
Double Bu�er Extension LibraryProtocol Version 1.0X Consortium StandardIan ElliottHewlett-Packard Company David P. WigginsX Consortium, Inc.December 20, 1996



Double Bu�er Extension Speci�cation 2Copyright c1989 X Consortium, Inc. and Digital Equipment Corporation.Copyright c1992 X Consortium, Inc. and Intergraph Corporation.Copyright c1993 X Consortium, Inc. and Silicon Graphics, Inc.Copyright c1994, 1995 X Consortium, Inc. and Hewlett-Packard Company.Permission to use, copy, modify, and distribute this documentation for anypurpose and without fee is hereby granted, provided that the above copyrightnotice and this permission notice appear in all copies. Digital EquipmentCorporation, Intergraph Corporation, Silicon Graphics, Hewlett-Packard, andthe X Consortium make no representations about the suitability for anypurpose of the information in this document. This documentation is provided\as is" without express or implied warranty.



Double Bu�er Extension Speci�cation 31 IntroductionThe Double Bu�er Extension (DBE) provides a standard way to utilizedouble-bu�ering within the framework of the X Window System.Double-bu�ering uses two bu�ers, called front and back, which hold images.The front bu�er is visible to the user; the back bu�er is not. Successiveframes of an animation are rendered into the back bu�er while the previouslyrendered frame is displayed in the front bu�er. When a new frame is ready,the back and front bu�ers swap roles, making the new frame visible. Ideally,this exchange appears to happen instantaneously to the user and with novisual artifacts. Thus, only completely rendered images are presented to theuser, and they remain visible during the entire time it takes to render a newframe. The result is a icker-free animation.2 GoalsThis extension should enable clients to:� Allocate and deallocate double-bu�ering for a window.� Draw to and read from the front and back bu�ers associated with awindow.� Swap the front and back bu�ers associated with a window.� Specify a wide range of actions to be taken when a window is swapped.This includes explicit, simple swap actions (de�ned below), and morecomplex actions (for example, clearing ancillary bu�ers) that can be puttogether within explicit \begin" and \end" requests (de�ned below).� Request that the front and back bu�ers associated with multipledouble-bu�ered windows be swapped simultaneously.In addition, the extension should:� Allow multiple clients to use double-bu�ering on the same window.� Support a range of implementation methods that can capitalize onexisting hardware features.� Add no new event types.� Be reasonably easy to integrate with a variety of direct graphicshardware access (DGHA) architectures.



Double Bu�er Extension Speci�cation 43 ConceptsNormal windows are created using the core CreateWindow request, whichallocates a set of window attributes and, for InputOutput windows, a frontbu�er, into which an image can be drawn. The contents of this bu�er will bedisplayed when the window is visible.This extension enables applications to use double-bu�ering with a window.This involves creating a second bu�er, called a back bu�er, and associatingone or more back bu�er names (XIDs) with the window for use when referringto (that is, drawing to or reading from) the window's back bu�er. The backbu�er name is a DRAWABLE of type BACKBUFFER.DBE provides a relative double-bu�ering model. One XID, the window,always refers to the front bu�er. One or more other XIDs, the back bu�ernames, always refer to the back bu�er. After a bu�er swap, the windowcontinues to refer to the (new) front bu�er, and the back bu�er namecontinues to refer to the (new) back bu�er. Thus, applications and toolkitsthat want to just render to the back bu�er always use the back bu�er namefor all drawing requests to the window. Portions of an application that wantto render to the front bu�er always use the window XID for all drawingrequests to the window.Multiple clients and toolkits can all use double-bu�ering on the same window.DBE does not provide a request for querying whether a window hasdouble-bu�ering support, and if so, what the back bu�er name is. Given theasynchronous nature of the X Window System, this would cause raceconditions. Instead, DBE allows multiple back bu�er names to exist for thesame window; they all refer to the same physical back bu�er. The �rst time aback bu�er name is allocated for a window, the window becomesdouble-bu�ered and the back bu�er name is associated with the window.Subsequently, the window already is a double-bu�ered window, and nothingabout the window changes when a new back bu�er name is allocated, exceptthat the new back bu�er name is associated with the window. The windowremains double-bu�ered until either the window is destroyed or until all of theback bu�er names for the window are deallocated.In general, both the front and back bu�ers are treated the same. Inparticular, here are some important characteristics:� Only one bu�er per window can be visible at a time (the front bu�er).� Both bu�ers associated with a window have the same visual type, depth,width, height, and shape as the window.� Both bu�ers associated with a window are \visible" (or \obscured") in



Double Bu�er Extension Speci�cation 5the same way. When an Expose event is generated for a window, bothbu�ers should be considered to be damaged in the exposed area.Damage that occurs to either bu�er will result in an Expose event onthe window. When a double-bu�ered window is exposed, both bu�ersare tiled with the window background, exactly as stated by the coreprotocol. Even though the back bu�er is not visible, terms such asobscure apply to the back bu�er as well as to the front bu�er.� It is acceptable at any time to pass a BACKBUFFER in any request,notably any core or extension drawing request, that expects aDRAWABLE. This enables an application to draw directly intoBACKBUFFERs in the same fashion as it would draw into any otherDRAWABLE.� It is an error (Window) to pass a BACKBUFFER in a core request thatexpects a Window.� A BACKBUFFER will never be sent by core X in a reply, event, orerror where a Window is speci�ed.� If core X11 backing-store and save-under applies to a double-bu�eredwindow, it applies to both bu�ers equally.� If the core ClearArea request is executed on a double-bu�ered window,the same area in both the front and back bu�ers is cleared.The e�ect of passing a window to a request that accepts a DRAWABLE isunchanged by this extension. The window and front bu�er are synonomouswith each other. This includes obeying the GetImage semantics and thesubwindow-mode semantics if a core graphics context is involved. Regardlessof whether the window was explicitly passed in a GetImage request, orimplicitly referenced (that is, one of the window's ancestors was passed in therequest), the front (that is, visible) bu�er is always referenced. Thus,DBE-na��ve screen dump clients will always get the front bu�er. GetImage ona back bu�er returns unde�ned image contents for any obscured regions of theback bu�er that fall within the image.Drawing to a back bu�er always uses the clip region that would be used todraw to the front bu�er with a GC subwindow-mode of ClipByChildren. Ifan ancestor of a double-bu�ered window is drawn to with a core GC having asubwindow-mode of IncludeInferiors, the e�ect on the double-bu�eredwindow's back bu�er depends on the depth of the double-bu�ered windowand the ancestor. If the depths are the same, the contents of the back bu�erof the double-bu�ered window are not changed. If the depths are di�erent,the contents of the back bu�er of the double-bu�ered window are unde�nedfor the pixels that the IncludeInferiors drawing touched.



Double Bu�er Extension Speci�cation 6DBE adds no new events. DBE does not extend the semantics of any existingevents with the exception of adding a new DRAWABLE type calledBACKBUFFER. If events, replies, or errors that contain a DRAWABLE (forexample, GraphicsExpose) are generated in response to a request, theDRAWABLE returned will be the one speci�ed in the request.DBE advertises which visuals support double-bu�ering.DBE does not include any timing or synchronization facilities. Applicationsthat need such facilities (for example, to maintain a constant frame rate)should investigate the Synchronization Extension, an X Consortium standard.3.1 Window Management OperationsThe basic philosophy of DBE is that both bu�ers are treated the same by coreX window management operations.When the core DestroyWindow is executed on a double-bu�ered window, bothbu�ers associated with the window are destroyed, and all back bu�er namesassociated with the window are freed.If the core ConfigureWindow request changes the size of a window, bothbu�ers assume the new size. If the window's size increases, the e�ect on thebu�ers depends on whether the implementation honors bit gravity for bu�ers.If bit gravity is implemented, then the contents of both bu�ers are moved inaccordance with the window's bit gravity (see the core ConfigureWindowrequest), and the remaining areas are tiled with the window background. Ifbit gravity is not implemented, then the entire unobscured region of bothbu�ers is tiled with the window background. In either case, Expose events aregenerated for the region that is tiled with the window background.If the core GetGeometry request is executed on a BACKBUFFER, thereturned x, y, and border-width will be zero.If the Shape extension ShapeRectangles, ShapeMask, ShapeCombine, orShapeOffset request is executed on a double-bu�ered window, both bu�ersare reshaped to match the new window shape. The region di�erence is thefollowing: D = newshape� oldshapeIt is tiled with the window background in both bu�ers, and Expose events aregenerated for D.



Double Bu�er Extension Speci�cation 73.2 Complex Swap ActionsDBE has no explicit knowledge of ancillary bu�ers (for example, depth bu�ersor alpha bu�ers), and only has a limited set of de�ned swap actions. Someapplications may need a richer set of swap actions than DBE provides. SomeDBE implementations have knowledge of ancillary bu�ers, and/or can providea rich set of swap actions. Instead of continually extending DBE to increaseits set of swap actions, DBE provides a exible \idiom" mechanism. If anapplication's needs are served by the de�ned swap actions, it should use them;otherwise, it should use the following method of expressing a complex swapaction as an idiom. Following this policy will ensure the best possibleperformance across a wide variety of implementations.As suggested by the term \idiom," a complex swap action should be expressedas a group/series of requests. Taken together, this group of requests may becombined into an atomic operation by the implementation, in order tomaximize performance. The set of idioms actually recognized for optimizationis implementation dependent. To help with idiom expression andinterpretation, an idiom must be surrounded by two protocol requests:DBEBeginIdiom and DBEEndIdiom. Unless this begin-end pair surrounds theidiom, it may not be recognized by a given implementation, and performancewill su�er.For example, if an application wants to swap bu�ers for two windows, and usecore X to clear only certain planes of the back bu�ers, the application wouldissue the following protocol requests as a group, and in the following order:� DBEBeginIdiom request.� DBESwapBuffers request with XIDs for two windows, each of which usesa swap action of Untouched.� Core X PolyFillRectangle request to the back bu�er of one window.� Core X PolyFillRectangle request to the back bu�er of the otherwindow.� DBEEndIdiom request.The DBEBeginIdiom and DBEEndIdiom requests do not perform any actionsthemselves. They are treated as markers by implementations that cancombine certain groups/series of requests as idioms, and are ignored by otherimplementations or for nonrecognized groups/series of requests. If theserequests are sent out of order, or are mismatched, no errors are sent, and therequests are executed as usual, though performance may su�er.



Double Bu�er Extension Speci�cation 8An idiom need not include a DBESwapBuffers request. For example, if a swapaction of Copied is desired, but only some of the planes should be copied, acore X CopyArea request may be used instead of DBESwapBuffers. IfDBESwapBuffers is included in an idiom, it should immediately follow theDBEBeginIdiom request. Also, when the DBESwapBuffers is included in anidiom, that request's swap action will still be valid, and if the swap actionmight overlap with another request, then the �nal result of the idiom must beas if the separate requests were executed serially. For example, if the speci�edswap action is Untouched, and if a PolyFillRectangle using a client cliprectangle is done to the window's back bu�er after the DBESwapBuffersrequest, then the contents of the new back bu�er (after the idiom) will be thesame as if the idiom was not recognized by the implementation.It is highly recommended that Application Programming Interface (API)providers de�ne, and application developers use, \convenience" functions thatallow client applications to call one procedure that encapsulates commonidioms. These functions will generate the DBEBeginIdiom request, the idiomrequests, and DBEEndIdiom request. Usage of these functions will ensure bestpossible performance across a wide variety of implementations.4 C Language BindingThe header for this extension is <X11/extensions/Xdbe.h>. All identi�ernames provided by this header begin with Xdbe.4.1 TypesThe type XdbeBackBuffer is a Drawable.The type XdbeSwapAction can be one of the constants XdbeUndefined,XdbeBackground, XdbeUntouched, or XdbeCopied.4.2 C FunctionsThe C functions provide direct access to the protocol and add no additionalsemantics. For complete details on the e�ects of these functions, refer to theappropriate protocol request, which can be derived by replacing Xdbe at thestart of the function name with DBE. All functions that have return typeStatus will return nonzero for success and zero for failure.



Double Bu�er Extension Speci�cation 9StatusXdbeQueryExtension ( Display * dpy, int * major version return,int * minor version return )XdbeQueryExtension sets major version return and minor version return tothe major and minor DBE protocol version supported by the server. If theDBE library is compatible with the version returned by the server, it returnsnonzero. If dpy does not support the DBE extension, or if there was an errorduring communication with the server, or if the server and library protocolversions are incompatible, it returns zero. No other Xdbe functions may becalled before this function. If a client violates this rule, the e�ects of allsubsequent Xdbe calls that it makes are unde�ned.XdbeScreenVisualInfo *XdbeGetVisualInfo ( Display * dpy, Drawable * screen speci�ers, int *num screens )XdbeGetVisualInfo returns information about which visuals support doublebu�ering. The argument num screens speci�es how many elements there arein the screen speci�ers list. Each drawable in screen speci�ers designates ascreen for which the supported visuals are being requested. If num screens iszero, information for all screens is requested. In this case, upon return fromthis function, num screens will be set to the number of screens that werefound. If an error occurs, this function returns NULL; otherwise, it returns apointer to a list of XdbeScreenVisualInfo structures of length num screens.The nth element in the returned list corresponds to the nth drawable in thescreen speci�ers list, unless num screens was passed in with the value zero, inwhich case the nth element in the returned list corresponds to the nth screenof the server, starting with screen zero.The XdbeScreenVisualInfo structure has the following �elds:int count number of items in visinfoXdbeVisualInfo * visinfo list of visuals and depths for this screenThe XdbeVisualInfo structure has the following �elds:VisualID visual one visual ID that supports double-bu�eringint depth depth of visual in bitsint perevel performance level of visual



Double Bu�er Extension Speci�cation 10voidXdbeFreeVisualInfo ( XdbeScreenVisualInfo * visual info )XdbeFreeVisualInfo frees the list of XdbeScreenVisualInfo returned byXdbeGetVisualInfo.XdbeBackBu�erXdbeAllocateBackBu�erName ( Display * dpy, Window window,XdbeSwapAction swap action )XdbeAllocateBackBufferName returns a drawable ID used to refer to theback bu�er of the speci�ed window. The swap action is a hint to indicate theswap action that will likely be used in subsequent calls to XdbeSwapBuffers.The actual swap action used in calls to XdbeSwapBuffers does not have to bethe same as the swap action passed to this function, though clients areencouraged to provide accurate information whenever possible.StatusXdbeDeallocateBackBu�erName ( Display * dpy, XdbeBackBu�er bu�er )XdbeDeallocateBackBufferName frees the speci�ed drawable ID, bu�er, thatwas obtained via XdbeAllocateBackBufferName. The bu�er must be a validname for the back bu�er of a window, or an XdbeBadBuffer error results.StatusXdbeSwapBu�ers ( Display * dpy, XdbeSwapInfo * swap info,int num windows )XdbeSwapBuffers swaps the front and back bu�ers for a list of windows. Theargument num windows speci�es how many windows are to have their bu�ersswapped; it is the number of elements in the swap info array. The argumentswap info speci�es the information needed per window to do the swap.The XdbeSwapInfo structure has the following �elds:Window swap window window for which to swap bu�ersXdbeSwapAction swap action swap action to use for this swap windowStatusXdbeBeginIdiom ( Display * dpy )XdbeBeginIdiom marks the beginning of an idiom sequence. See section 3.2for a complete discussion of idioms.



Double Bu�er Extension Speci�cation 11StatusXdbeEndIdiom ( Display * dpy )XdbeEndIdiom marks the end of an idiom sequence.XdbeBackBu�erAttributes *XdbeGetBackBu�erAttributes ( Display * dpy, XdbeBackBu�er bu�er )XdbeGetBackBufferAttributes returns the attributes associated with thespeci�ed bu�er.The XdbeBackBufferAttributes structure has the following �elds:Window window window that bu�er belongs toIf bu�er is not a valid XdbeBackBuffer, window is set to None.The returned XdbeBackBufferAttributes structure can be freed with theXlib function XFree.4.3 ErrorsThe XdbeBufferError structure has the following �elds:int typeDisplay * display Display the event was read fromXdbeBackBu�er bu�er resource idunsigned long serial serial number of failed requestunsigned char error code error base + XdbeBadBufferunsigned char request code Major op-code of failed requestunsigned char minor code Minor op-code of failed request



Double Bu�er Extension Speci�cation 125 AcknowledgementsWe wish to thank the following individuals who have contributed their timeand talent toward shaping the DBE speci�cation:T. Alex Chen, IBM; Peter Daifuku, Silicon Graphics, Inc.; Ian Elliott,Hewlett-Packard Company; Stephen Gildea, X Consortium, Inc.; Jim Graham,Sun; Larry Hare, AGE Logic; Jay Hersh, X Consortium, Inc.; Daryl Hu�,Sun; Deron Dann Johnson, Sun; Louis Khouw, Sun; Mark Kilgard, SiliconGraphics, Inc.; Rob Lembree, Digital Equipment Corporation; Alan Ricker,Metheus; Michael Rosenblum, Digital Equipment Corporation; Bob Scheier,X Consortium, Inc.; Larry Seiler, Digital Equipment Corporation; JeanneSparlin Smith, IBM; Je� Stevenson, Hewlett-Packard Company; WalterStrand, Metheus; Ken Tidwell, Hewlett-Packard Company; and David P.Wiggins, X Consortium, Inc.Mark provided the impetus to start the DBE project. Ian wrote the �rst draftof the speci�cation. David served as architect.6 ReferencesJe�rey Friedberg, Larry Seiler, and Je� Vroom, \Multi-bu�ering ExtensionSpeci�cation Version 3.3."Tim Glauert, Dave Carver, Jim Gettys, and David P. Wiggins, \XSynchronization Extension Version 3.0."


