DW AT import,
and DW AT extension that enables an implementation to represent the visible
namespaces correctly in every function. Implementations may choose to emit a
single namespace declaration showing the complete namespace at the end of the
compilation unit as this is simpler, though it loses some of the details of some
uses of C++ Namespaces.

3.2 Fortran 90 allocated and pointer data

Fortran 90 allocatable and pointer data could not be described in DWARF2.
Such dynamically allocated arrays and pointers that can be associated at run
time mean that there are run-time data structures pointing to the actual run-
time data.

DWARF3 provides the DW AT data location attribute and the expression
operator DW OP push object address. DW AT data location is a location ex-
pression that both defines this as having run-time structures and specifies the
address of the run-time-structures (commonly called dope vectors and described
in DWARF3 as descriptors). DW OP push object address provides the expres-
sive capability in a location expression to describe the data as distinct from the
run-time data structures.

DW AT associated and DW AT allocated attributes provide addresses or
expressions that result in deriving a non-zero value if the array or pointer is
actually associated or allocated at the time of the evaluation.

The run-time data structures that have to be there anyway for the run-
time to work and for a debugger to work can be described directly in DWARF3
without a need for the debugger to have apriori knowledge of the run-time-data-
structures.

3.3 Subroutine calls in expressions

Where DWARF2 spoke of Location Expressions, the DWARF3 document gen-
eralizes this somewhat to describe DWARF Expressions seperately and then to
define Location Expressions in terms of DWARF Expressions.

2



If there are many common sequences in DWARF expressions it can be a
large space saving to use DW OP call2, DW OP call4, or DW OP call ref to
call a DWARF Expression subprogram. And this commonization can be car-
ried across compilation units and across shared-libraries 3.5. Because in come
situations there is no ’obvious’ place to put the called DWARF Expression,
DW TAG dwarf procedure was defined as a TAG to hold a DW AT location
expression to be called.

3.4 DWARF Compression

DWARF2 provided no recognizable means to avoid duplicating DWARF infor-
mation. DWARF3 provides the means by defining DW TAG partial unit and
DW TAG imported unit and providing an explanation and examples in an ap-
pendix. Because much of this involves object format issues and is outside of
DWARF3, the explanation is a template offering means implementations can
choose to use, not a detailed recipe.

An appendix to the DWARF3 document explains how a C or C++ imple-
menation could wind up with only a single copy of a header file in the debug
information. It also demonstrates how the same basic approach allows elim-
inating duplicate functions (as might arise from C++ templates) and unused
functions from the DWARF3 debug information for an executable or dynamic-
shared-library.

The appendix also shows how Fortran common could be treated to eliminate
duplicate DWARF3.

3.5 References Across Shared-Libraries

DWARF2 had DW FORM ref addr for references between compilation units,
but the documentation of it was difficult to interpret. Moreover the explicit
specification of an address-size value of the reference was not useful. DWARF3
makes it clear that these references can be between compilation units even if
the compilation units are in different dynamic-shared-objects. And DWARF3
specifies that the size of the field is an offset-size. References from one dynamic-
shared-object to another requires relocations to be done by the debugger since
only the debugger knows where each dynamic-shared-object is at run time.
Defining these relocations (what they look like, how to implement them) is
outside of DWARF, but the intent to allow such references is clearly specified.

3.6 64-Bit File Offsets

While few collections of debugging-information exceed a 32 bit offset today, real
examples do come close (exceeding 30 bits of offset). Such a large debugging-
information collection cannot be represented in DWARF2. So an extension
was added, usurping 255 values as ’escape codes’ and allowing vendors to emit
DWARF3 with 32-bit-offsets when they are confident that is adequate and to

3



emit DWARF3 with 64-bit-offsets when they think it advisable to do so. Mix-
ing 32-bit-offset DWARF with 64-bit-offset DWARF is simple and requires no
special action on the part of producers (compiler vendors) or consumers (de-
buggers). Producers and consumers that have no interest in 64-bit-offsets can
completely ignore the 64-bit-offset extension and need not code for it.

This has nothing to do with 64-bit-addresses. DWARF2 was always perfectly
capable of representing objects with 64-bit-addresses and DWARF3 retains that
ability.

There are no specific TAGs or Attributes relating to 64-bit-offsets. If offsets
do exceed 64-bits in an executable using 32-bit-offset-DWARF and some offset
cannot be represented properly in DWARF it is a quality-of-implementation
issue whether the static linker warns of the problem.

4 Minor Enhancements

4.1 Describing Void *

DWARF2 provided a specific means to describe a C ’Function Returning void’
(which DWARF3 retains) but was silent about describing C ’void *’. DWARF3
provides a language-independent means to describe such, using DW TAG unspecified
type to describe the language-notion and DW AT name of ’void’ in the C/C++
case as the referent of DW TAG pointer type.

4.2 Inlining information

An appendix gives examples and interpretations of how to represent inlines in
messy cases.

DWARF2 provided no way to describe the *caller location* at the site
of an inlined-function. DWARF3 provides DW AT call file, DW AT call line,
DW AT call column for those implementations wishing to provide this informa-
tion.

4.3 New Data Type

C99 defines the data type Imaginary and DWARF3 defines DW AT imaginary float
to describe this type.

The C++ keyword mutable is representable with DW AT mutable type.

4.4 Function Prologue and Epilogue descriptions

In DWARF2, debuggers which wished to have function-entry-breakpoints set af-
ter the function prologue had run (copying incoming arguments to local storage,
saving registers, etc) had to use heuristics to find a place to set such a break-
point. For example, using line table information (which was dependent on the
details the compiler used in emitting the line information, so it was compiler de-
pendent). In DWARF3, the line table may contain a DW LNS set prologue end

4



flag at the end of the prologue, providing debuggers a precise address to set the
breakpoint.

In DWARF3 the line table may contain 1 or more DW LNS set epilogue begin
flags per function. Each such identifies an address where a debugger may set a
breakpoint ’just before the function returns’, again providing a language- and
compiler-independent means of describing such points (many compilers emit
multiple return sequences for functions where such improves performance of the
application).

4.5 ISA description

If an executable may contain instructions from distinct ISAs (perhaps some ISA
for packing multiple fields into words, for example) the DW LNS set isa flag in
the line table may be used to describe exactly which ISA is in use at which
addresses. ISA identities are vendor-defined, not specified in DWARF3.

4.6 New Languages

Specific codes DW LANG Java, DW LANG C99, DW LANG Ada95, DW LANG Fortran95,
and DW LANG PLI were added so vendors need not define extensions for these
language names: implementations are known to be planning to use the last four.

4.7 Frame Description enhancements

There were two problems with DWARF2 frame descriptions.
First, DWARF2 provided no means for using DWARF expressions in a frame

description, which was a problem for certain unusual architectures. DWARF3
provides DW CFA def cfa expression and DW CFA expression for those imple-
mentations that require it.

Second, DWARF2 provided no means for describing stack-frames with data
both above and below the CFA (virtual frame pointer for the frame). DWARF3
provides DW CFA cfa offset extended sf, DW CFA def cfa sf, and DW CFA def cfa offset sf
allowing a consise representation for such a stack frame description. These three
operators are not strictly necessary since the DW CFA def cfa expression and
DW CFA expression provide enough expressiveness, but the * sf forms were
sufficiently more space efficient that they were adopted.

4.8 Trampoline

DWARF2 provided no means to identify compiler-created code for calls to func-
tions in dynamic-shared-libraries (often called ’stub code’ or ’trampoline’) or
to identify code used to implement stack unwinding for exception handling.
DWARF3 allows an implementation to emit the DW AT trampoline attribute
to identify such code so a debugger can make a decision about how to deal with
it.

5



4.9 UTF8

DWARF2 provided no means to deal with multibyte characters. DWARF3
provides DW AT use UFT8 which is a flag telling the debugger that all strings
in this compilation unit are UTF8 multibyte strings. This attribute only appears
in the .debug info section but applies to all strings for this compilation unit in
all DWARF3 sections having strings.

4.10 Non-contiguous Functions

DWARF2 provided no means to deal with non-contiguous functions. Such func-
tions might result from optimizations moving ’low frequency’ code off away from
the main high-frequency code. For example, many error-message situations
never ever arise. One result of such an optimization is a reduced working set
size.

DWARF3 provides DW AT ranges as an alternative to the simple contiguous-
function DW AT low pc DW AT high pc attributes. DW AT ranges refers to
the new DWARF3 object file section .debug ranges, where the ranges are en-
coded.

4.11 Pubtypes

DWARF2 had no special means of mentioning globally-distinct types, such as
C++ classes, which are guaranteed by the language to be unique and identical
across compilation-units. DWARF3 defines the new section .debug pubtypes
(with a format identical to .debug pubnames used for global variables) providing
the debugger with a means for fast lookup (given a class name find the right
compilation unit).

5 Format incompatibilities

There are only three changes directly affecting the format of the DWARF data
, all mentioned in DWARF3 section 1.5.1.

5.1 Large Initial Length

Certain (large) values of the initial length field used in various DWARF sections
were reserved as escape codes 3.6. Because no known instances of DWARF
data with lengths within 255 bytes of the maximum offset recordable in 4 bytes
exist this should have no practical impact on the interpretation of DWARF
information in existing object files.

5.2 DW FORM ref addr

DW FORM ref addr was defined in DWARF2 as being the size of a target-
machine address. DWARF3 defines this as a section offset, which can be 32 or

6



64 bits3.6.

5.3 CIE return address register field

The return-address-register field in the Common Information Entry(CIE) in
the .debug frame section was defined as an unsigned byte in DWARF2. This
field is now defined as an unsigned LEB128 field. The change was made as the
definition seemed pointlessly constraining to newer CPUs with large numbers
of registers that might want a larger return-address-register designation. None
of the implementations currently using dwarf frame-description information are
known to have needed a number here greater than 127. The actual bits recorded
are the same for both field definitions with the return-address-register value less
than 128 (see the LEB128 definition in the DWARF 2 or DWARF3 documents)
so all existing object files would show the same bit pattern with either definition.
So no actual binary incompatibility applies to existing implementations.

6 New TAGs, Attributes, etc in brief

Some of the new features are not just TAGS and attributes, but all the new en-
tities given assigned values in DWARF3 are listed here with a short description.

• DW TAG dwarf procedure 0x36, used as a placeholder for DW OP call*ed
subroutines.

• DW TAG restrict type 0x37, restrict is a a C99 keyword.

• DW TAG interface type 0x38, for Java interface types.

• DW TAG namespace 0x39, used with C++ namespaces

• DW TAG imported module 0x3a, for example, used with Fortran
modules.

• DW TAG unspecified type 0x3b, used for C ’void’ for example.

• DW TAG partial unit 0x3c, used in compressing DWARF3
(eliminating duplicate DWARF).

• DW TAG imported unit 0x3d, used to reference a normal or partial
compilation unit that logically belongs ’inside’ the referencing compilation
unit at the point of the reference.

• DW TAG mutable type 0x3e, used to represent C++ keyword
’mutable’.

• DW AT allocated 0x4e, used with Fortran allocated data.

• DW AT associated 0x4f, used with Fortran associated data.

7



• DW AT data location 0x50, used with Fortran allocated and
associated data.

• DW AT stride 0x51, added to deal with Fortran array slices.

• DW AT entry pc 0x52, for functions whose entry point is not
the lowest address in the function.

• DW AT use UTF8 0x53, to signal that all strings in the
compilation unit are UTF8 multibyte form (the only clue UTF* is in use).

• DW AT extension 0x54, a general purpose attribute, contents
vendor defined.

• DW AT ranges 0x55, reference to a new section allowing
function code to be non-contiguous.

• DW AT trampoline 0x56, identifies a function as being compiler
generated such as dynamic-shared-library stub code or exception-handling
code.

• DW AT call column 0x57, identifies the column of the call site
(not called routine) for more precise debugging of inlined functions.

• DW AT call file 0x58 , identifies the file of the call site (not
called routine) for more precise debugging of inlined functions.

• DW AT call line 0x59, identifies the line of the call site (not
called routine) for more precise debugging of inlined functions.

• DW AT description 0x5a, for compiler augmented descriptions
of an entity.

• DW OP push object address 0x97, used with Fortran allocated and
pointer types to correctly calculate addresses of data.

• DW OP call2 0x98, call allows expression subroutines.

• DW OP call4 0x99, call allows expression subroutines.

• DW OP call ref 0x9a, call allows expression subroutines

• DW ATE imaginary float 0x9, imaginary float is a new C99 data
type.

• DW LANG Java 0x000b

• DW LANG C99 0x000c

• DW LANG Ada95 0x000d

• DW LANG Fortran95 0x000e

8



• DW LANG PLI 0x000f

• DW LNS set prologue end 10, used to precisely identify the end of
the function prologue and the beginning of user code in a function.

• DW LNS set epilogue begin 11, used to precisely identify the end
of user code and the beginning of the return point (multiple points if
there is code generated for multiple returns) so a debugger can easily set
a breakpoint before function return.

• DW LNS set isa 12, allows precise description of which
instructions are what instruction set architecture in systems using multiple
instruction set architectures in a single executable.

• DW LNE lo user 128, identify range of codes usable by the
compiler implementor for vendor extensions.

• DW LNE hi user 255, identify range of codes usable by the
compiler implementor for vendor extensions.

• DW CFA def cfa expression 0x0f, allow for general expressions in frame
descriptions.

• DW CFA expression 0x10, allow for general expressions in frame
descriptions.

• DW CFA cfa offset extended sf 0x11, allow more flexible frame descrip-
tions, compactly.

• DW CFA def cfa sf 0x12, allow more flexible frame descriptions,
compactly.

• DW CFA def cfa offset sf 0x13, allow more flexible frame descriptions,
compactly.

9


