The X Keyboard Extension:
Library Specification

Library Version 1.0 / Document Revision 1.1
X Consortium Standard

X Version 11, Release 6.4

Amber J. Benson and Gary Aitken

Erik Fortune
Silicon Graphics, Inc.

Donna Converse
X Consortium Inc.

George Sachs
Hewlett-Packard Company

W1 Walker
Digital Equipment Corporation

Copyright © 1995, 1996 X Consortium Inc.

Copyright © 1995, 1996 Silicon Graphics Inc.
Copyright © 1995, 1996 Hewlett-Packard Company
Copyright © 1995, 1996 Digital Equipment Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and
associated documentation files (the “ Software”), to deal in the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
S0, subject to the following conditions:

The above copyright notice and this permission notice shall beincluded in all copies or substantial
portions of the Software.

THE SOFTWARE ISPROVIDED “ASIS’, WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGE-
MENT. IN NO EVENT SHALL THE X CONSORTIUM BE LIABLE FOR ANY CLAIM,
DAMAGESOR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR
OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR
THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Except as contained in this notice, the names of the X Consortium, Silicon GraphicsInc.,
Hewlett-Packard Company, and Digital Equipment Corporation shall not be used in advertising or
otherwise to promote the sale, use or other dealings in this Software without prior written authori-
zation.

Acknowledgments

This document isthe result of agreat deal of hard work by a great many people. Without Erik For-
tune’s work as Architect of the X Keyboard Extension and the longtime support of Silicon Graph-
ics Inc. there would not be a keyboard extension.

We gratefully thank Will Walker and George Sachs for their help and expertise in providing some
of the content for this document, and Digital Equipment Corporation and Hewlett-Packard for
allowing them to participate in this project, and we are deeply indebted to IBM for providing the
funding to complete this library specification.

Most of al, we thank Gary Aitken and Amber J. Benson for their long hours and late nights as
ultimate authors of this specification, and for serving as authors, document editors, and XKB pro-
tocol and implementation reviewers. Their commitment to accuracy and completeness, their
attention to detail, their keen insight, and their good natures when working under tremendous
pressure are in some measure responsible not only for the quality of this document, but for the
quality of the Keyboard extension itself.

Matt Landau

Manager, X Window System
X Consortium Inc.

5 February 1996

The X Keyboard Extension

The following table shows the font conventions used in this document:

Usage Font example

Key Labels Num_Lock

New terms SowKeys acceptance delay

Function definitions XkbColorPtr XkbAddGeomColor (geom,spec,pixel)
Function references XkbAddGeomCol or

Parameters or arguments geom

Structure definitions XkbGeometryRec

Structure references XkbGeometryRec

Referencesto fieldsin adatastructure key_aliases
References to masks, modifiers, controls IgnoreGroupLock

November 10, 1997 Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

1 OVEIVIBIW ...ttt ettt et e e et e et e e sae e e beesaeeebeesaeesateesaeesnseesseesareenneenans 1
11 Core X Protocol Support for Keyboards..........coueeeeirenienesese e seeseeesaeseeeeessesseenens 1

12 Xkb Keyboard Extension Support for Keyboards.............coceiiininene e 1

13 XKD EXtENSION COMPONENES.c.eevieetireetireeierieieseeesi s sn s snees 1

1.3 1 Groupsand Shift LEVEIS.......cooiiieeeeeeeeese e 3

1.3.2 REOIO GIOUPS.....eeitereetereeie ettt sttt sttt sttt st b et s r et bt b 3

14 L0 T o Y o= S 3

15 Compatibility With the Core ProtOCOLccccuriririrenenesese s 4

16 Additional ProtOCOI EFTOIScc.oiiiiiiiiese ettt s 4

1.7 Extension Library FUNCHIONS........cccvieierieieecceeeese st e 4

171 Eror INAICAHONSoeeveieeieriee et 4

2 Initialization and General Programming Information............ccccoevninnceneninnene 6
21 EXtENSION HEAOEK FIIES......oiuiiiiii ettt 6

22 EXEENSION NAIMIE ...ttt st 6

2.3 Determining Library CompatibDilitycoeoeieiiiree e 6

24 Initializing the Keyboard EXTENSION..........ccciiiiee e 7

25 Disabling the Keyboard EXLENSION.........ccccereieeccere e 8

2.6 PrOLOCOI EITOIS ...ttt bbb bbbt 9

2.7 Display and Device Specificationsin FUNCLion CallS........c.coveriiriineiencec e 9

3 Dala SLIUCIUIES......co ittt st ssb e sab e s nsn e s bee e saneees 11
31 Allocating XKD Data SITUCLUIEScouirieiiiieiieee et st e 11

3.2 Adding Data and Editing Data StrUCLUFES.........ccereeeieeeeeieeese e 11

33 Making Changes to the Server's Keyboard DeSCriptionccocvvevveveneseseeseneeneeeeneene 12

34 Tracking Keyboard Changes in the SEIVES ..o 12

35 Freaing Data SEUCIUMES.........coueiiiiieirt et bbb 13

4 XKD EVENES.....coeeeece ettt ettt e r e e e reenreenee s 14
41 XKD EVENE TYPES ...ttt ettt b et bbb bbb e e e e e 14

4.2 XKD EVENt DELA SEIUCLUIES........coueieeieiieitesies ettt see st e e e et e e 15

4.3 SEleCtiNG XKD EVENLS ..ottt ens 15

431 EVENE MASKS. ..ottt sttt sttt sttt et et s bena e 17

44 Unified XKD EVENE TYPE....ccueiiriiiietiie ettt sttt s e 18

5 KEYDOAID SEALE.......cceeieieeieeee e e 19
51 Keyboard State DESCIIPLION........cccviirerereireereereeee et e et ae e e e enenns 19

5.2 Changing the Keyboard State............ccoce e 22

521 Changing MOGITIErSccoririiiiiie e e e 22

522 Changing GIOUDSccueereruereriestestesieseessesseseesesseeesessessesaessesseseessessessesssnsenesnes 23

53 Determining KeybOard SLALE.........cccoiiriririieiieesiees e 23

54 Tracking Keyboard SAE.........ccccveeeiriiisese e seeeee et sae e e ne e ens 24

6 Complete Keyboard DESCIiPLION.........cccueiirieiiesie e 27
6.1 The XKDDESCREC SLIUCIUIE..........eeueitirieiiisiesie ettt see st e e et e 27

6.2 Obtaining a Keyboard Description from the SErVer ... vese s 28

6.3 Tracking Changes to the Keyboard Description in the SErvercccovvveieveneeiieeeene 28

6.4 Allocating and Freeing a Keyboard DesCription...........ccceveerieerieenieienieesieeseeeseeseeeees 28

7 Virtual MOAITIENS......oceeeceeece e s 30
7.1 Virtual Modifier NameS and MasKScoeriierierieeeeeeeieeese e e e 30

November 10, 1997 Library Version 1.0/Document Revision 1.1 TOC-1

The X Keyboard Extension

10

7.2 MOdIfier DEfINITIONS.......ccviiieece ettt e sbe e e re e aeeenns 30
7.3 Binding Virtual Modifiersto Real MOAifiers.........ccooeoeeerinininene e 31
7.4 Virtual Modifier K&y Mapping.......cccveerieierirerereeeeeeseeseseesese e se s sses e seeseenessseseensssens 31
741 INACHVE MOGITIEr SELS ..ot b e 32
7.5 CONMVENTIONS......oeeitieciee ittt ettt s e e st e e te e s beeebeeebee s beesaeesabeesseesaseesbesanseebessnbeenseesareens 32
7.6 EXBIMPIE. .ttt 32
FgTo [To= o (=TRSOOSO 34
8.1 INAICALOr NGIMES ...ttt et e e s te e be e s aee e ebeeebeeeabeesaeesabeesneesnreesanas 34
8.2 INAiCAtOr Data SETUCIUIES......ceecveeiiteceiee et cetee et ete e e et bee e beesbessbeeeaeesnbeesreeenreesanas 34
8.2.1 XKBINAICAOIRECeiiveectiecteectee ettt ettt sttt et e ere e be s sabeenbeesareens 34
8.2.2 XKbINICAOIMBPREC.........cceiueiiteirieieie sttt 35
8.3 Getting Information ABOUL INCICALOrS.........ccvieieireerecree e e 39
8.3.1 Getting INAICAOr SEAE.....ceeuereereeeeiriere ettt 40
8.3.2 Getting Indicator Information by INAEXcccevveeeieececicece e 40
8.3.3 Getting Indicator Information by Nameccccvecveveeeerenieve e 40
84 Changing Indicator Maps and SEELE...........coerereririeiereeeeeeeeeet e e 41
84.1 Effectsof Explicit Changes on INdiCators...........cceoreeerierininere e 41
8.4.2 Changing Indicator Maps by INAEX.........cceoeriiiiieiiniere e 42
8.4.3 Changing Indicator Maps by Name..........ccoeriiiiiiinn e 43
8.4.4 The XkbIndicatorChangeSREC StrUCIUIEccveeereeiieeeere e s 43
85 Tracking Changes to INdicator State OF Map.......ccevereeeeierereeire e 44
8.6 Allocating and Freeing INdiCator MapS..........coeierereereeieeeseresesese e e e seeseeeeseeeenens 45
Bl S ittt e — et ettt e —————————taaereaaa——————ratatsraaa——————— 47
9.1 L2 TS LI NN E= 0 4= 47
9.2 AUAIDIE BEIIS.....c.veteetececte ettt sttt st et eaneebe s e sbeenresreenesaeennens 48
9.3 BEI FUNCLIONS ...ttt ettt b st ae e et e e saeeenteesbeeenneenbeeenns 48
9.3.1 Generating Named BElIS........ccooeeieiieie e 49
9.3.2 Generating Named Bell EVENLS.........ccccvvieiieiece s 50
9.3.3 Forcing aServer-Generated Bell...........coooveiiiieie e 51
94 DELECHNG BEIIS.......oeceieceieeite st 51
(Y] 00 =0 @0 0 1 0] S 53
10.1 Controls that Enable and Disable Other CONtrolS..........coeeeeiieeiieciee e 54
10.1.1 The EnabledControls CONIOlcceeiieeiieiieccreecee ettt e 54
10.1.2 The AULORESEL CONLIOLcccuviiiieiieciee sttt ettt e reeeree s 55
10.2 Control fOr BEIl BENAVIOTciicveeceeecieectee ettt st ettt e bee e be s sbeenreesareens 56
10.2.1 The AudibleBEl CONLIOl.........ccvvieeeeiie et 56
10.3 Controlsfor Repeat Ky BENAVIONccovviiere it 56
10.3.1 The PerKeyRepeat CONrolccccciereeieeeeeeeerere e 56
10.3.2 The RepeatKeyS CONtIOlcccviiieriereeeeereeeeese st 56
10.3.3 The DetectableAutorepeat CONtrolc.coeeeerereriesesese e e e eeeneenes 57
10.4 Controls for Keyboard Overlays (Overlayl and Overlay2 Controls).........cccccevevvvenveennene. 58
105 Controlsfor Using the Mouse from the Keyboard............c.cccoeriinninnennenccnecneees 59
1051 TheMouSEKEYS CONLIOLcccciieiiieeiieeriees et 59
10.5.2 The MouseKeySACCE CONLIOL.........coiieirieirieirieesi e 59
10.6 Controls for Better Keyboard Access by Physically Impaired Persons...........ccccceveeveunee. 61
10.6.1 The AcCesSXKEYS CONIOl......ccciveriereeeeeeeee s se et s 62
10.6.2 The AccessXTIimEoUt CONLIOlceeeviieeiiiieeceeee ettt e 62
10.6.3 The AccessXFeedback CONtrol..........cccvcvveviieeieiiee ittt 63
10.6.4 ACCESSXNOLITY EVENLS....cciiieieseiieiereeeeee et 64

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-2

The X Keyboard Extension

11

12

13

10.6.5 StickyKeys, RepeatKeys, and MouseKeys EVENtS.........c.coeveneveneeneneneeeeene 65
10.6.6 The SIOWKEYS CONLIOLcccueiiieiieieeic e e 65
10.6.7 TheBounceKeys CONtrol..........ccciiieiieeere et 66
10.6.8 The SticCkyKeyS CONLIOlccccieciieieeiiceesie ettt 67
10.7 Controlsfor General Keyboard Mapping........c.coeeeereennineineeseesee et 68
10.7.1 The GroupsSWrap CONIOlcceerieeerieerieisieeriee s 69
10.7.2 The IgnoreLockMods CONLIOccoiieirieirieirieesiesi e 69
10.7.3 The IgnoreGroupL ock CONLIOccoeirieirieirieieriesiees e 70
10.7.4 TheInternaMods CONLIOL........ccoieriereieeeeeeeee e 70
10.8 The XKDCONtroISREC SIIUCIUME......ccevieeiereeiereeteree ettt st 71
10.9 (@ U1< Y7100l Oe a1 0] =S 77
10.10 Changing CONIOIS........coueerteerteerrerietereete st seere et et et b e sb et b se b seebeseebeseebeseesessenennas 77
10.10.1 The XkbControl SChangesReC SIIUCIUNE..........ccvrveirieririerirerieese e 78
10.11 Tracking Changes to Keyboard CONrolS.........coeoveieerierene s sese e seeseesee e 79
10.12 Allocating and Freeing an XKbCONtrOISRECc.ccveveeieeie i 80
10.13 The Miscellaneous Per-client CONtIOlSooieeirirereeeeeere e e 8l
X LIDrary CONLIOIS......ccciuieieeieiteeie et eeeste et te e s e eae e e reenesnne e 82
111 Controls Affecting Keycode-to-String Translationccccveeeveceevescee s 82
1111 FOrceLatinILOOKUD.ccvuiiiiiccc s 82
11.1.2 ConSUMEL OOKUPMOUS.......cviieeiieieseeeeiee ettt s 82
11.1.3 AlwaysConsumeShiftANALOCKccooveiriiririnereeeeere e 83
11.2 Controls Affecting COMPOSE PrOCESSINGcueivereirierieriereeeeieeeresesie e ste e e e seeseeesseenes 83
11.2.1 ConsumeKeysONCOmMPOSEFalccurveirieirieirerese e 83
11.2.2 COMPOSELED ... e 84
11.2.3 BeepONCOMPOSEFGIcciviiriiiriiieiiieesie e 84
11.3 Controls Effecting EVENt DEIIVENYccov it 84
11.3.1 IgnoreNewKeyboards ... 84
114 Manipulating the Library CONrolS...........ooeeiiieeesesee e 85
11.4.1 Determining Which Library Controls are Implemented............c.cooeiereneieennne. 85
11.4.2 Determining the State of the Library Controls..........ccocoevininininineneneeee 85
11.4.3 Changing the State of the Library Controls..........cccccoeveiieievieececeeeeeee e, 85
INterpreting KEY EVENLS......c.ooe ettt nne e 87
121 Effects of Xkb onthe Core X Library ... 87
12.1.1 Effects of XKb on EVENt SEALE........coeirieirieirierienese e 87
12.1.2 Effects of Xkb on MappingNotify EVENESccoevviriinnineeees e 87
12.1.3 X Library Functions Affected by XKDc.cceoveeririeiiinieie e 88
122 Xkb Event and Keymap FUNCLIONS..........ccoiiiiieieceeeneee et 89
KeyDOoard GEOMELTYcoouiiiieie it 92
131 ShapeS aNA OULIINESc.veveeeeceeeece st sr e et e e e neens 94
13.2 SECLIONS ...ttt h b b et e e et a et b e b e R bbb e bt ne e e s 95
133 ROWS AN KEYS......oietieciiee ettt bbb 95
134 (D010 o o OSSP 96
135 Overlay Rows and OVerlay KeYSooov ittt st 96
13.6 Drawing a Keyboard REPreSentation...........ccoe et 97
137 GEOMELTY Data SITUCTUIEScocee et see e e saeenaenreenee e 98
13.8 Getting Keyboard Geometry From the SErVercccvveveceececiecc e 104
139 USiNg Keyboard GEOMELTYcoueeiuiririiieieriees et 105
13.10 Adding Elementsto a Keyboard GEOMELIY.........ccccoeeeererisesnse e s 106

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-3

The X Keyboard Extension

14

15

16

13.11 Allocating and Freeing Geometry COMPONENES..........coeruerieriereeieeirereeesesee e 110
XKb Keyboard Mapping........c.ceieeierieieeneeeeseesieseesieeseesseesseessessessseensesneessesnees 116
141 Notation and TErMINOIOGY........ccvierirererererereere e e e e eeeneas 116
14.1.1 Core Implementationccceoeeeerieeesese e 117
14.1.2 XKb IMPIemMentationccoereeeeeereresesese e e seeseeee e se e sresne e sre e seens 117
14.2 Getting Map Components from the SEIVES ..o s 118
14.3 Changing Map Components in the SENVEY ... 120
14.3.1 The XkbMapChangesREC SITUCIUIEcc.cvrueerieirieirieeee e 120
144 Tracking Changes to Map COMPONENES........coeereereirieerieresesesie sttt seenens 122
145 Allocating and Freeing Client and Server Maps........ccooveeierereeienienieeesese e 123
1451 Allocating an Empty CHent Map ..o e 123
1452 Freaing aClient MaDocooeeieeieeeere e s e 124
14.5.3 Allocating an EMpty Server Mapcccoeviiinenienieieneeeeeeese s 124
1454 Freeing @ Server MaD... ..ottt r s s re e e 125
Xkb Client Keyboard Mapping.......c.ccccuoeereeeeseeseseeseeseesseesseeseeseesseessesseessessees 126
15.1 The XKbClientMapREC SLIUCLUIE......c.ccveeeeeeeeere st e seeieeeseeeesese e sne e e seeneas 127
ST (= YA Y/ o= TSRS 127
1521 The Canonical Ky TYPES......ccociririrererisiesie e 129
15.2.2 Getting Key Typesfrom the SErver ... 131
15.2.3 Changing the Number of Levelsin aKey Type.......ccoereirinienineneninenee 132
1524 COPYING KEY TYPES. ..ottt ettt sttt b bbb b e 132
153 KEY SYMDOI IM@D.....c.ccuieciiieiee bbb 133
153.1 Per-Key Key TYPEINAICES ...c.cvviiieiieiiieerieereerieesi e 133
15.3.2 Per-Key Group INfOrMBation..........ccceeirieirieenieinieiseeeseese e 134
15.3.3 KEY WILN .ottt 135
15.34 Offsetin to the Symbol Map........cocoiiiiiiiiine e 135
15.3.5 Getting the Symbol Map for Keysfrom the Servercccoovvvvnniicnenenne 136
15.3.6 Changing the Number of Groups and Types Bound to aKey...........ccoceevruenee. 137
15.3.7 Changing the Number of Symbols Bound to aKey..........cccccverceniieninennnenns 138
154 ThePer-Key MOifier Mapccceeeieeeeeceeie sttt 138
15.4.1 Getting the Per-Key Modifier Map from the Serverccccovevvevveeveenienennnns 139
Xkb Server Keyboard Mappingcoceeeerereeneeiesie e 140
16.1 KBY ACTIONS ...ttt bbb b bbbttt bbb 141
16.1.1 The XKDACON SLIUCIUIE.oeiuieeirieeeeetere st 142
16.1.2 The XKDANYACHON SITUCLUIE.........ccveuiieieieerieeieese e 143
16.1.3 Actionsfor Changing Modifiers’ State.........c.coverrerrinneneieseeseeseeseee 143
16.1.4 Actionsfor Changing Group SEALE...........c.ecerveerieririenerenieesee e 145
16.1.5 Actionsfor Moving the POINTENcccoiiiiieiinenereeeee e 147
16.1.6 Actionsfor Simulating Pointer Button Press and Release..........ccccoovveeenenenne 148
16.1.7 Actionsfor Changing the Pointer Button Simulatedccocveenerenenenieenn 149
16.1.8 Actionsfor Locking Modifiers and Group...........ccccueeerererenseneeseneseeseees 150
16.1.9 Actionsfor Changing the ACLIVE SCIreen..........cccveererrenisineese e 153
16.1.10 Actionsfor Changing Boolean Controls State..........cccvvrerireeienecnieiesenenieene 154
16.1.11 Actionsfor Generating MESSAgESc.uetrueerieerieerieesiesis et 155
16.1.12 Actionsfor Generating a Different Keycode..........ccoverirvineiineccncicneenieenn 156
16.1.13 Actionsfor Generating DeviceButtonPress and DeviceButtonRelease............ 158
16.1.14 Actionsfor Simulating Events from Device Valuators..........c.cocveverenenenene 159
16.1.15 Obtaining Key Actionsfor Keysfromthe Server..........ocvvveoneeneccnencneenn 160
16.1.16 Changing the Number of Actions Bound to aKeycccccvevineiineccnenenieenn 160
16.2 LSV T Y/ o S 161
16.2.1 RE0IO GIOUPS.....eeiveieriereeieieeeeesesessestesesaestestesaessessessesseseesessessessessessessessessens 161

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-4

The X Keyboard Extension

16.2.2 The XKDBEehavior SITUCIUIE.........ccooveirieirieereereere e 161

16.2.3 Obtaining Key Behaviorsfor Keysfrom the Serverccoovveevevcevvciennenns 162

16.3 Explicit Components—Avoiding Automatic Remapping by the Server...........c.cccoeee. 163

16.3.1 Obtaining Explicit Components for Keys from the Server ... 163

16.4 Virtual Modifier M@pPINgccevereereereeeeeeieeesese st e see s eeseese e esesse s e ssessessesresseseeseenees 164

16.4.1 Obtaining Virtual Modifier Bindings from the Serverccccoovivivviviviinnnns 165

16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Servercc.ccce.ee. 166

17 The Xkb Compatibility Map.......cccoieiiiiiiee e 167
171 The XKDCOmMPatMap SITUCIUNE......c.coirieierietiieeterieeeseee ettt 169

17.1.1 Xkb State to Core Protocol State Transformation ..., 169

17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation............. 170

17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations........... 173

17.2 Getting Compatibility Map Components From the Servercccoeevvevevescesie e e 174

17.3 Using the Compatibility M@cccoeeiiiieeere e e 175

17.4 Changing the Server's Compatibility Map.........ccceoiieiireiiiiinereereseseee e 177

175 Tracking Changes to the Compatibility Mapcccceviereiirenereeeeeeeece e 178

17.6 Allocating and Freeing the Compatibility Map........ccooeiereiiiinirnrereee e 179

18 SYMBOIIC NAIMES ...t 180
181 The XKDNAMESREC STUCIUME.ccvovereierrereeieres e 180

18.2 SYMDBDOIIC NAMES IMBSKS.....c.viceieieceee ettt et e e st e e saeeaesneenesnean 182

18.3 Getting Symbolic Names From the SEIVES ... 183

184 Changing Symbolic Names 0N the SEIVE.........cocvvirereienereseeeee e 183

185 Tracking Name ChangESc.eooeiieiicee et sttt nne s 185

186 Allocating and Freeing SymboliC NaMES.........cccoeirririeirerenereeiesesre et 186

19 Replacing a Keyboard “Onthe FlY” ... 187
20 Server Database of Keyboard COmMPONENES.........ccoeeeveeienieesenriesee e 190
20.1 COMPONENE NBIMES ..ottt sresrenes 191

20.2 Listing the Known Keyboard COMPONENES.........ccviviirerererieiereeseeeeesesesseseessesseseeseens 191

20.3 COMPONENT HINES......eiitiiiiieieeeeeee ettt b e sae b b e e nas 192

204 Building a Keyboard Description Using the Server Databaseccccoveeineienenenienenn 193

21 Attaching Xkb Actionsto X Input EXtension DeVICES.........cccceveeveeeesiecceeseenne 198
211 XKDDEVICEINTOREC.cceirieetireetireeirt ettt 199

21.2 Querying Xkb Features for Non-KeyClass Input Extension Devices..........c.ccovererienne. 200

21.3 Allocating, Initiaizing, and Freeing the XkbDevicelnfoRec Structure............ccccvvveniee. 203

21.4 Setting Xkb Features for Non-KeyClass Input Extension Devices..........cccoceveneneneenne. 204

215 XKbExtensionDeViCENOLITY EVENTccoeoiiiiiiiriseeeeese s 206

21.6 Tracking Changesto EXtENSION DEVICES.......ccvivereierieriesieseeeeeeeeee e 207

22 D] o 8o o [oo 1N o S USRS 210
TaDIE 22. LGIOSSAYeeeueeueiiiie sttt b bt e e e b e b 211

November 10, 1997 Library Version 1.0/Document Revision 1.1

TOC-5

The X Keyboard Extension

Figure1.1

Figure5.1

Figure 10.1
Figure 131
Figure 13.2
Figure 13.3
Figure 13.4
Figure 13.5
Figure 13.6
Figure 13.7
Figure 14.1
Figure 15.1
Figure 16.1
Figure 16.2
Figure17.1
Figure 17.2
Figure 17.3
Figure 20.1

Overal XKD SITUCIUIE........cceeeeeiecee et 2
XKD SEALE.....eeeeeeee ettt 19
MOUSEKEYS ACCEEraliONc.eeceeeeeeeie et 61
Rotated Keyboard SECHIONS..........cocoiiririeeiere e 92
Keyboard With FOUr SECLIONS..........ccoveiiiiereniesee e 94
ROWS 1N @ SECHION.eiiiiiiiieiere et 95
Xkb Geometry Data SITUCLUIES........cc.eeveieieriesiese s 98
Xkb Geometry Data Structures (Doodads)ccccveeererierennennesieseenen 99
Xkb Geometry Data Structures (OVerlays).......cccoveveveeieeiesieeseeseseenn 100
Key Surface, Shape Outlines, and Bounding BOXccccccevveivveenennnnne 105
Shift LevelS and GrOUPS........cccoieerierieieenienie e 117
XKD CHENE M@P.......ciiiiiiiie st nnes 126
Server Map RElatioNSNiPS.......ooveverieeiieeesee e 140
Virtual Modifier RelationShips.........cooeeeieereniieseese e 165
Server Interaction with Types of Clients.........cccoocveceveevecce e, 167
Server Derivation of State and Keyboard Mapping Components............ 168
Xkb Compatibility Data SETUCIUFES..........oveeieriinieeieeee e 169
Building a New Keyboard Description from the Server Database........... 196

November 10, 1997

Library Version 1.0/Document Revision 1.1

LOF-12

The X Keyboard Extension

Table 1.1
Table 2.1
Table 2.2
Table 4.1
Table 4.2
Table 5.1
Table 5.2
Table 5.3
Table 6.1
Table 6.2
Table 8.1
Table 8.2
Table 8.3
Table 8.4
Table 8.5
Table 9.1
Table 9.2
Table 10.1
Table 10.2
Table 10.3
Table 10.4
Table 10.5
Table 10.6
Table 10.7
Table 10.8
Table 10.9
Table 11.1
Table 13.1
Table 14.1
Table 14.2
Table 14.3
Table 14.4
Table 15.1
Table 15.2
Table 15.3
Table 16.1
Table 16.2
Table 16.3
Table 16.4
Table 16.5
Table 16.6

Function Error Returns Due to Extension Problems..........ccccooeviveceviececcesieenen, 4
XKD PrOtOCOl EXTOFS......eiiiieieeie ettt sttt s sae e 9
BadKeyboard Protocol Error resource id ValUEs..........cccovecveeevecceceesececieee 9
XKD EVENE TYPES.eiiirieiisieeeee ettt sttt e 14
XkbSelectEvents Mask COoNStANEScceverierienienienie e 17
Real MOIfier MasKS.........coiieiieieceese e 22
SymbOolic Group NAIMES..........ooiiiririereeee e 23
XkbStateNotify Event Detail Masks.........ccooviererienieneee e 24
XkbDescRec Component REFENENCES..........cccvvveveerecieese e 27
Mask BitsSfor XKDDESCRECccvieerieeiecieriecie st 28
XkblndicatorMapRec flagS Fleld...........coieeiiiiinieee e 35

XkblndicatorMapRec which_groups and groups, Keyboard Drives Indicator...37
XkblIndicatorMapRec which_groups and groups, Indicator Drives Keyboard...37

XkblndicatorMapRec which_mods and mods, Keyboard Drives Indicator 38
XkblndicatorMapRec which_mods and mods, Indicator Drives Keyboard 39
Predefined BEIIS.......ooeoeee e 48
Bell Sounding and Bell Event Generating.........ccocveveeeereenenieneesiessee e seesens 49
XKkb Keyboard CONrOlS.........ccouiieieeieeeeseesie e st ee et 53
MOUSEKEYSACCE] FIEIAS ... 59
ACCESSXFEEANACK IMBSKS.eiueiiieiieie sttt st s sre e 63
ACCESSXNOLITY EVENES.....eeeieice ettt 64
AcCesSXNOtITYy EVENt DELaIlScceveiiiieieeee e 65
XKD CONLIOIS. ...ttt 72
CONrOIS MESK BItSccueciieiieieiiirie ettt 73
GroupsWrap options (groups_ Wrap field) ... 74
Access X Enable/Disable Bits (ax_optionsfield)coccoveeveniininniniieeieee 75
Library Control Masks..........cccceeiieieiecie e 85
D00 TYPES ...ttt bbbttt sa b e 96
Xkb Mapping Component Masks and Convenience Functions........................ 118
XKbMapChangeSREC MESKS.........ccveviieiiiieiecie et 121
XKDATOCCHENIMEP MESKS.......coieiiiiirieriesieeeeee et 123
XKBATOCSEVErMaD MESKS........coiiiiiieiie et 124
EXAMPIE KEY TYPC...oeeeeeeie ettt sttt st 128
group_info Range NOrmaliZationcccceieeieiinenene e 134
Group INAEX CONSLANEScccveeiieiieecie e nneas 137
ok o T 1Y 0= S 143
MOUITIEr ACHON TYPES ...ttt 144
Modifier ACHION FIagS......cccviiiieie et 145
GrOUP ACHON TYPES..cctiiieiteeiteeeesee e eeesreesae e e sre e teeeesreesseetesseesseeneesneensesnnens 146
Group ACHON FLagS.......coeieeieie e 146
POINLEr ACHION TYPES......veiiieciee ettt ettt e e e e ereenreeenns 147

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension

Table 16.7
Table 16.8
Table 16.9
Table 16.10
Table 16.11
Table 16.12
Table 16.13
Table 16.14
Table 16.15
Table 16.16
Table 16.17
Table 16.18
Table 16.19
Table 16.20
Table 16.21
Table17.1
Table 17.2
Table 18.1
Table 18.2
Table 19.1
Table 20.1
Table 20.2
Table 20.3
Table 20.4
Table21.1
Table 22.1

Pointer BULEON ACHION TYPES.....c..oouerierieriererieeee et 149
Pointer Button ACiON Flagscoceeerieiieeee e 149
Pointer Default FIagSccviieiiee e 150
SO Action Flags when XKbSA_I SODFItISGroup iSSetcccevevevierienicriennene 151
SO Action Flags when XkbSA _1SODfltIsGroup isNot Setccccceeeeenene 152
SO Action Affect Field VaIUES ... 152
Switch Screen ACiON FIagS. ..o 153
CONrOIS ACLON TYPESueeiieieeeieiee ettt ettt st s sae e sreense e 154
(00101 110 I AN (0] 1 = F=o < PSS 154
MeESSAgE ACHON FlAJS.....ccueiiiieieesee e 155
Device BUttON ACHION TYPES......coiuiiiirieeieeie sttt s 158
Device BUtton ACtion Flags........cceeveeieiiiie et 158
Device Vauator v<n>_what High BitSValUes............ccccocreniriniiiiiere e 159
KEY BENAVIOIS.... .ottt et 161
Explicit COmMPONENt IMaSKS........ccceeiiiierieie et 163
Symbol Interpretation MatCh Criteria.........ccooeieienireiereeeeeeeee e 172
Compatibility Map Component MasksS.........ccoceieerieriiereeniesieeseesieseesieeseeseens 174
SymDBOIIC NAMES IMBSKS.......cciuiiiiiieeiicie ettt e s e 182
XKbNameChangeS FIEldS.........cccoiiiiiiineeeeee s 184
XkbNewKeyboardNotifyEvent Details...........cocooveieriineeneeieee e 188
Server Database Keyboard COmMPONENES.........cceceeveeiieieereeie e eeeseesie e 190
XkbComponentNameReC FIagS BitS.........cccviriiirineiesneeeeeeee e 193
Want and Need Mask Bits and Required Names Components............c.ccoeuenee. 195
XkbDescRec Components Returned for Values of Want & Needs.................. 197
XkbDevicelNfOREC MaSK BilS........cccoveiireereeie e 200
Debug Control IMASKSeciiiiieiiiecie ettt ee e ere e 210

November 10, 1997

Library Version 1.0/Document Revision 1.1

LOT-2

The X Keyboard Extension 1 Overview

1

11

1.2

1.3

Overview

The X Keyboard Extension provides capabilitiesthat arelacking or are cumbersomein the
core X protocol.

Core X Protocol Support for Keyboards

The core X protocol specifiesthe ways that the shift, Control, and Lock modifiers
and the modifiers bound to the Mode_switch or Num_Lock keysyms interact to generate
keysyms and characters. The core protocol also allows usersto specify that a key affects
one or more modifiers. This behavior is ssmple and fairly flexible, but it has a number of
limitations that make it difficult or impossible to properly support many common varieties
of keyboard behavior. The limitations of core protocol support for keyboards include:

» Useof asingle, uniform, four-symbol mapping for al keyboard keys makesiit difficult
to properly support keyboard overlays, PC-style break keys, or keyboards that comply
with 1SO9995, or a host of other national and international standards.

» A second keyboard group may be specified using a modifier, but this has side effects
that wreak havoc with client grabs and X toolkit trandations. Furthermore, this
approach limits the number of keyboard groups to two.

» Poorly specified locking key behavior requires X serversto look for afew “magic” key-
syms to determine that keys should lock when pressed. This leads to incompatibilities
between X servers with no way for clients to detect implementation differences.

» Poorly specified capitalization and control behavior requires modificationsto X library
source code to support new character sets or locales and can lead to incompatibilities
between system wide and X library capitalization behavior.

» Limited interactions between modifiers specified by the core protocol make many com-
mon keyboard behaviors difficult or impossible to implement. For example, thereisno
reliable way to indicate whether or not the shift modifier should “cancel” the lock mod-
ifier.

» Thelack of any explicit descriptions for indicators, most modifiers, and other aspects
of the keyboard appearance requires clients that wish to clearly describe the keyboard
to auser to resort to a mish-mash of prior knowledge and heuristics.

Xkb Keyboard Extension Support for Keyboards

The X Keyboard Extension makesit possibleto clearly and explicitly specify most aspects
of keyboard behavior on a per-key basis. It adds the notion of akeyboard group to the glo-
bal keyboard state and provides mechanismsto more closely track thelogical and physical
state of the keyboard. For keyboard-control clients, Xkb provides descriptions and sym-
bolic names for many aspects of keyboard appearance and behavior.

In addition, the X Keyboard Extension includes additional keyboard controls designed to
make keyboards more accessible to people with movement impairments.

Xkb Extension Components

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. These consist of aloadable module that may be activated when an X
server is started and a modified version of Xlib. Both server and Xlib versions must be at
least X11 R6.

November 10, 1997 Library Version 1.0/Document Revision 1.1 1

The X Keyboard Extension

1 Overview

Figure 1.1 shows the overall structure of the Xkb extension:

XKkb Extension

Xkb-aware Xkb-capable | | Xkb-unaware
User User User
Application Application Application Keyboard
CoreXlib | X Server
Xkb Server Extension
Xkb Core Xlib Ottt Tttt ittty
Addltl(_)ns ____________ Client Map s Server Map | Compatibility Map
oXIb | xipModifications | |TT777C ittt it
(Xkb to Core Xlib Controls | Indicator Map 1 Names ! Geometry
functions) functions : ' :

!

Server Database of
K eyboard Components

Figure 1.1 Overall Xkb Structure

The server portion of the Xkb extension encompasses a database of named keyboard com-
ponents, in unspecified format, that may be used to configure a keyboard. Internally, the

server maintains a keyboard description that includes the keyboard state and configuration
(mapping). By “keyboard” we mean the logical keyboard device, which includes not only
the physical keys, but also potentially aset of up to 32 indicators (usually LEDs) and bells.

The keyboard description is acomposite of several different data structures, each of which
may be manipulated separately. When manipulating the server components, the design
allows partial components to be transmitted between the server and a client. The individ-
ual components are shown in Figure 1.1.

Client Map

The key mapping information needed to convert arbitrary keycodes to symbols.

Server Map
The key mapping information categorizing keys by functionality (which keys are
modifiers, how keys behave, and so on).

Controls

Client configurable quantities effecting how the keyboard behaves, such as repeat
behavior and modifications for people with movement impairments.

November 10, 1997 Library Version 1.0/Document Revision 1.1 2

The X Keyboard Extension 1 Overview

13.1

1.3.2

1.4

Indicators
The mapping of behavior to indicators.

Geometry

A complete description of the physical keyboard layout, sufficient to draw a represen-
tation of the keyboard.

Names

A mapping of names to various aspects of the keyboard such asindividua virtual
modifiers, indicators, and bells.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

A client application interrogates and manipulates the keyboard by reading and writing
portions of the server description for the keyboard. In atypica sequence a client would
fetch the current information it isinterested in, modify it, and write it back. If aclient
wishes to track some portion of the keyboard state, it typically maintains alocal copy of
the portion of the server keyboard description dealing with the items of interest and
updates this local copy from events describing state transitions that are sent by the server.

A client may request the server to reconfigure the keyboard either by sending explicit
reconfiguration instructions to it, or by telling it to load a new configuration from its data-
base of named components. Partial reconfiguration and incremental reconfiguration are
both supported.

Groups and Shift Levels

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels. See section 14.1for a complete description of groups and
levels.

Radio Groups

A radio group is a set of keyswhose behavior ssimulates a set of radio buttons. Once akey
inaradio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key islogically released. Consequently,
at most one key in aradio group can be logically depressed at one time. A radio group is
defined by aradio group index, an optional name, and by assigning each key in the radio
group XkbKB RadioGroup behavior and the radio group index.

Client Types
This specification differentiates between three different classes of client applications:

» Xkb-aware applications
These applications make specific use of Xkb functionality and APIs not present in the
core protocol.

» Xkb-capable applications
These applications make no use of Xkb extended functionality and Application Pro-
gramming Interfaces (APIs) directly. However, they are linked with aversion of Xlib
that includes Xkb and indirectly benefit from some of Xkb's features.

November 10, 1997 Library Version 1.0/Document Revision 1.1 3

The X Keyboard Extension 1 Overview

15

1.6

1.7

1.7.1

» Xkb-unaware applications
These applications make no use of Xkb extended functionality or APIs and require

Xkb's functionality to be mapped to core Xlib functionality to operate properly.

Compatibility With the Core Protocol

Because the Xkb extension allows a keyboard to be configured in ways not foreseen by
the core protocol, and because Xkb-unaware clients are allowed to connect to a server
using the Xkb extension, there must be a means of converting between the Xkb domain
and the core protocol. The Xkb server extension maintains a compatibility map as part of
its keyboard description; this map controls the conversion of Xkb generated eventsto core
protocol events and the results of core protocol requests to appropriate Xkb state and con-
figuration.

Additional Protocol Errors

The Xkb extension adds a single protocol error, BadKeyboard, to the core protocol error
set. See section 2.6 for adiscussion of the BadKeyboard protocol error.

Extension Library Functions

The X Keyboard Extension replaces the core protocol definition of a keyboard with a
morelcomprehensi ve one. The X Keyboard Extension library interfaces are included in
Xlib.

Xlib detects the presence of the X Keyboard server extension and uses Xkb protocol to
replace some standard X library functions related to the keyboard. If an application uses
only standard X library functions to examine the keyboard or process key events, it should
not need to be modified when linked with an X library containing the X keyboard exten-
sion. All of the keyboard-related X library functions have been modified to automatically
use XKkb protocol when the server extension is present.

The Xkb extension adds library interfaces to alow aclient application to directly manipu-
late the new capabilities.

Error Indications

Xkb functions that communicate with the X server check to be sure the Xkb extension has
been properly initialized prior to doing any other operations. If the extension has not been
properly initialized or the application, library, and server versions are incompatible, these
functions return an error indication as shown in Table 1.1. Because of thistest, BadAc-
cess and BadMatch (due to incompatible versions) protocol errors should normally not
be generated.

Table 1.1 Function Error Returns Dueto Extension Problems

Functions return type Return value
pointer to a structure NULL

Bool False

Status BadAccess

1. X11R6.1 isthefirst release by the X Consortium, Inc. that includes the X Keyboard Extension in Xlib. X11R6
included work in progress on this extension as nonstandard additions to the library.

November 10, 1997 Library Version 1.0/Document Revision 1.1 4

The X Keyboard Extension 1 Overview

Many XKkb functions do not actually communicate with the X server; they only require
processing in the client-side portion of the library. Furthermore, some applications may
never actually need to communicate with the server; they smply use the Xkb library capa-
bilities. The functions that do not communicate with the server return either a pointer to a
structure, aBool, or a Status. These functions check that the application has queried the
Xkb library version and return the values shown in Table 1.1 if it has not.

November 10, 1997 Library Version 1.0/Document Revision 1.1 5

The X Keyboard Extension 2 Initialization and General Programming

2

2.1

2.2

2.3

Initialization and General Programming Information

Extension Header Files
The following include files are part of the Xkb standard:

e <X11/XKBlib.h>
XKBlib.h isthemain header file for Xkb; it declares constants, types, and functions.
e <Xll/extensions/XKBstr.h>
XKBstr.h declarestypesand constants for Xkb. It isincluded automatically from
<X11/XKB1lib.h>; you should never need to referenceit directly in your application
code.
e <Xll/extensions/XKB.h>
XKB.h defines constants for Xkb. It isincluded automatically from <X11 /XKB-
str.h>; you should never need to reference it directly in your application code.
¢ <Xll/extensions/XKBgeom.h>
XKBgeom.h declarestypes, symbolic constants, and functions for manipulating key-
board geometry descriptions.

Extension Name
The name of the Xkb extension isgivenin <X11/extensions/Xkb.h>:
#define XkbName “XKEYBOARD”

Most extensionsto the X protocol areinitialized by calling XInitExtension and passing the
extension name. However, as explained in section 2.4, Xkb requires a more complex ini-
tialization sequence, and a client program should not call XInitExtension directly.

Determining Library Compatibility

If an application is dynamically linked, both the X server and the client-side X library
must contain the Xkb extension in order for the client to use the Xkb extension capabili-
ties. Therefore adynamically linked application must check both the library and the server
for compatibility before using Xkb function calls. A properly written program must check
for compatibility between the version of the Xkb library that is dynamically loaded and
the one used when the application was built. It must then check the server version for
compatibility with the version of Xkb in thelibrary.

If your application is statically linked, you must still check for server compatibility and
may check library compatibility. (It is possible to compile against one set of header files
and link against a different, incompatible, version of the library, although this should not
normally occur.)

To determine the compatibility of alibrary at runtime, call XkbLibraryVersion.

Bool XkbLibraryVersion(lib_major_in_out, lib_minor_in_out)
int* lib_major_in_out; /* specifiesand returns the major Xkb library version. */
int* lib_minor_in_out; /* specifies and returns the minor Xkb library version. */

Pass the symbolic value XkbMajorVersioninlib_major_in_out and XkbMinorVer-
sioninlib_minor_in_out. These arguments represent the version of the library used at
compile time. The XkbLibraryVersion function backfills the magjor and minor version
numbers of the library used at run timein lib_major_in_out and lib_minor_in_out. If the

November 10, 1997 Library Version 1.0/Document Revision 1.1 6

The X Keyboard Extension 2 Initialization and General Programming

2.4

versions of the compile time and run time libraries are compatible, XkbLibraryVersion
returns True, otherwise, it returns False.

In addition, in order to use the Xkb extension, you must ensure that the extension is
present in the server and that the server supports the version of the extension expected by
the client. Use XkbQueryExtension to do this, as described in the next section.

Initializing the Keyboard Extension

Call XkbQueryExtension to check for the presence and compatibility of the extension in
the server and to initialize the extension. Because of potentia version mismatches, you
cannot use the generic extension mechanism functions (XQueryExtension and XInitExten-
sion) for checking for the presence of, and initializing the Xkb extension.

Y ou must call XkbQueryExtension or XkbOpenDisplay before using any other Xkb library
interfaces, unless such usage is explicitly alowed in the interface description in this docu-
ment. The exceptions are: XkblgnoreExtension, XkbLibraryVersion, and a handful of audi-
ble-bell functions. Y ou should not use any other Xkb functionsif the extension is not
present or is uninitialized. In general, callsto Xkb library functions made prior to initializ-
ing the Xkb extension cause BadAccess protocol errors.

XkbQueryExtension both determines whether a compatible Xkb extensionis present in the
X server and initializes the extension when it is present.

Bool XkbQueryExtension(dpy, opcode_rtrn, event_rtrn, error_rtrn, major_in_out,
minor_in_out)

Display * dpy; /* connection to the X server */

int* opcode _rtrn; * backfilled with the major extension opcode */

int* event_rtrn; /* backfilled with the extension base event code */

int* error_rtrn; /* backfilled with the extension base error code */

int * major_in_out; /* compiletimelib major version in, server mgjor version out */
int* minor_in_out; /* compiletime lib min versionin, server minor version out */

The XkbQueryExtension function determines whether a compatible version of the X Key-
board Extension is present in the server. If acompatible extension is present, XkbQue-
ryExtension returns True; otherwise, it returns False.

If acompatible version of Xkb is present, XkbQueryExtension initializes the extension. It
backfills the major opcode for the keyboard extension in opcode_rtrn, the base event code
in event_rtrn, the base error codein error_rtrn, and the major and minor version numbers
of the extension in major_in_out and minor_in_out. The major opcode is reported in the
req_major fields of some Xkb events. For a discussion of the base event code, see section
4.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 7

The X Keyboard Extension 2 Initialization and General Programming

2.5

As a convenience, you can use the function XkbOpenDisplay to perform these three tasks
at once: open a connection to an X server, check for acompatible version of the Xkb
extension in both the library and the server, and initialize the extension for use.

Display * XkbOpenDisplay(display_name, event_rtrn, error_rtrn, major_in_out, minor_in_out,
reason_rtrn)
char *display name; /* hardware display hame, which determines the display and
communications domain to be used */
int* event_rtrn; /* backfilled with the extension base event code */
int* error_rtrn; /* backfilled with the extension base error code */
int* major_in_out; /* compiletimelib magor version in, server major version out */
int* minor_in_out; /* compiletimelib minor version in, server minor version out */
int* reason rtrn; /* backfilled with a status code */

XkbOpenDisplay is a convenience function that opens an X display connection and initial-
izesthe X keyboard extension. In all cases, upon return reason_rtrn contains astatus value
indicating success or the type of failure. If major_in_out and minor_in_out are not NULL,
XkbOpenDisplay first calls XkbLibrary\Version to determine whether the client library is
compatible, passing it the values pointed to by major_in_out and minor_in_out. If the
library isincompatible, XkbOpenDisplay backfills major_in_out and minor_in_out with
the major and minor extension versions of the library being used and returns NULL. If the
library is compatible, XkbOpenDisplay next calls XOpenDisplay with the display _name.
If thisfails, the function returns NULL. If successful, XkbOpenDisplay calls XkbQueryEx-
tension and backfills the major and minor Xkb server extension version numbersin
major_in_out and minor_in_out. If the server extension version is not compatible with the
library extension version or if the server extension is not present, XkbOpenDisplay closes
the display and returns NULL. When successful, the function returns the display connec-
tion.

The possible values for reason _rtrn are:

+ XkbOD BadLibraryVersion indicates XkbLibrary\Version returned False.

* XkbOD ConnectionRefused indicates the display could not be opened.

+ XkbOD BadServerVersion indicatesthelibrary and the server have incompatible
extension versions.

* XkbOD NonXkbServer indicates the extension is not present in the X server.

« XkbOD Success indicates that the function succeeded.

Disabling the Keyboard Extension

If aserver supports the Xkb extension, the X library normally implements preXkb key-
board functions using the Xkb keyboard description and state. The server Xkb keyboard
state may differ from the preXkb keyboard state. This difference does not affect most cli-
ents, but there are exceptions. To allow these clients to work properly, you may instruct
the extension not to use Xkb functionality.

Call XkblgnoreExtension to prevent core X library keyboard functions from using the X
Keyboard Extension. Y ou must call XkblgnoreExtension before you open a server connec-
tion; Xkb does not provide away to enable or disable use of the extension once a connec-
tion is established.

Bool XkblgnoreExtension(ignore)
Bool ignore; /* True meansignore the extension */

November 10, 1997 Library Version 1.0/Document Revision 1.1 8

The X Keyboard Extension 2 Initialization and General Programming

2.6

2.7

XkblgnoreExtension tells the X library whether to use the X Keyboard Extension on any
subsequently opened X display connections. If ignoreis True, the library does not initial-
ize the Xkb extension when it opens a new display. Thisforcesthe X server to use com-
patibility mode and communicate with the client using only core protocol requests and
events. If ignoreis False, thelibrary treats subsequent calls to XOpenDisplay normally
and uses Xkb extension requests, events, and state. Do not explicitly use Xkb on a connec-
tion for which it is disabled. XkblgnoreExtension returns False if it was unable to apply
the ignore request.

Protocol Errors

Many of the Xkb extension library functions described in this document can cause the X
server to report an error, referred to in this document as a Badxxx protocol error, where
Xxx issome name. These errors are fielded in the normal manner, by the default Xlib error
handler or one replacing it. Note that X protocol errors are not necessarily reported imme-
diately because of the buffering of X protocol requestsin Xlib and the server.

Table 2.1 lists the protocol errors that can be generated, and their causes.
Table2.1 Xkb Protocol Errors

Error Cause

BadAccess The Xkb extension has not been properly initialized

BadKeyboard The device specified was not avalid core or input extension device

Badimplementation Invalid reply from server

BadAlloc Unable to alocate storage

BadMatch A compatible version of Xkb was not available in the server or an argument
has correct type and range, but is otherwise invalid

BadVaue An argument is out of range

BadAtom A nameisneither avalid Atom or None

BadDevice Device, Feedback Class, or Feedback ID invalid

The Xkb extension adds a single protocol error, BadKeyboard, to the core protocol error
set. This error code will be reported as the error_rtrn when XkbQueryExtension is called.
When a BadKeyboard error isreported in an XErrorEvent, additional information is
reported in the resource _id field. The most significant byte of the resource id isafurther
refinement of the error cause, as defined in Table 2.2. The least significant byte will con-
tain the device, class, or feedback 1D asindicated in the table.

Table 2.2 BadKeyboard Protocol Error resource id Values

high-order byte value meaning low-order byte
XKkbErr_BadDevice Oxff device not found devicelD
XkbErr_BadClass Oxfe devicefound, but it is of the wrong class classID
XkbErr_Badld Oxfd device found, class ok, but devicedoesnot feedback 1D

contain a feedback with the indicated ID

Display and Device Specifications in Function Calls

Where a connection to the server is passed as an argument (Display*) and an
XkbDescPtr isalso passed as an argument, the Display* argument must match the dpy
field of the XkbDescRec pointed to by the XkbDescPtr argument, or else the dpy field
of the XkbDescRec must be NULL. If they don’t match or the dpy field is not NULL, a

November 10, 1997 Library Version 1.0/Document Revision 1.1 9

The X Keyboard Extension 2 Initialization and General Programming

BadMatch error isreturned (either in the return value or abackfilled Status variable).
Upon successful return, the dpy field of the XkbDescRec aways contains the Display*
value passed in.

The Xkb extension can communicate with the X input extension if it is present. Conse-
guently, there can potentially be more than one input device connected to the server. Most
Xkb library calls that require communicating with the server involve both a server connec-
tion (Display * dpy) and adevice identifier (unsigned int device_spec). In some cases, the
deviceidentifier isimplicit and is taken as the device_spec field of an XkbDescRec struc-
ture passed as an argument.

The device identifier can specify any X input extension device with aKeyClass compo-
nent, or it can specify the constant, XkbUseCoreKbd. The use of XkbUseCoreKbd
allows applications to indicate the core keyboard without having to determine its device
identifier.

Where an Xkb device identifier is passed as an argument and an XkbDescPtr isaso
passed as an argument, if either the argument or the XkbDescRec device spec field is
XkbUseCoreKbd, and if the function returns successfully, the XkbDescPtr device spec
field will have been converted from XkbUseCoreKbd to areal Xkb deviceID. If the func-
tion does not compl ete successfully, the device_spec field remains unchanged. Subse-
guently, the device id argument must match the device_spec field of the XkbDescPtr
argument. If they don’t match, a BadMatch error isreturned (either in the return value or
abackfilled status variable).

When the Xkb extension in the server hands an application a device identifier to use for
the keyboard, that ID is the input extension identifier for the device if the server supports
the X Input Extension. If the server does not support the input extension, the meaning of
the identifier is undefined — the only guarantee is that when you use XkbUseCoreKbd,
XkbUseCoreKbd will work and the identifier returned by the server will refer to the core
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 10

The X Keyboard Extension 3 Data Structures

3

3.1

3.2

Data Structures

An Xkb keyboard description consists of avariety of data structures, each of which
describes some aspect of the keyboard. Although each data structure has its own peculiar-
ities, there are a number of features common to nearly all Xkb structures. This chapter
describes these common features and techniques for manipulating them.

Many XKkb data structures are interdependent; changing afield in one might require
changesto others. As an additional complication, some Xkb library functions allocate
related components as a group to reduce fragmentation and allocator overhead. In these
cases, simply allocating and freeing fields of Xkb structures might corrupt program mem-
ory. Creating and destroying such structures or keeping them properly synchronized dur-
ing editing is complicated and error prone.

Xkb provides functions and macros to allocate and free all major data structures. Y ou
should use them instead of allocating and freeing the structures yourself.

Allocating Xkb Data Structures

Xkb provides functions, known as allocators, to create and initialize Xkb data structures.
In most situations, the Xkb functions that read a keyboard description from the server call
these allocators automatically. Asaresult, you will seldom have to directly allocate or ini-
tialize Xkb data structures.

However, if you need to enlarge an existing structure or construct a keyboard definition
from scratch, you may need to allocate and initialize Xkb data structures directly. Each
major Xkb data structure hasits own unigue allocator. The allocator functions share com-
mon features: allocator functions for structures with optional components take as an input
argument amask of subcomponents to be alocated. Allocators for data structures contain-
ing variable-length data take an argument specifying the initial length of the data.

You may call an allocator to change the size of the space allocated for variable-length
data. When you call an allocator with an existing data structure as a parameter, the alloca-
tor does not change the datain any of the fields, with one exception: variable-length data
might be moved. The allocator resizes the allocated memory if the current sizeistoo
small. This normally involves allocating new memory, copying existing data to the newly
allocated memory, and freeing the original memory. This possible reallocation isimpor-
tant to note because local variables pointing into Xkb data structures might be invalidated
by calls to allocator functions.

Adding Data and Editing Data Structures

Y ou should edit most data structures via the Xkb-supplied hel per functions and macros,
although a few data structures can be edited directly. The helper functions and macros
make sure everything isinitialized and interdependent values are properly updated for
those Xkb structures that have interdependencies. As ageneral rule, if thereis a helper
function or macro to edit the data structure, use it. For example, increasing the width of a
type requires you to resize every key that uses that type. Thisis complicated and ugly,
which iswhy there' s an XkbResizeKeyType function.

Many Xkb data structures have arrays whose size is reported by two fields. The first field,
whose nameisusually prefixed by sz, represents the total number of elementsthat can be
stored in the array. The second field, whose name is usually prefixed by num_, specifies

November 10, 1997 Library Version 1.0/Document Revision 1.1 11

The X Keyboard Extension 3 Data Structures

3.3

3.4

the number of elements currently stored there. These arraystypically represent data whose
total size cannot always be determined when the array is created. In these instances, the
usual way to allocate space and add datais as follows:

» Call the alocator function with some arbitrary size, as a hint.
» For those arrays that have an Xkb...Add... function, call it each time you want to add
new datato the array. The function expands the array if necessary.

For example, call:
XkbAllocGeomShapes(geom,4)

to say “I'll need space for four new shapesin this geometry.” This makes sure that
sz_shapes - num_shapes >= 4, and resizes the shapes array if it isn't. If this function suc-
ceeds, you are guaranteed to have space for the number of shapes you need.

When you call an editing function for a structure, you do not need to check for space,
because the function automatically checksthe sz_and num_ fields of the array, resizesthe
array if necessary, adds the entry to the array, and then updates the num_ field.

Making Changes to the Server’s Keyboard Description

In Xkb, asin the core protocol, the client and server have independent copies of the data
structuresthat describe the keyboard. The recommended way to change some aspect of the
keyboard mapping in the X server isto edit alocal copy of the Xkb keyboard description
and then send only the changesto the X server. This method helps eliminate the need to
transfer the entire keyboard description or even an entire data structure for only minor
changes.

To help you keep track of the changes you make to alocal copy of the keyboard descrip-
tion, Xkb provides separate special changes data structures for each major Xkb data struc-
ture. These data structures do not contain the actual changed values: they only indicate the
changes that have been made to the structures that actually describe the keyboard.

When you wish to change the keyboard description in the server, you first modify alocal
copy of the keyboard description and then flag the modifications in an appropriate
changes data structure. When you finish editing the local copy of the keyboard descrip-
tion, you pass your modified version of the keyboard description and the modified
changes data structure to an Xkb function. This function uses the modified keyboard
description and changes structure to pass only the changed information to the server. Note
that modifying the keyboard description but not setting the appropriate flagsin the
changes data structure causes indeterminate behavior.

Tracking Keyboard Changes in the Server

The server reports all changes in its keyboard description to any interested clients via spe-
cial Xkb events. Just as clients use special changes data structures to change the keyboard
description in the server, the server uses special changes data structures to tell aclient
what changed in the server’ s keyboard description.

Unlike clients, however, the server does not always pass the new values when it reports
changesto its copy of the keyboard description. Instead, the server only passes a changes
data structure when it reports changes to its keyboard description. Thisis done for effi-
ciency reasons — some clients do not always need to update their copy of the keyboard
description with every report from the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 12

The X Keyboard Extension 3 Data Structures

When your client application receives areport from the server indicating the keyboard
description has changed, you can determine the set of changes by passing the event to an
Xkb function that “notes’ event information in the corresponding changes data structure.
These “note changes’ functions are defined for all major Xkb components, and their
names have the form XkbNote{ Component} Changes, where Component is the name of a
major Xkb component such as Map or Names. When you want to copy these changes from
the server into alocal copy of the keyboard description, use the corresponding Xkb-

Get{ Component} Changes function, passing it the changes structure. The function then
retrieves only the changed structures from the server and copies the modified pieces into
the local keyboard description.

3.5 Freeing Data Structures

For the same reasons you should not directly use malloc to allocate Xkb data structures,
you should not free Xkb data structures or components directly using free or Xfree. Xkb
provides functions to free the various data structures and their components. Always use
the free functions supplied by Xkb. There is no guarantee that any particular field can be
safely freed by free or Xfree.

November 10, 1997 Library Version 1.0/Document Revision 1.1 13

The X Keyboard Extension 4 Xkb Events

4

4.1

Xkb Events

The primary way the X server communicates with clientsis by sending X events to them.
Some events are sent to all clients, while others are sent only to clients that have requested
them. Some of the events that can be requested are associated with a particular window
and are only sent to those clients who have both requested the event and specified the win-
dow in which the event occurred.

The Xkb extension uses events to communicate the keyboard status to interested clients.
These events are not associated with a particular window. Instead, all Xkb keyboard status
events are reported to all interested clients, regardless of which window currently has the
keyboard focus and regardless of the grab state of the ke'yboard.1

The X server reports the events defined by the Xkb extension to your client application
only if you have requested them. Y ou may request Xkb events by calling either XkbSel ect-
Events or XkbSelectEventDetails. XkbSel ectEvents requests Xkb events by their event type
and causes them to be reported to your client application under all circumstances. Y ou can
specify afiner granularity for event reporting by using XkbSelectEventDetails; in this case
events are reported only when the specific detail conditions you specify have been met.

Xkb Event Types

The Xkb Extension adds new event types to the X protocol definition. An Xkb event type
isdefined by two fieldsin the X event data structure. One is the type field, containing the
base event code. This base event code is avalue the X server assigns to each X extension
at runtime and thatidentifies the extension that generated the event; thus, the event codein
the type field identifies the event as an Xkb extension event, rather than an event from
another extension or acore X protocol event. Y ou can obtain the base event code viaacall
to XkbQueryExtension or XkbOpenDisplay. The second field isthe Xkb event type, which
contains a value uniquely identifying each different Xkb event type. Possible values are
defined by constants declared in the header file <X11/extensions/Xkb.h>.

Table 4.1 lists the categories of events defined by Xkb and their associated event types, as
defined in Xkb.h. Each event is described in more detail in the section referenced for that
event.

Table4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbNewKeyboardNotify Keyboard geometry; keycode range change 19 187
XkbMapNotify Keyboard mapping change 144 122
XkbStateNotify Keyboard state change 54 25
XkbControlsNotify Keyboard controls state change 1011 79
XkbIndicatorStateNotify Keyboard indicators state change 8.5 45
XkbIndicatorMapNotify Keyboard indicators map change 85 45
XkbNamesNotify Keyboard name change 185 185
XkbCompatMapNotify Keyboard compatibility map change 175 178
XkbBellNotify Keyboard bell generated 94 52

1. The one exception to thisruleisthe XkbExtensionDeviceNotify event report that is sent when aclient
attempts to use an unsupported feature of an X Input Extension device (see section 21.4).

November 10, 1997 Library Version 1.0/Document Revision 1.1 14

The X Keyboard Extension 4 Xkb Events

4.2

4.3

Table4.1 Xkb Event Types

Event Type Conditions Generating Event Section Page
XkbActionMessage Keyboard action message 16.1.11 155
XkbAccessXNotify AccessX state change 10.64 65
XkbExtensionDeviceNotifyExtension device change 21.6 207

Xkb Event Data Structures

XKkb reports each event it generates in a unique structure holding the data values needed to
describe the conditionsthe event isreporting. However, all Xkb events have certain things
in common. These common features are contained in the same fields at the beginning of
al Xkb event structures and are described in the XkbAnyEvent structure:

typedef struct {
int type; I* Xkb extension base event code */
unsigned long serial; * X server serial number for event */
Bool send_event; /* True => synthetically generated */
Display * display; I* server connection where event generated */
Time time; * server time when event generated */
int xkb_type; /* Xkb minor event code */
unsigned int device; /* Xkb device ID, will not be XkbUseCoreKbd */

} XkbAnyEvent;

For any Xkb event, the type field is set to the base event code for the Xkb extension,
assigned by the server to al Xkb extension events. The serial, send_event, and display
fields are as described for all X11 events. The time field is set to the time when the event
was generated and is expressed in milliseconds. The xkb_type field contains the minor
extension event code, which is the extension event type, and is one of the valueslisted in
Table 4.1. The device field contains the keyboard device identifier associated with the
event. Thisis never XkbUseCoreKbd, even if the request that generated the event speci-
fied adevice of XkbUseCoreKbd. If the request that generated the event specified
XkbUseCoreKbd, device contains avalue assigned by the server to specify the core key-
board. If the request that generated the event specified an X input extension device, device
contains that same identifier.

Other datafields specific to individual Xkb events are described in subsequent chapters
where the events are described.

Selecting Xkb Events

Xkb events are selected using an event mask, much the same as normal core X events are
selected. However, unlike selecting core X events, where you must specify the selection
status (on or off) for all possible event types whenever you wish to change the selection
criteriafor any one event, Xkb alows you to restrict the specification to only the event
types you wish to change. This means that you do not need to remember the event selec-
tion values for all possible types each time you want to change one of them.

Many Xkb event types are generated under several different circumstances. When sel ect-
ing to receive an Xkb event, you may specify either that you want it delivered under all
circumstances, or that you want it delivered only for a subset of the possible circum-
stances.

November 10, 1997 Library Version 1.0/Document Revision 1.1 15

The X Keyboard Extension 4 Xkb Events

Y ou can a'so deselect an event type that was previously selected for, using the same gran-
ularity.

Xkb provides two functions to select and deselect delivery of Xkb events. XkbSel ect-
Events allows you to select or deselect delivery of more than one Xkb event type at once.
Events selected using XkbSel ectEvents are delivered to your program under al circum-
stances that generate the events. To restrict delivery of an event to a subset of the condi-
tions under which it occurs, use XkbSelectEventDetails. XkbSelectEventDetails only
allows you to change the selection conditions for asingle event at atime, but it provides a
means of fine-tuning the conditions under which the event is delivered.

To select and/ or deselect for delivery of one or more Xkb events and have them delivered
under all conditions, use XkbSelectEvents.

Bool XkbSelectEvents(display, device _spec, bits to _change, values for_bits)
Display * display; /* connection to the X server */
unsigned int device spec; /* device D, or XkbUseCoreKbd */
unsigned long int bits to_change; /* determines events to be selected / deselected */
unsigned long int values for_hits;/* 1=>select, O->deselect; for eventsin bits_to_change */

This request changes the Xkb event selection mask for the keyboard specified by
device_spec.

Each Xkb event that can be selected is represented by abit in the bits to_change and
values for_bits masks. Only the event selection bits specified by the bits to_change
parameter are affected; any unspecified bits are left unchanged. To turn on event selection
for an event, set the bit for the event in the bits_to_change parameter and set the corre-
sponding bit in the values_for_bits parameter. To turn off event selection for an event, set
the bit for the event in the bits to_change parameter and do not set the corresponding bit
in the values for_bits parameter. The valid values for both of these parameters are an
inclusive bitwise OR of the masks shown in Table 4.2. Thereis no interface to return your
client’s current event selection mask. Clients cannot set other clients' event selection
masks.

If abitisnot set in the bits to_change parameter, but the corresponding bit is set in the
values for_bits parameter, a BadMatch protocol error results. If an undefined bit is set in
either the bits to_change or the values for _bits parameter, a Badvalue protocol error
results.

All event selection bits are initially zero for clients using the Xkb extension. Once you set
some bits, they remain set for your client until you clear them via another call to XkbSe-
lectEvents.

XkbSdlectEvents returns False if the Xkb extension has not been initilialized and True
otherwise.

To select or deselect for a specific Xkb event and optionally place conditions on when
events of that type are reported to your client, use XkbSelectEventDetails. Thisallowsyou

November 10, 1997 Library Version 1.0/Document Revision 1.1 16

The X Keyboard Extension 4 Xkb Events

43.1

to exercise afiner granularity of control over delivery of Xkb events with XkbSelect-
Events.

Bool XkbSelectEventDetails(display, device_spec, event_type, bits to_change, values for_bits)
Display * display; /* connection to the X server */
unsigned int device spec; /* device D, or XkbUseCoreKbd */
unsigned int event_type; * Xkb event type of interest */
unsigned long int bits to_change; /* event selection details */
unsigned long int values for_bits;/* values for bits selected by bits to_change */

While XkbSelectEvents allows multiple events to be selected, XkbSelectEventDetails
changes the selection criteriafor asingle type of Xkb event. The interpretation of the
bits to_change and values for_bits masks depends on the event type in question.

XkbSelectEventDetails changes the Xkb event selection mask for the keyboard specified
by device _spec and the Xkb event specified by event_type. To turn on event selection for
an event detail, set the bit for the detail in the bits_to_change parameter and set the corre-
sponding bit in the values for_bits parameter. To turn off event detail selection for a
detail, set the bit for the detail in the bits to_change parameter and do not set the corre-
sponding bit in the values for_bits parameter.

If aninvalid event typeis specified, aBadvalue protocol error results. If abitisnot setin
the bits_to_change parameter, but the corresponding bit is set in the values_for_bits
parameter, a BadMatch protocol error results. If an undefined bit is set in either the
bits to_change or the values for_bits parameter, a Badvalue protocol error results.

For each type of Xkb event, the legal event details that you can specify in the XkbSel ect-
EventDetails request are listed in the chapters that describe each event in detail.
Event Masks

The X server reports the events defined by Xkb to your client application only if you have
requested them via a call to XkbSelectEvents or XkbSelectEventDetails. Specify the event
typesin which you are interested in a mask, as described in section 4.3.

Table 4.2 lists the event mask constants that can be specified with the XkbSelectEvents
request and the circumstances in which the mask should be specified.

Table 4.2 XkbSdectEvents Mask Constants

Event Mask Value Notification Wanted
XkbNewKeyboardNotifyMask (1L<<0) Keyboard geometry change
XkbMapNot i fyMask (1L<<1) Keyboard mapping change
XkbStateNotifyMask (1L<<2) Keyboard state change
XkbControlsNotifyMask (1L<<3) Keyboard control change
XkbIndicatorStateNotifyMask (1L<<4) Keyboard indicator state change
XkbIndicatorMapNotifyMask (1L<<5) Keyboard indicator map change
XkbNamesNotifyMask (1L<<6) Keyboard name change
XkbCompatMapNot i fyMask (1L<<7) Keyboard compat map change
XkbBellNotifyMask (1L<<8) Bell
XkbActionMessageMask (1L<<9) Action message
XkbAccessXNotifyMask (1L<<10) AccessX features
XkbExtensionDeviceNotifyMask (1L<<11) Extension device

November 10, 1997 Library Version 1.0/Document Revision 1.1 17

The X Keyboard Extension

4 Xkb Events

Table 4.2 XkbSdectEvents Mask Constants

Event Mask

Value

Notification Wanted

XkbAllEventsMask

4.4 Unified Xkb Event Type

(OXFFF)

All Xkb events

The XkbEvent structureisaunion of the individual structures declared for each Xkb
event type and for the core protocol XEvent type. Given an XkbEvent structure, you may
use the typefield to determineif the event is an Xkb event (type equals the Xkb base event
code; see section 2.4). If the event is an Xkb event, you may then use the any.xkb_type
field to determine the type of Xkb event and thereafter access the event-dependent compo-
nents using the union member corresponding to the particular Xkb event type.

typedef union _XkbEvent {
int
XkbAnyEvent
XkbStateNotifyEvent
XkbMapNotifyEvent
XkbControlsNotifyEvent
XkblndicatorNotifyEvent
XkbBelINotifyEvent
XkbA ccessXNatifyEvent
XkbNamesNotifyEvent
XkbCompatM apNotifyEvent
XKkbA ctionM essageEvent
XkbExtensionDeviceNotifyEvent
XkbNewKeyboardNotifyEvent
XEvent

} XkbEvent;

type;

any;
state;
map,
ctrls,
indicators;
bell;
accessx;
names;
compat;
message;
device;
new_kbd,;
core;

This unified Xkb event type includes a normal XEvent as used by the core protocol, so it
isstraightforward for applicationsthat use Xkb eventsto call the X library event functions
without having to cast every reference. For example, to get the next event, you can simply
declare avariable of type XkbEvent and call:

XNextEvent(dpy,& xkbev.core);

November 10, 1997

Library Version 1.0/Document Revision 1.1 18

The X Keyboard Extension 5 Keyboard State

5 Keyboard State

Keyboard state encompasses al of the transitory information necessary to map a physical
key press or release to an appropriate event. The Xkb keyboard state consists of primitive
components and additional derived components that are maintained for efficiency reasons.
Figure 5.1 shows the components of Xkb keyboard state and their relationships.

Xkb State

Base Modifiers m

— Compatibility State

Base Group N

| Compatibility Lookup State

| Effective Modifiers

Locked Modifiers u

™ Compatibility Grab State

| Effective Group

Locked Group T

Latched Modifiers —

| |_ookup State

Latched Group —

| Grab State [T

Core Pointer Buttons

Server Internal Modifiers —‘

IgnoreLock Modifiers
J Compatibility Map

IgnoreGroupL ock

Figure5.1 Xkb State

5.1 Keyboard State Description

The Xkb keyboard state is comprised of the state of all keyboard modifiers, the keyboard
group, and the state of the pointer buttons. These are grouped into the following compo-
nents:

The locked group and locked modifiers
The latched group and latched modifiers
The base group and base modifiers

The effective group and effective modifiers
The state of the core pointer buttons

November 10, 1997 Library Version 1.0/Document Revision 1.1 19

The X Keyboard Extension 5 Keyboard State

The modifiers are shift, Lock, Control, and Mod1-Mods5, as defined by the core proto-
col. A modifier can be thought of as atoggle that is either set or unset. All modifiers are
initially unset. When amodifier islocked, it is set and remains set for all future key
events, until it isexplicitly unset. A latched modifier is set, but automatically unsets after
the next key event that does not change the keyboard state. L ocked and latched modifier
state can be changed by keyboard activity or via Xkb extension library functions.

The Xkb extension provides support for keysym groups, as defined by 1SO9995:

Group A logical state of akeyboard providing accessto a collection of characters. A
group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group.

The Xkb extension supports up to four keysym groups. Groups are named beginning with
one and indexed beginning with zero. All group states are indicated using the group index.
At any point in time, thereis zero or one locked group, zero or one latched group, and one
base group. When a group is locked, it supersedes any previous locked group and remains
the locked group for all future key events, until anew group islocked. A latched group

applies only to the next key event that does not change the keyboard state. The locked and
latched group can be changed by keyboard activity or via Xkb extension library functions.

Changing to adifferent group changes the keyboard state to produce characters from a dif-
ferent group. Groups are typically used to switch between keysyms of different languages
and locales.

The pointer buttons are Buttonl - Buttons5, as defined by the core protocol.

The base group and base modifiers represent keys that are physically or logically down.
These and the pointer buttons can be changed by keyboard activity and not by Xkb
requests. Itispossible for akey to belogically down, but not physically down, and neither
latched nor locked.*

The effective modifiers are the bitwise union of thelocked, latched, and the base modifiers.

The effective group is the arithmetic sum of the group indices of the latched group, locked
group, and base group, which is then normalized by some function. The result is a mean-
ingful group index.

n = number of keyboard groups, 1<=n<=4
0 <= any of locked, latched, or base group <n
effective group = f(locked group + latched group + base group)

The function f ensures that the effective group is within range. The precise function is
specified for the keyboard and can be retrieved through the keyboard description. It may
wrap around, clamp down, or default. Few applicationswill actually examine the effective
group, and far fewer still will examine the locked, latched, and base groups.

There are two circumstances under which groups are normalized:

1. Keysmay belogically down when they are physically up because of their electrical properties or because of the
keyboard extension in the X server having filtered the key release, for esoteric reasons.

November 10, 1997 Library Version 1.0/Document Revision 1.1 20

The X Keyboard Extension 5 Keyboard State

1. Theglobal locked or effective group changes. In this case, the changed group is nor-
malized into range according to the settings of the groups wrap field of the XkbCon-
trolsRec structure for the keyboard (see section 10.7.1).

2. The Xkb library isinterpreting an event with an effective group that islegal for the
keyboard as awhole, but not for the key in question. In this case, the group to use for
this event only is determined using the group_info field of the key symbol mapping
(XkbsymMapRec) for the event key.

Each nonmodifier key on akeyboard has zero or more symbols, or keysyms, associated
with it. These are the logical symbolsthat the key can generate when it is pressed. The set
of al possible keysymsfor akeyboard is divided into groups. Each key is associated with
zero or more groups; each group contains one or more symbols. When akey is pressed,
the determination of which symbol for the key is selected is based on the effective group
and the shift level, which is determined by which modifiers are set.

A client that does not explicitly call Xkb functions, but that otherwise makes use of an X
library containing the Xkb extension, will have keyboard state represented in bits 0 - 14 of
the state field of events that report modifier and button state. Such aclient is said to be
Xkb-capable. A client that does explicitly call Xkb functionsis an Xkb-aware client. The
Xkb keyboard state includes information derived from the effective state and from two
server parameters that can be set through the keyboard extension. The following compo-
nents of keyboard state pertain to Xkb-capable and Xkb-aware clients:

» lookup state: lookup group and lookup modifiers
e grab state: grab group and grab modifiers

The lookup modifiers and lookup group are represented in the state field of core X events.
The modifier state and keycode of akey event are used to determine the symbol s associ-
ated with the event. For KeyPress and KeyRelease events, the lookup modifiers are
computed as.

((base | latched | locked) & ~server_internal_modifiers)
Otherwise the lookup modifiers are computed as:

((base | latched | (locked & ~ignore_locks)) & ~server_internal_modifiers)
The lookup group is the same as the effective group.

When an Xkb-capable or Xkb-aware client wishes to map a keycode to akeysym, it
should use the lookup state — the lookup group and the lookup modifiers.

The grab state is the state used when matching events to passive grabs. If the event acti-
vates agrab, the grab modifiers and grab group are represented in the state field of core X
events; otherwise, the lookup state is used. The grab modifiers are computed as:

(((base | latched | (locked & ~ignore locks)) & ~server_internal_maodifiers)

If the server’ s IgnoreGroupLock control (see section 10.7.3) isnot set, the grab group is
the same as the effective group. Otherwise, the grab group is computed from the base
group and latched group, ignoring the locked group.

The final three components of Xkb state are applicable to clients that are not linked with
an Xlib containing the X keyboard extension library and therefore are not aware of the
keyboard extension (Xkb-unaware clients):

November 10, 1997 Library Version 1.0/Document Revision 1.1 21

The X Keyboard Extension 5 Keyboard State

5.2

5.2.1

e The compatibility modifier state
e The compatibility lookup modifier state
» The compatibility grab modifier state

The X 11 protocol interpretation of modifiers does not include direct support for multiple
groups. When an Xkb-extended X server connects to an Xkb-unaware client, the compati-
bility states remap the keyboard group into a core modifier whenever possible. The com-
patibility state corresponds to the effective modifier and effective group state, with the
group remapped to amodifier. The compatibility lookup and grab states correspond to the
lookup and grab states, respectively, with the group remapped to a modifier. The compati-
bility lookup state is reported in events that do not trigger passive grabs; otherwise, the
compatibility grab state is reported.

Changing the Keyboard State

Changing Modifiers

The functions in this section that change the use of modifiers use a mask in the parameter
affect. It isabitwise inclusive OR of the legal modifier masks:

Table5.1 Real Modifier Masks

Mask
ShiftMask
LockMask
ControlMask
Mod1Mask
Mod2Mask
Mod3Mask
M od4M ask
Mod5M ask

To lock and unlock any of the eight real keyboard modifiers, use XkbLockModifiers:
Bool XkbL ockM odifier s(display, device spec, affect, values)

Display * display; [* connection to the X server */

unsigned int device_spec; /* devicelD, or XkbUseCoreKbd */

unsigned int affect; /* mask of real modifiers whose lock state isto change */
unsigned int values, /* 1=>lock, 0 => unlock; only for modifiers selected by affect */

XkbLockModifiers sends a request to the server to lock the real modifiers selected by both
affect and values and to unlock the real modifiers selected by affect but not selected by val-
ues. XkbLockModifiers does not wait for areply from the server. It returns True if the
request was sent, and False otherwise.

To latch and unlatch any of the eight real keyboard modifiers, use XkbLatchModifiers:
Bool XkbL atchM odifier s(display, device _spec, affect, values)

Display * display; [* connection to the X server */

unsigned int device spec; /* device D, or XkbUseCoreKbd */

unsigned int affect; /* mask of modifiers whose latch state is to change */
unsigned int values, /* 1 => latch, 0 => unlatch; only for mods selected by affect */

November 10, 1997 Library Version 1.0/Document Revision 1.1 22

The X Keyboard Extension

5 Keyboard State

5.2.2

5.3

XkbLatchModifiers sends arequest to the server to latch the real modifiers selected by both
affect and values and to unlatch the real modifiers selected by affect but not selected by
values. XkbLatchModifiers does not wait for areply from the server. It returns True if the
request was sent, and False otherwise.

Changing Groups

Reference the keysym group indices with these symbolic constants:

Table5.2 Symbolic Group Names

Symbolic Name Value
XkbGroupllndex 0
XkbGroup2Index 1
XkbGroup3lndex 2
XkbGroup4lndex 3

To lock the keysym group, use XkbLockGroup.

Bool XkbL ockGroup(display, device spec, group)
Display * display; /* connection to the X server */
unsigned int device spec; /* devicelD, or XkbUseCoreKbd */
unsigned int group; /* index of the keysym group to lock */

XkbLockGroup sends arequest to the server to lock the specified group and does not wait
for areply. It returns True if the request was sent and False otherwise.

To latch the keysym group, use XkbLatchGroup.

Bool XkbL atchGroup(display, device_spec, group)
Display * display; [* connection to the X server */
unsigned int device spec; /* device D, or XkbUseCoreKbd */
unsigned int group; /* index of the keysym group to latch */

XkbLatchGroup sends arequest to the server to latch the specified group and does not wait
for areply. It returns True if the request was sent and False otherwise.

Determining Keyboard State
Xkb keyboard state may be represented in an XkbStateRec structure:

typedef struct {
unsigned char group; [* effective group index */
unsigned char base _group; /* base group index */
unsigned char latched group; [* latched group index */
unsigned char locked group; /* locked group index */
unsigned char mods; /* effective modifiers*/
unsigned char base_mods; [* base modifiers */
unsigned char latched_mods; * latched modifiers */
unsigned char locked_maods, * locked modifiers */
unsigned char compat_state; [* effective group => modifiers*/
unsigned char grab_maods; /* modifiers used for grabs */
unsigned char compat_grab mods; /* mods used for compatibility mode grabs */
unsigned char lookup_mods; /* modifiers used to lookup symbols */
unsigned char ~ compat_lookup_maods;/* mods used for compatibility lookup */

November 10, 1997

Library Version 1.0/Document Revision 1.1 23

The X Keyboard Extension 5 Keyboard State

5.4

unsigned short ptr_buttons; [* 1 bit => corresponding pointer btn is down */
} XkbStateRec,* XkbStatePtr;

To obtain the keyboard state, use XkbGetSate.
Status XkbGetState(display, device_spec, state return)

Display * display; /* connection to the X server */
unsigned int device spec; /* devicelD, or XkbUseCoreKbd */
XkbStatePtr state return; /* backfilled with Xkb state */

The XkbGetSate function queries the server for the current keyboard state, waits for a
reply, and then backfills state_return with the results.

All group values are expressed as group indicesin the range [0..3]. Modifiers and the
compatibility modifier state values are expressed as the bitwise union of the core X11
modifier masks. The pointer button state is reported as in the core X 11 protocol.

Tracking Keyboard State

The Xkb extension reports XkbStateNotify eventsto clients wanting notification
whenever the Xkb state changes. The changes reported include changes to any aspect of
the keyboard state: when amodifier is set or unset, when the current group changes, or
when a pointer button is pressed or released. Aswith all Xkb events, XkbStateNotify
events are reported to all interested clients without regard to the current keyboard input
focus or grab state.

There are many different types of Xkb state changes. Xkb defines an event detail mask
corresponding to each type of change. The event detail masks are listed in Table 5.3.

Table 5.3 XkbStateNotify Event Detail Masks

Mask Value
XkbM odifierStateM ask (1L << 0)
XkbM odifierBaseM ask (1L << 1)
XkbM odifierLatchMask (1L << 2)
XkbM odifierL ockM ask (1L << 3)
XkbGroupStateM ask (1L << 4)
XkbGroupBaseMask (1L <<5)
XkbGroupL atchMask (1L << 6)
XkbGroupL ockMask (1L << 7)
XkbCompatStateM ask (1L << 8)
XkbGrabModsMask (1L <<9)
XkbCompatGrabModsMask (1L << 10)
XkbLookupModsMask (1L << 11)
XkbCompatL ookupModsMask (1L << 12)
XkbPointerButtonM ask (1L << 13)

XkbAllStateComponentsMask (0x3fff)

To track changes in the keyboard state for a particular device, select to receive Xkb-
StateNotify events by calling either XkbSelectEvents or XkbSelectEventDetails (see
section 4.3).

November 10, 1997 Library Version 1.0/Document Revision 1.1 24

The X Keyboard Extension 5 Keyboard State

To receive XkbStateNotify events under all possible conditions, use XkbSelectEvents
and pass XkbStateNotifyMask in both bits to_change and values for_hits.

To receive XkbStateNot ify events only under certain conditions, use XkbSel ectEvent-
Details using XkbStateNotify asthe event_type and specifying the desired state
changesin bits_to_change and values for_bits using mask bits from Table 5.3.

The structure for XkbStateNotify eventsis:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long seridl; /* X server serial number for event */
Bool send_event; [* True => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; [* XkbStateNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed; [* bitsindicating what has changed */
int group; /* group index of effective group */
int base group; /* group index of base group */

int latched _group; /* group index of latched group */

int locked group; /* group index of locked group */

unsigned int mods; /* effective modifiers*/

unsigned int base mods; [* base modifiers */

unsigned int latched_mods; /* latched modifiers*/

unsigned int locked_mods; /* locked modifiers*/

int compat_state; /* computed compatibility state */

unsigned char grab_mods, /* modifiers used for grabs */

unsigned char compat_grab mods; /* modifiers used for compatibility grabs*/
unsigned char lookup_mods; /* modifiers used to lookup symbols */

unsigned char compat_lookup_mods; /* mods used for compatibility look up */
int ptr_buttons, /* core pointer buttons */

KeyCode keycode; [* keycode causing event, O if programmatic */
char event_type; [* core event if req_major or req_minor non zero */
char req_major; /* major request code if program trigger, else 0 */
char req_minor; /* minor request code if program trigger, else 0 */

} XkbStateNotifyEvent;

When you receive an XkbStateNotify event, the changed field indicates which ele-
ments of keyboard state have changed. Thiswill be the bitwise inclusive OR of one or
more of the XkbStateNotify event detail masks shown in Table 5.3. All fields reported
in the event are valid, but only those indicated in changed have changed values.

The group field isthe group index of the effective keysym group. The base_group,
latched_group, and locked_group fields are set to a group index value representing the
base group, the latched group, and the locked group, respectively. The X server can set the
modifier and compatibility state fieldsto aunion of the core modifier mask bits; this union
represents the corresponding modifier states. The ptr_button field gives the state of the
core pointer buttons as a mask composed of an inclusive OR of zero or more of the core
pointer button masks.

Xkb state changes can occur either in response to keyboard activity or under application
control. If akey event caused the state change, the keycode field gives the keycode of the

November 10, 1997 Library Version 1.0/Document Revision 1.1 25

The X Keyboard Extension 5 Keyboard State

key event, and the event_typefield is set to either KeyPress or KeyRelease. If apointer
button event caused the state change, the keycode field is zero, and the event_typefieldis
set to either ButtonPress or ButtonRelease. Otherwise, the major and minor codes
of the request that caused the state change are given in the req_major and req_minor
fields, and the keycodefield iszero. Thereq _major valueisthe same asthe major extension

opcode.

November 10, 1997 Library Version 1.0/Document Revision 1.1 26

The X Keyboard Extension 6 Complete Keyboard Description

6

6.1

Complete Keyboard Description

The complete Xkb description for a keyboard device is accessed using a single structure
containing pointers to major Xkb components. This chapter describes this single structure
and provides references to other sections of this document that discuss the major Xkb
componentsin detail.

The XkbDescRec Structure

The complete description of an Xkb keyboard is given by an XkbDescRec. The compo-
nent structures in the XkbDescRec represent the major Xkb components outlined in Fig-
ure1.1.

typedef struct {
struct _XDisplay * display; [* connection to X server */
unsigned short flags; [* private to Xkb, do not modify */
unsigned short device spec; /* device of interest */
KeyCode min_key _code; /* minimum keycode for device */
KeyCode max_key_code; /* maximum keycode for device */
XkbControl sPtr ctrls; [* controls*/
XkbServerMapPtr server; [* server keymap */
XkbClientM apPtr map; [* client keymap */
XkblndicatorPtr indicators; /* indicator map */
XkbNamesPtr names; /* names for all components */
XkbCompatM apPtr compat; /* compatibility map */
XkbGeometryPtr geom; [* physical geometry of keyboard */

} XkbDescRec, * XkbDescPtr;

The display field pointsto an X display structure. The flagsfield is private to the library:
modifying flags may yield unpredictable results. The device _spec field specifies the
device identifier of the keyboard input device, or XkbUseCoreKeyboard, which speci-
fies the core keyboard device. The min_key code and max_key code fields specify the
least and greatest keycode that can be returned by the keyboard.

The other fields specify structure components of the keyboard description and are
described in detail in other sections of this document. Table 6.1 identifies the subsequent
sections of this document that discuss the individual components of the XkbDescRec.

Table 6.1 XkbDescRec Component References
XkbDescRec Field ~ For more info

ctrls Chapter 10
server Chapter 16
map Chapter 15
indicators Chapter 8

names Chapter 18
compat Chapter 17
geom Chapter 13

Each structure component has a corresponding mask bit that is used in function callsto
indicate that the structure should be manipulated in some manner, such as allocating it or

November 10, 1997 Library Version 1.0/Document Revision 1.1 27

The X Keyboard Extension 6 Complete Keyboard Description

6.2

6.3

6.4

freeing it. These masks and their relationships to the fields in the XkbDescRec are shown
in Table 6.2.

Table 6.2 Mask Bitsfor XkbDescRec
XkbDescRec

Mask Bit Fidld Value

XkbControlsMask ctrls (1L<<0)
XkbServerMapM ask server (1L<<l)
XkblClientMapMask map (1L<<2)
XkblndicatorM apM ask indicators (1L<<3)
XkbNamesMask names (1L<<4)
XkbCompatM apM ask compat (1L<<5)
XkbGeometryMask geom (1L<<6)

XkbAllComponentsMask All Fields (Ox7f)

Obtaining a Keyboard Description from the Server

To retrieve one or more components of a keyboard device description, use XkbGetKey-
board (see also XkbGetKeyboardbyName).

XkbDescPtr XkbGetK eyboar d(display, which, device _spec)
Display * display; /* connection to X server */
unsigned int which; /* mask indicating componentsto return */
unsigned int device_spec; /* device for which to fetch description, or XkbUseCoreKbd */

XkbGetKeyboard allocates and returns a pointer to a keyboard description. It queries the
server for those components specified in the which parameter for device device_spec and
copies the results to the XkbDescRec it alocated. The remaining fields in the keyboard
description are set to NULL. The valid masks for which are those listed in Table 6.2.

XkbGetKeyboard can generate Badalloc protocol errors.
To free the returned keyboard description, use XkbFreeKeyboard (see section 6.4).

Tracking Changes to the Keyboard Description in the Server

The server can generate events whenever its copy of the keyboard description for adevice
changes. Refer to section 14.4 for detailed information on tracking changes to the key-
board description.

Allocating and Freeing a Keyboard Description

Applications seldom need to directly allocate a keyboard description; calling XkbGetKey-
board usually suffices. In the event you need to create a keyboard description from
scratch, however, use XkbAllocKeyboard rather than directly calling malloc or Xmalloc.

XkbDescRec * XkbAllocK eyboar d(void)

If XkbAllocKeyboard fails to allocate the keyboard description, it returns NULL. Other-
wise, it returns a pointer to an empty keyboard description structure. The device_spec field
will have been initialized to XkbUseCoreKbd. Y ou may then either fill in the structure
components or use Xkb functions to obtain values for the structure components from a
keyboard device.

November 10, 1997 Library Version 1.0/Document Revision 1.1 28

The X Keyboard Extension 6 Complete Keyboard Description

To destroy either an entire an XkbDescRec 0Or just some of its members, use XkbFreeKey-

board.

void XkbFreeK eyboar d(xkb, which, free_all)
XkbDescPtr xkb; /* keyboard description with componentsto free */
unsigned int which; /* mask selecting components to free */
Bool free all; [* True => free al components and xkb */

XkbFreeKeyboard frees the components of xkb specified by which and sets the corre-
sponding valuesto NULL. If free_all is True, XkbFreeKeyboard frees every non-NULL
component of xkb and then frees the xkb structure itself.

November 10, 1997 Library Version 1.0/Document Revision 1.1 29

The X Keyboard Extension 7 Virtua Modifiers

7

7.1

7.2

Virtual Modifiers

The core protocol specifiesthat certain keysyms, when bound to modifiers, affect therules
of keycode to keysym interpretation for all keys; for example, when the Num_Lock key-
sym is bound to some modifier, that modifier is used to select between shifted and
unshifted state for the numeric keypad keys. The core protocol does not provide a conve-
nient way to determine the mapping of modifier bits (in particular Mod1 through Mod5s) to
keysyms such as Num_Lock and Mode_switch. Using the core protocol only, a client
application must retrieve and search the modifier map to determine the keycodes bound to
each modifier, and then retrieve and search the keyboard mapping to determine the key-
syms bound to the keycodes. It must repeat this process for al modifiers whenever any
part of the modifier mapping is changed.

Xkb alleviates these problems by defining virtual modifiers. In addition to the eight core
modifiers, referred to as the real modifiers, Xkb provides a set of sixteen named virtual
modifiers. Each virtual modifier can be bound to any set of the real modifiers (Shift,
Lock, Control, and Mod1-Mod5).

The separation of function from physical modifier bindings makes it easier to specify
more clearly theintent of abinding. X serversdo not al assign modifiers the sasme way —
for example, Num_Lock might be bound to Mod2 for one vendor and to Mod4 for another.
Thismakes it cumbersome to automatically remap the keyboard to a desired configuration
without some kind of prior knowledge about the keyboard layout and bindings. With
XKB, applications can use virtual modifiers to specify the desired behavior, without
regard for the actual physical bindingsin effect.

Virtual Modifier Names and Masks

Virtual modifiers are named by converting their string nameto an X Atom and storing the
Atom in the names.vmods array in an XkbDescRec structure (see section 6.1). The posi-
tion of a name Atom in the names.vmods array defines the bit position used to represent
the virtual modifier and also the index used when accessing virtual modifier information
in arrays. the namein thei-th (0 relative) entry of names.vmodsisthei-th virtual modifier,
represented by the mask (1<<i). Throughout Xkb, various functions have a parameter that
isamask representing virtual modifier choices. In each case, thei-th bit (O relative) of the
mask represents the i-th virtual modifier.

To set the name of avirtual modifier, use XkbSetNames, using XkbVirtualModNames -
Mask in which and the name in the xkb argument; to retrieve indicator names, use XkbGet-
Names. These functions are discussed in Chapter 18.

Modifier Definitions

An Xkb modifier definition enumerates a collection of real and virtual modifiers but does
not in itself bind those modifiersto any particular key or to each other. Modifier defini-
tions are included in a number of structures in the keyboard description to define the col-
lection of modifiers that affect or are affected by some other entity. A modifier definition
isrelevant only in the context of some other entity such as an indicator map, acontrol, or a
key type. (See sections 8.2.2, 10.8, and 15.2.)

typedef struct XkbMods {
unsigned char mask; /* real_mods | vmods mapped to real modifiers*/
unsigned char real_mods, /* real modifier bits*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 30

The X Keyboard Extension 7 Virtua Modifiers

7.3

7.4

unsigned short vmods, [* virtual modifier bits*/
} XkbM odsRec,* XkbM odsPr;

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers (real_mods); asimilar set of bitmasks corresponding to the 16 named virtual
modifiers (vmods); and an effective mask (mask). The effective mask represents the set of
all real modifiersthat can logically be set either by setting any of the real modifiers or by
setting any of the virtual modifiersin the definition. mask is derived from the real and vir-
tual modifiers and should never be explicitly changed — it contains al of the real modifi-
ers specified in the definition (real_mods) plus any real modifiers that are bound to the
virtual modifiers specified in the definition (vmods). The binding of the virtual modifiers
to real modifiersis exterior to the modifier definition. Xkb automatically recomputes the
mask field of modifier definitions as necessary. Whenever you access a modifier defini-
tion that has been retrieved using an Xkb library function, the mask field will be correct
for the keyboard mapping of interest.

Binding Virtual Modifiers to Real Modifiers

The binding of virtual modifiersto real modifiersis defined by the server.vmods array in

an XkbDescRec structure. Each entry contains the real modifier bits that are bound to the
virtual modifier corresponding to the entry. The overall relationship of fields dealing with
virtual modifiersin the server keyboard description are shown in Figure 16.2.

Virtual Modifier Key Mapping

Xkb maintains avirtual modifier mapping, which lists the virtual modifiers associated
with, or bound to, each key. The real modifiers bound to avirtual modifier always include
all of the modifiers bound to any of the keys that specify that virtual modifier in their vir-
tual modifier mapping. The server.vmodmap array indicates which virtual modifiers are
bound to each key; each entry is a bitmask for the virtual modifier bits. The server.vmod-
map array isindexed by keycode.

The vmodmap and vmods members of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to all other fields
that use virtual modifier mappings (see section 16.4).

For example, if Mod3 isbound to the Num_Lock key by the core protocol modifier map-
ping, and the NumLock virtual modifier is bound to they Num_Lock key by the virtual
modifier mapping, Mod3 is added to the set of modifiers associated with NumLock.

The virtual modifier mapping is normally updated whenever actions are automatically
applied to symbols (see section 16.4 for details), and few applications should need to
change the virtual modifier mapping explicitly.

Use XkbGetMap (see section 14.2) to get the virtual modifiers from the server or use Xkb-
GetVirtualMods (see section 16.4.1) to update alocal copy of the virtual modifiers bind-
ings from the server. To set the binding of avirtual modifier to areal modifier, use
XkbSetMap (see section 14.3).

November 10, 1997 Library Version 1.0/Document Revision 1.1 31

The X Keyboard Extension 7 Virtua Modifiers

7.4.1

7.5

7.6

To determine the mapping of virtual modifiersto core X protocol modifiers, use XkbVir-
tualModsToReal.

Bool XkbVirtualM odsToReal (xkb, virtual_mask, mask_rtrn)

XkbDescPtr xkb; /* keyboard description for input device */
unsigned int virtual_mask; /* virtual modifier mask to trandate */
unsigned int * mask_rtrn; /* backfilled with real modifiers*/

If the keyboard description defined by xkb includes bindings for virtual modifiers, XkbVir-
tualModsToReal uses those bindings to determine the set of real modifiers that correspond
to the set of virtual modifiers specified in virtual_mask. The virtual _mask parameter isa
mask specifying the virtual modifiers to translate; the i-th bit (O relative) of the mask rep-
resents the i-th virtual modifier. If mask _rtrnis non-NULL, XkbVirtualModsToReal back-
fillsit with the resulting real modifier mask. If the keyboard description in xkb does not
include virtual modifier bindings, XkbVirtualModsToReal returns False; otherwise, it
returns True.

Note Itispossiblefor alocal (client-side) keyboard description (the xkb parameter) to not
contain any virtual modifier information (simply because the client has not requested
it) while the server’s corresponding definition may contain virtual modifier informa-
tion.

Inactive Modifier Sets

An unbound virtual modifier is one that is not bound to any real modifier
(server->vmodsg]virtual_modifier_index] is zero).

Some Xkb operations ignore modifier definitions in which the virtual modifiers are
unbound. Consider this example:

if (state matches { Shift}) Do OneThing;
if (state matches { Shift+NumLock}) Do Another;

If the NumLock virtual modifier is not bound to any real modifiers, the effective masksfor
these two cases are identical (that is, contain only sShift). Whenit is essential to distin-
guish between OneThing and Another, Xkb considers only those modifier definitions for
which all virtual modifiers are bound.

Conventions

The Xkb extension does not require any specific virtual modifier names. However, every-
one benefitsif the same names are used for common modifiers. The following names are
suggested:

NumLock
ScrollLock
Alt

Meta
AltGr
LevelThree

Example

If the second (O-relative) entry in names.vmods contains the Atom for “NumLock”, then
0x4 (1<<2) isthevirtua modifier bit for the NumLock virtual modifier. If server.vmods[2]

November 10, 1997 Library Version 1.0/Document Revision 1.1 32

The X Keyboard Extension 7 Virtua Modifiers

contains Mod3Mask, then the NumLock virtual modifier is bound to the Mod3 real modi-
fier.

A virtual modifier definition for this example would have:

rea_mods=0
vmods = 0x4 (NumL ock named virtual modifier)
mask = 0x20 (Mod3Mask)

Continuing the example, if the keyboard has a Num_Lock keysym bound to the key with
keycode 14, and the NumLock virtual modifier isbound to this key, server.vmodmap[14]
contains 0x4.

Finally, if the keyboard also used the real Mod1 modifier for numeric lock operations, the
modifier definition below would represent the situation where either the key bound to
Mod1 or the NumLock virtual modifier could be used for this purpose:

real_mods = 0x8 (Mod1Mask)
vmods = 0x4 (NumLock named virtual modifier)
mask = 0x28 (Mod1Mask | Mod3Mask)

November 10, 1997 Library Version 1.0/Document Revision 1.1 33

The X Keyboard Extension 8 Indicators

8

8.1

8.2

8.2.1

Indicators

Although the core X implementation supports up to 32 LEDs on an input device, it does
not provide any linkage between the state of the LEDs and the logical state of the input
device. For example, most keyboards have a CapsLock LED, but X does not provide a
mechanism to make the LED automatically follow the logical state of the CapsLock key.

Furthermore, the core X implementation does not provide clients with the ability to deter-
mine what bitsin theled_mask field of the XKeyboardState map to the particular LEDs
on the keyboard. For example, X does not provide a method for a client to determine what
bit to set in the led_mask field to turn on the Scroll Lock LED or whether the keyboard
even has a Scroll Lock LED.

Xkb providesindicator names and programmabl e indicators to help solve these problems.
Using Xkb, clients can determine the names of the various indicators, determine and con-
trol the way that the individual indicators should be updated to reflect keyboard changes,
and determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard. Clients may al so request immediate notification of changesto the
state of any subset of the keyboard indicators, which makesit straightforward to provide
an on-screen “virtual” LED panel. This chapter describes Xkb indicators and the functions
used for manipulating them.

Indicator Names

Xkb provides the capability of symbolically naming indicators. Xkb itself doesn’t use

these symbolic names for anything; they are there only to help make the keyboard descrip-
tion comprehensible to humans. To set the names of specific indicators, use XkbSetNames
as discussed in Chapter 18. Then set the map using XkbSetMap (see section 14.3) or Xkb-
SetNamedindicator (below). To retrieve indicator names, use XkbGetNames (Chapter 18).

Indicator Data Structures

Use the indicator description record, XkbIndicatorRec, and its indicator map,
XkbIndicatorMapRec, to inquire about and control most indicator properties and
behaviors.

XkblIndicatorRec

The description for all the Xkb indicatorsis held in the indicators field of the complete
keyboard description (see Chapter 6), which is defined as follows:

#define XkbNumlndicators 32
typedef struct {
unsigned long phys indicators; /* LEDs existence */

XkblndicatorMapRec maps XkbNuml ndicators]; /* indicator maps */
} Xkblndicator Rec,* XkblndicatorPtr;

This structure contains the phys _indicators field, which relates some information about
the correspondence between indicators and physical LEDs on the keyboard, and an array
of indicator maps, one map per indicator.

The phys _indicatorsfield indicates which indicators are bound to physical LEDs on the
keyboard; if abit isset in phys_indicators, then the associated indicator has a physical

November 10, 1997 Library Version 1.0/Document Revision 1.1 34

The X Keyboard Extension 8 Indicators

8.2.2

LED associated with it. Thisfield is necessary because some indicators may not have cor-
responding physical LEDs on the keyboard. For example, most keyboards have an LED
for indicating the state of CapsLock, but most keyboards do not have an LED that indi-
cates the current group. Because phys _indicators describes aphysical characteristic of the
keyboard, you cannot directly change it under program control. However, if aclient pro-
gram loads a completely new keyboard description via XkbGetKeyboardByName, or if a
new keyboard is attached and the X implementation notices, phys_indicators changes if
the indicators for the new keyboard are different.

XkbIndicatorMapRec

Each indicator hasits own set of attributes that specify whether clients can explicitly set
its state and whether it tracks the keyboard state. The attributes of each indicator are held
in the maps array, which is an array of XkbIndicatorRec Structures:

typedef struct {
unsigned char flags; * how the indicator can be changed */
unsigned char which_groups;, /* match criteriafor groups */
unsigned char groups; * which keyboard groups the indicator watches */
unsigned char which_mods; /* match criteriafor modifiers*/
XkbModsRec mods; /* which modifiers the indicator watches */
unsigned int ctrls, * which controls the indicator watches */

} Xkblndicator M apRec, * XkblndicatorMapPtr;
Thisindicator map specifies for each indicator:

The conditions under which the keyboard modifier state affects the indicator

The conditions under which the keyboard group state affects the indicator

The conditions under which the state of the boolean controls affects the indicator
The effect (if any) of attemptsto explicitly change the state of the indicator using the
functions XkbSetControls or XChangeKeyboardControl

For more information on the effects of explicit changes to indicators and the relationship
to the indicator map, see section 8.4.1.

XkbIndicatorMapRec flags field

The flags field specifies the conditions under which the indicator can be changed and the
effects of changing the indicator. The valid values for flags and their effects are shown in
Table 8.1.

Table 8.1 XkblndicatorMapRec flags Field

Value Effect

XkbIM_NoExplicit (1L<<7) Client applications cannot change the state of the indicator.

XkbIM_NoAutomatic (1L<<6) XKkb does not automatically change the value of the indicator
based upon a change in the keyboard state, regardless of the
values for the other fields of the indicator map.

XkbIM_LEDDriveskKB (1L<<5) A client application changing the state of the indicator causes
the state of the keyboard to change.

Note that if XkbIM NoAutomatic isnot set, by default the indicator follows the key-
board state.

November 10, 1997 Library Version 1.0/Document Revision 1.1 35

The X Keyboard Extension 8 Indicators

If XkbIM LEDDrivesKB isset and XkbIM NoExplicitisnot, andif you call afunction
which updates the server’s image of the indicator map (such as XkbSetIndicatorMap or
XkbSetNamedl ndicator), Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map, as described in the remainder of this section. If you attempt to
explicitly change the value of an indicator for which XkbIM LEDDriveskKB isabsent or
for which XkbIM NoExplicit ispresent, keyboard state or controls are unaffected.

For example, akeyboard designer may want to make the CapsLock LED controllable
only by the server, but alow the Scroll Lock LED to be controlled by client applications.
To do s, the keyboard designer could set the XkbIM NoExplicit flag for the
CapsLock LED, but not set it for the Scroll Lock LED. Or the keyboard designer may
wish to allow the CapsLock LED to be controlled by both the server and client applica-
tions and also have the server to automatically change the CapsLock modifier state when-
ever aclient application changes the CapsLock LED. To do so, the keyboard designer
would not set the XkbIM NoExplicit flag, but would instead set the

XkbIM LEDDrivesKB flag.

The remaining fields in the indicator map specify the conditions under which Xkb auto-
matically turns an indicator on or off (only if XkbIM NoAutomatic isnot set). If these
conditions match the keyboard state, Xkb turns the indicator on. If the conditions do not
match, Xkb turns the indicator off.

XkbIndicatorMapRec which_groups and groups fields

The which_groups and the groups fields of an indicator map determine how the keyboard
group state affects the corresponding indicator. The which_groups field controls the inter-
pretation of groups and may contain any one of the following values:

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L <<0)

#define XkbIM_Usel atched (1L << 1)

#define XkbIM_Usel ocked (AL << 2)

#define XkblM _UseEffective (1L << 3)

#define XkbIM_UseAnyGroup XkbIM_Usel atched | XkbIM_Usel_ocked |
XkbIM _UseEffective

The groups field specifies what keyboard groups an indicator watches and is the bitwise
inclusive OR of the following valid values:

#define XkbGrouplMask (1<<0)
#define XkbGroup2Mask (1<<d)
#define XkbGroup3Mask (1<<2)
#define XkbGroup4M ask (1<<3)

#define XkbAnyGroupMask (1<<7)
#define XkbAllGroupsMask (Oxf)

November 10, 1997 Library Version 1.0/Document Revision 1.1 36

The X Keyboard Extension

8 Indicators

If XkbIM NoAutomatic isnot set (the keyboard drives the indicator), the effect of
which_groups and groupsis shown in Table 8.2.

Table 8.2 XkblndicatorMapRec which_groups and groups, Keyboard Drives Indicator

which_groups

Effect

XkbIM_UseNone
XkbIM_UseBase

XkbIM_Uselatched

XkbIM _Uselocked

XkblM_UseEffective

The groups field and the current keyboard group state are ignored.

If groups is nonzero, the indicator is lit whenever the base keyboard
group isnonzero. If groupsis zero, the indicator islit whenever the base
keyboard group is zero.

If groups is nonzero, the indicator islit whenever the latched keyboard

group is nonzero. If groupsis zero, the indicator islit whenever the
latched keyboard group is zero.

The groupsfield isinterpreted as a mask. The indicator is lit when the
current locked keyboard group matches one of the bitsthat are set in

groups.

The groupsfield isinterpreted as a mask. The indicator islit when the
current effective keyboard group matches one of the bitsthat are set in

groups.

The effect of which_groups and groups when you change an indicator for which
XkbIM LEDDriveskKB isset (theindicator drives the keyboard) is shown in Table 8.3.
The “New State” column refers to the new state to which you set the indicator.

Table 8.3 Xkblndicator MapRec which_groups and groups, Indicator Drives Keyboar d

which_groups

New Sate Effect on Keyboard Group Sate

XkblM_UseNone
XkbIM_UseBase
XkbIM_Usel atched

XkbIM_Usel atched

XkbIM_Usel ocked or
XkbIM _UseEffective

XkbIM_Usel ocked or
XkbIM_UseEffective

On or Off No effect
On or Off No effect

On

Off

On

Off

The groupsfield is treated as a group mask. The keyboard
group latch is changed to the lowest numbered group speci-
fied in groups; if groupsisempty, the keyboard group latchis
changed to zero.

The groupsfield istreated asagroup mask. If theindicator is
explicitly extinguished, keyboard group latch is changed to
the lowest numbered group not specified in groups; if groups
is zero, the keyboard group latch is set to the index of the
highest legal keyboard group.

If the groups mask is empty, group is not changed; otherwise,
the locked keyboard group is changed to the lowest num-
bered group specified in groups.

Locked keyboard group is changed to the lowest numbered
group that is not specified in the groups mask, or to Groupl
if the groups mask contains all keyboard groups.

XkbIndicatorMapRec which_mods and mods fields

The mods field specifies what modifiers an indicator watches. The modsfield isan Xkb
modifier definition, XkbModsRec, as described in section 7.2, which can specify both real
and virtual modifiers. The mods field takes effect even if some or all of the virtual indica-
tors specified in mods are unbound. To specify the modsfield, in general, assign the mod-
ifiers of interest to mods.real_mods and the virtual modifiers of interest to mods.vmods.

Y ou can disregard the mods.mask field unless your application needs to interpret the indi-
cator map directly (that is, to simulate automatic indicator behavior onitsown). Relatively

November 10, 1997

Library Version 1.0/Document Revision 1.1 37

The X Keyboard Extension 8 Indicators

few applications need to do so, but if you find it necessary, you can either read the indica-
tor map back from the server after you update it (the server automatically updates the
mask field whenever any of thereal or virtual modifiers are changed in the modifier defi-
nition) or you can use XkbVirtualModsToReal to determine the proper contents for the
mask field, assuming that the XkbDescRec contains the virtual modifier definitions.

which_mods specifies what criteria Xkb uses to determine a match with the corresponding
mods field by specifying one or more components of the Xkb keyboard state. If

XkbIM NoAutomatic isnot set (the keyboard drives the indicator), the indicator islit
whenever any of the modifiers specified in the mask field of the mods modifier definition
are also set in any of the current keyboard state components specified by which_mods.
Remember that the mask field is comprised of al of the real modifiers specmed in the def-
inition plus any real modifiers that are bound to the virtual modifiers specified in the defi-
nition. (See Chapter 5 for more information on the keyboard state and Chapter 7 for more
information on virtual modifiers.) Use abitwise inclusive OR of the following valuesto
compose avaue for which_mods:

#define XkbIM_UseNone 0

#define XkbIM_UseBase (1L << 0)

#define XkbIM_UselL atched (1L <<1)

#define XkbIM_Usel ocked (1L << 2)

#define XkbIM_UseEffective (1L << 3)

#define XkbIM_UseCompat (1L << 4)

#define XkbIM_UseAnyMods XkbIM_UseBase | XkbIM_Usel atched | XkbIM_Usel ocked

| XkbIM_UseEffective | XkbIM_UseCompat

If XkbIM NoAutomatic isnot set (the keyboard drives the indicator), the effect of
which_mods and modsis shown in Table 8.4

Table 8.4 Xkblndicator MapRec which_mods and mods, Keyboard Drives | ndicator

which_mods Effect on Keyboard Modifiers
XkbIM_UseNone The mods field and the current keyboard modifier state are ignored.
XkblM_UseBase Theindicator islit when any of the modifiers specified in the mask field

of mods are on in the keyboard base state. If both mods.real_mods
and mods.vmods are zero, the indicator is lit when the base key-
board state contains no modifiers.

XkbIM_UselLatched Theindicator islit when any of the modifiers specified in the mask field
of mods are latched. If both mods.real mods and mods.vmods are
Izerc;l etgle indicator islit when none of the modifier keys are
atcl

XkbIM_UseLocked Theindicator islit when any of the modifiers specified in the mask field
of mods are locked. If both mods.real_mods and mods.vmods are
zero, the indicator islit when none of the modifier keys are locked.

XkbIM_UseEffective Theindicator islit when any of the modifiers specified in the mask field
of mods arein the effective keyboard state. If both mods.real_mods
and mods.vmods are zero, the indicator is lit when the effective
keyboard state contains no modifiers.

XkbIM_UseCompat ~ Theindicator islit when any of the modifiers specified in the mask field
of mods are in the keyboard compatibility state. If both
mods.real_mods and mods.vmods are zero, the indicator is it
when the keyboard compatibility state contains no modifiers.

November 10, 1997 Library Version 1.0/Document Revision 1.1 38

The X Keyboard Extension 8 Indicators

8.3

The effect on the keyboard modifiers of which_mods and mods when you change an indi-
cator for which XkbIM LEDDrivesKB is Set (the indicator drives the keyboard) is shown
in Table 8.5. The “New State” column refers to the new state to which you set the indica-
tor.

Table 8.5 XkblndicatorMapRec which_mods and mods, I ndicator Drives Keyboard

which_mods New State Effect on Keyboard Modifiers

XkbIM_UseNone or On or Off No Effect
XkbIM_UseBase

XkbIM_Usel_atched On Any modifiers specified in the mask field of mods are
added to the latched modifiers.

XkbIM_Usel atched Off Any modifiers specified in the mask field of mods are
removed from the latched modifiers.

XkbIM_Uselocked, On Any modifiers specified in the mask field of mods are

XkblM_UseCompat, or added to the locked modifiers.

XkbIM_UseEffective

XkbIM_Usel ocked Off Any modifiers specified in the mask field of mods are

removed from the locked modifiers.

XkbIM_UseCompat or Off Any modifiers specified in the mask field of mods are
XkblM_UseEffective removed from both the locked and latched modifiers.

XkblIndicatorMapRec ctrls field

The ctrisfield specifies what controls (see Chapter 10) the indicator watches and is com-
posed using the bitwise inclusive OR of the following values:

#define XkbRepeatK eysMask (AL <<0)
#define XkbSlowKeysMask (AL << 1)
#define XkbBounceKeysMask (1L << 2)
#define XkbStickyKeysMask (AL << 3)
#define XkbM ouseKeysMask (1L << 9)
#define XkbMouseKeysAccelMask (1L << 5)
#define XkbA ccessX KeysMask (1L << 6)

#define XkbAccessXTimeoutMask (1L <<7)
#define XkbAccessX FeedbackMask (1L << 8)

#define XkbAudibleBelIMask (1L <<9)
#define XkbOverlay1lMask (1L << 10)
#define XkbOverlay2Mask (1L << 112)

#define XkbAllBooleanCtrlsMask (Ox00001FFF)
Xkb lights the indicator whenever any of the boolean controls specified in ctrlsis enabled.

Getting Information About Indicators

Xkb allows applications to obtain information about indicators using two different meth-
ods. The first method, which is similar to the core X implementation, uses a mask to spec-
ify the indicators. The second method, which is more suitable for applications concerned
with interoperability, uses indicator names. The correspondence between the indicator
name and the bit position in masksis asfollows: one of the parameters returned from Xkb-
GetNamedindicatorsis an index that is the bit position to use in any function call that

November 10, 1997 Library Version 1.0/Document Revision 1.1 39

The X Keyboard Extension 8 Indicators

8.3.1

8.3.2

8.3.3

requires amask of indicator bits, as well as the indicator’ sindex into the XkbIndica-
torRec array of indicator maps.

Getting Indicator State

Because the state of the indicatorsisrelatively volatile, the keyboard description does not
hold the current state of the indicators. To obtain the current state of the keyboard indica-
tors, use XkbGetlndicator State.

Status XkbGetl ndicator State(display, device_spec, state return)
Display * display; /* connection to the X server */
unsigned int device spec; /* devicelD, or XkbUseCoreKbd */
unsigned int * state return; /* backfilled with amask of the indicator state */

XkbGetlndicator Sate queries the display for the state of the indicators on the device spec-
ified by the device spec. For each indicator that is“turned on” on the device, the associ-
ated bit isset in state_return. If acompatible version of the Xkb extension isnot available
in the server, XkbGetlIndicator State returns a BadMatch error. Otherwise, it sends the
request to the X server, places the state of the indicatorsinto state_return, and returns
Success. Thusthe value reported by XkbGetlndicator Sate isidentical to the value
reported by the core protocol.

Getting Indicator Information by Index

To get the map for one or more indicators, using a mask to specify the indicators, use Xkb-
GetIndicatorMap.

Status XkbGetl ndicator M ap(dpy, which, desc)
Display * dpy; [* connection to the X server */
unsignedint which; /* mask of indicators for which maps should be returned */
XkbDescPtr desc; [* keyboard description to be updated */

XkbGetlndicatorMap obtains the maps from the server for only those indicators specified
by the which mask and copiesthe valuesinto the keyboard description specified by desc. If
the indicatorsfield of the desc parameter is NULL, XkbGetlndicatorMap allocates and ini-
tializesit.

XkbGetlndicatorMap can generate BadAlloc, BadLength, BadMatch, and BadImple-
mentation errors.

To free the indicator maps, use XkbFreel ndicatorMaps (see section 8.6).

Getting Indicator Information by Name

Xkb aso allows applications to refer to indicators by name. Use XkbGetNames to get the
indicator names (see Chapter 18). Using names eliminates the need for hard-coding bit-
mask values for particular keyboards. For example, instead of using vendor-specific con-
stants such as WSKBLed ScrollLock mask on Digital workstations or

XLED SCROLL LOCK on Sun workstations, you can instead use XkbGetNamedI ndicator
to look up information on the indicator named “Scroll Lock.”

November 10, 1997 Library Version 1.0/Document Revision 1.1 40

The X Keyboard Extension 8 Indicators

8.4

8.4.1

Use XkbGetNamedindicator to look up the indicator map and other information for an
indicator by name.

Bool XkbGetNamedIndicator (dpy, dev_spec, name, ndx_rtrn, state_rtrn, map_rtrn, real_rtrn)

Display * dpy; [* connection to the X server */

unsigned int device spec; /* keyboard device ID, or XkbUseCoreKbd */

Atom name; /* name of the indicator to be retrieved */

int* ndx_rtrn; /* backfilled with the index of the retrieved indicator */

Bool * state rtrn; /* backfilled with the current state of the retrieved indicator */
XkblIndicatorMapPtrmap_rtrn;/* backfilled with the mapping for the retrieved indicator */
Bool * real_rtrn; /* backfilled with True if the named indicator isreal (physical) */

If the device specified by device spec has an indicator named name, XkbGetNamedI ndi-
cator returns True and populates the rest of the parameters with information about the
indicator. Otherwise, XkbGetNamedI ndicator returns False.

The ndx_rtrn field returns the zero-based index of the named indicator. Thisindex isthe
bit position to use in any function call that requires amask of indicator bits, aswell asthe
indicator’ s index into the XkbIndicatorRec array of indicator maps. state rtrn returns
the current state of the named indicator (True = on, False = off). map_rtrn returns the
indicator map for the named indicator. In addition, if the indicator is mapped to a physical
LED, thereal_rtrn parameter is set to True.

Each of the“_rtrn” argumentsis optional; you can pass NULL for any unneeded “_rtrn”
arguments.

XkbGetNamedindicator can generate BadAtom and BadImplementation erors.

Changing Indicator Maps and State

Just as you can get the indicator map using amask or using an indicator name, so you can
change it using amask or a name.

Note You cannot change the phys_indicatorsfield of the indicators structure. The only
way to change the phys_indicatorsfield isto change the keyboard map.

There are two ways to make changes to indicator maps and state: either change alocal
copy of the indicator maps and use XkbSetlndicatorMap or XkbSetNamedi ndicator, or, to
reduce network traffic, use an XkbIndicatorChangesRec structure and use
XkbChangel ndicators.

Effects of Explicit Changes on Indicators

This section discusses the effects of explicitly changing indicators depending upon differ-
ent settings in the indicator map. See Tables 8.3 and Table 8.5 for information on the
effects of the indicator map fields when explicit changes are made.

If XkbIM LEDDrivesKB isset and XkbIM NoExplicit isnot, andif you call afunction
that updates the server’ simage of the indicator map (such as XkbSetlndicatorMap or Xkb-
SetNamedi ndicator), Xkb changes the keyboard state and controls to reflect the other
fields of the indicator map. If you attempt to explicitly change the value of an indicator for
which XkbIM LEDDrivesKB isabsent or for which XkbIM NoExplicit ispresent,
keyboard state or controls are unaffected.

November 10, 1997 Library Version 1.0/Document Revision 1.1 41

The X Keyboard Extension 8 Indicators

8.4.2

If neither XkbIM NoAutomatic nor XkbIM NoExplicit issetinan indicator map,
Xkb honors any request to change the state of the indicator, but the new state might be
immediately superseded by automatic changes to the indicator state if the keyboard state
or controls change.

The effects of changing an indicator that drives the keyboard are cumulative; it is possible
for asingle change to affect keyboard group, modifiers, and controls simultaneously.

If you change an indicator for which both the XkbIM LEDDrivesKB and

XkbIM NoAutomatic flagsare specified, Xkb applies the keyboard changes specified in
the other indicator map fields and changes the indicator to reflect the state that was explic-
itly requested. The indicator remainsin the new state until it is explicitly changed again.

If the XkbIM NoAutomatic flagisnot set and XkbIM LEDDrivesKB isset, Xkb applies
the changes specified in the other indicator map fields and sets the state of the indicator to
the values specified by the indicator map. Note that it is possible in this case for the indi-

cator to end up in adifferent state than the one that was explicitly requested. For example,
Xkb does not extinguish an indicator with which_mods of XkbIM UseBase and mods of

shift if, a the time Xkb processes the request to extinguish the indicator, one of the Shift
keysis physically depressed.

If you explicitly light an indicator for which XkbIM LEDDrivesKB isset, Xkb enablesall
of the boolean controls specified in the ctris field of its indicator map. Explicitly extin-
guishing such an indicator causes Xkb to disable all of the boolean controls specified in
ctrls.

Changing Indicator Maps by Index

To update the maps for one or more indicators, first modify alocal copy of the keyboard
description, then use XkbSetIndicator Map to download the changes to the server:

Bool XkbSetIndicator M ap(dpy, which, desc)
Display * dpy; /* connection to the X server */
unsignedint which; /* mask of indicators to change */
XkbDescPtr desc; /* keyboard description from which the maps are taken */

For each bit set in the which parameter, XkbSetlndicator Map sends the corresponding
indicator map from the desc parameter to the server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 42

The X Keyboard Extension 8 Indicators

8.4.3

8.4.4

Changing Indicator Maps by Name
XkbSetNamedi ndicator can do several related things:

Name an indicator if it is not aready hamed
Toggle the state of the indicator

Set the indicator to a specified state

Set the indicator map for the indicator

Bool XkbSetNamedI ndicator (dpy, device_spec, hame, change state, state, create_new, map)

Display * dpy; [* connection to the X server */

unsigned int device_spec; /* devicelD, or XkbUseCoreKbd */

Atom name; /* name of theindicator to change */

Bool change_state; /* whether to change the indicator state or not */

Bool state; /* desired new state for the indicator */

Bool create new; /* whether anew indicator with the specified name
should be created when necessary */

XkblndicatorMapPtr map; /* new map for the indicator */

If acompatible version of the Xkb extension is not available in the server, XkbSetNamed-
Indicator returns False. Otherwise, it sends arequest to the X server to change the indi-
cator specified by name and returns True.

If change_state is True, and the optional parameter, state, is not NULL, XkbSetNamed-
Indicator tells the server to change the state of the named indicator to the value specified
by state.

If an indicator with the name specified by name does not already exist, the create_new
parameter tellsthe server whether it should create a new named indicator. If create newis
True, the server finds the first indicator that doesn’t have a name and gives it the name
specified by name.

If the optional parameter, map, is not NULL, XkbSetNamedIndicator tells the server to
change the indicator’ s map to the values specified in map.

XkbSetNamedindicator can generate BadAtom and BadImplementation efrors. In
addition, it can also generate XkbIndicatorStateNotify (see section 8.5), XkbIndi-
catorMapNotify, and XkbNamesNot i fy events (see section 18.5).

The XkbIndicatorChangesRec Structure

The XkbIndicatorChangesRec identifies small modifications to the indicator map.
Use it with the function XkbChangel ndicators to reduce the amount of traffic sent to the
server.

typedef struct _XkblndicatorChanges {
unsigned int state_changes;
unsigned int map_changes;
} Xkbl ndicator ChangesRec,* X kbl ndicatorChangesPtr;

The state_changesfield isamask that specifiestheindicators that have changed state, and
map_changes is amask that specifies the indicators whose maps have changed.

November 10, 1997 Library Version 1.0/Document Revision 1.1 43

The X Keyboard Extension 8 Indicators

8.5

To change indicator maps or state without passing the entire keyboard description, use
XkbChangel ndicators.

Bool XkbChangel ndicator s(dpy, xkb, changes, state)

Display * dpy; [* connection to the X server */

XkbDescPtr xkb; I* keyboard description from which names are to be
taken. */

XkblndicatorChangesPtr changes; /* indicatorsto be updated on the server */

unsigned int dtate; I* new state of indicatorslisted in

changes->state_changes */

XkbChangel ndicators copies any maps specified by changes from the keyboard descrip-
tion, xkb, to the server specified by dpy. If any bits are set in the state_changesfield of
changes, XkbChangelndicators also sets the state of those indicators to the values speci-
fied in the state mask. A 1 bit in state turns the corresponding indicator on, a0 bit turnsit
off.

XkbChangel ndicators can generate Badatom and BadImplementation errors. In addi-
tion, it can also generate XkbIndicatorStateNotify and XkbIndicatorMapNotify
events (see section 8.5).

Tracking Changes to Indicator State or Map

Whenever an indicator changes state, the server sends XkbIndicatorStateNotify
eventsto al interested clients. Similarly, whenever an indicator’ s map changes, the server
sends XkbIndicatorMapNotify eventsto all interested clients.

To receive XkbIndicatorStateNotify events, use XkbSelectEvents (see section 4.3)
with both the bits_to_change and values for_bits parameters containing XkbIndica-
torStateNotifyMask. To receive XkbIndicatorMapNotify events, use XkbSelect-
Events with XkbIndicatorMapNotifyMask.

To receive events for only specific indicators, use XkbSelectEventDetails. Set the
event_type parameter to XkbIndicatorStateNotify or XkbIndicatorMapNo-
tify, and set both the bits to_change and values for_bits detail parameters to a mask
where each bit specifies one indicator, turning on those bits that specify the indicators for
which you want to receive events.

Both types of indicator events use the same structure:
typedef struct XkblndicatorNotify {

int type; * Xkb extension base event code */

unsigned long seridl; I* X server serial number for event */

Bool send_event; /* True => synthetically generated */

Display * display; * server connection where event generated */
Time time; * server time when event generated */

int xkb_type; /* specifies state or map notify */

int device; * Xkb device ID, will not be XkbUseCoreKbd*/
unsignedint changed; * mask of indicators with new state or map */
unsignedint state; * current state of all indicators */

} Xkblndicator NotifyEvent;

November 10, 1997 Library Version 1.0/Document Revision 1.1 44

The X Keyboard Extension 8 Indicators

8.6

xkb_typeiseither XkbIndicatorStateNotify or XkbIndicatorMapNotify,
depending on whether the event isakbIndicatorStateNotify event or kbIndica-
torMapNotify event.

The changed parameter isamask that is the bitwise inclusive OR of the indicators that
have changed. If the event is of type XkbIndicatorMapNotify, changed reportsthe
maps that changed. If the event is of type XkbIndicatorStateNotify, changed reports
the indicators that have changed state. state is a mask that specifies the current state of all
indicators, whether they have changed or not, for both XkbIndicatorStateNotify
and IndicatorMapNotify events.

When your client application receives either a XkbIndicatorStateNotify event or
XkbIndicatorMapNotify event, you can note the changes in a changes structure by
calling XkbNotel ndicator Changes.

void XkbNotel ndicator Changes(old, new, wanted)

XkblndicatorChangesPtr old; /* XKkblndicatorChanges structure to be updated */
XkblndicatorNotifyEvent * new;, [* event from which changes are to be copied */
unsigned int wanted; /* which changes are to be noted */

The wanted parameter is the bitwise inclusive OR of XkbIndicatorMapMask and
XkbIndicatorStateMask. XkbNotel ndicator Changes copies any changes reported in
new and specified in wanted into the changes record specified by old.

To update alocal copy of the keyboard description with the actual values, pass the results
of one or more calls to XkbNotel ndicator Changes to XkbGetl ndicator Changes:

Status XkbGetl ndicator Changes(dpy, xkb, changes, state)

Display * dpy; /* connection to the X server */

XkbDescPtr xkb; * keyboard description to hold the new values */
XkblIndicatorChangesPtr changes; /* indicator maps/state to be obtained from the server */
unsigned int * state; * backfilled with the state of the indicators */

XkbGetl ndicator Changes examines the changes parameter, pulls over the necessary infor-
mation from the server, and copiesthe resultsinto the xkb keyboard description. If any bits
are set in the state_changes field of changes, XkbGetlndicator Changes also places the
state of those indicatorsin state. If the indicators field of xkb is NULL, XkbGetlndicator-
Changes allocates and initializesit. To free the indicators field, use XkbFreel ndicators
(see section 8.6).

XkbGetlndicator Changes can generate BadAlloc, BadImplementation, and Bad-
Match errors.

Allocating and Freeing Indicator Maps

Most applications do not need to directly allocate the indicators member of the keyboard
description record (the keyboard description record is described in Chapter 6). If the need
arises, however, use XkbAlloclndicatorMaps.

Status XkbAllocl ndicator M aps(xkb)
XkbDescPtr xkb; /* keyboard description structure */

The xkb parameter must point to avalid keyboard description. If it doesn’t, XkbAlloclndi-
catorMaps returns a BadMatch error. Otherwise, XkbAlloclndicatorMaps allocates and
initializes the indicators member of the keyboard description record and returns Suc-

November 10, 1997 Library Version 1.0/Document Revision 1.1 45

The X Keyboard Extension 8 Indicators

cess. If XkbAlloclndicatorMaps was unable to allocate the indicators record, it reports a
Badalloc error.

To free memory used by the indicators member of an XkbDescRec structure, use
XkbFreel ndicator Maps.

void XkbFreel ndicator M aps(xkb)
XkbDescPtr xkb; /* keyboard description structure */

If the indicators member of the keyboard description record pointed to by xkb is not NULL,
XkbFreel ndicator Maps frees the memory associated with the indicators member of xkb.

November 10, 1997 Library Version 1.0/Document Revision 1.1 46

The X Keyboard Extension 9 Bdls

9

9.1

Bells

The core X protocol allows only applications to explicitly sound the system bell with a
given duration, pitch, and volume. Xkb extends this capability by allowing clients to
attach symbolic names to bells, disable audible bells, and receive an event whenever the
keyboard bell isrung. For the purposes of this document, the audible bell is defined to be
the system bell, or the default keyboard bell, as opposed to any other audible sound gener-
ated elsewhere in the system.

Y ou can ask to receive XkbBel1Not ify events (see section 9.4) when any client rings
any one of the following:

* Thedefault bell

« Any bell on an input device that can be specified by abell_classand bell_id pair

» Any bell specified only by an arbitrary name. (Thisis, from the server’s point of view,
merely aname, and not connected with any physical sound-generating device. Some
client application must generate the sound, or visual feedback, if any, that is associated
with the name.)

Y ou can also ask to receive XkbBel1Not i fy events when the server rings the default bell
or if any client has requested events only (without the bell sounding) for any of the bell
types previously listed.

Y ou can disable audible bells on aglobal basis (to set the AudibleBell control, see
Chapter 10). For example, aclient that replaces the keyboard bell with some other audible
cue might want to turn off the audibleBell control to prevent the server from also gen-
erating a sound and avoid cacophony. If you disable audible bells and request to receive
XkbBellNotify events, you can generate feedback different from the default bell.

Y ou can, however, override the AudibleBell control by calling one of the functionsthat
force theringing of abell in spite of the setting of the AudibleBell control — Xkb-
ForceDeviceBell or XkbForceBell (see section 9.3.3). In this case the server does not gen-
erate a bell event.

Just as some keyboards can produce keyclicks to indicate when akey is pressed or repeat-
ing, Xkb can provide feedback for the controls by using special beep codes. The
AccessXFeedback control is used to configure the specific types of operations that gen-
erate feedback. See section 10.6.3 for adiscussion on AccessXFeedback control.

This chapter describes bell names, the functions used to generate named bells, and the
events the server generates for bells.

Bell Names

Y ou can associate a name to an act of ringing a bell by converting the name to an Atom
and then using this name when you call the functions listed in this chapter. If an event is
generated as aresult, the name is then passed to all other clientsinterested in receiving
XkbBellNotify events. Note that these are arbitrary names and that there is no binding
to any sounds. Any sounds or other effects (such as visual bells on the screen) must be
generated by aclient application upon receipt of the bell event containing the name. There
is no default name for the default keyboard bell. The server does generate some pre-
defined bells for the AccessX controls (see section 10.6.3). These named bells are shown
in Table 9.1; the nameisincluded in any bell event sent to clients that have requested to
receive XkbBel1lNotify events.

November 10, 1997 Library Version 1.0/Document Revision 1.1 47

The X Keyboard Extension

9 Bedlls

Table 9.1 Predefined Bells

Action Named Bell
Indicator turned on AX_IndicatorOn
Indicator turned off AX_IndicatorOff

More than one indicator changed state
Control turned on

Control turned off

More than one control changed state

SlowKeys and BounceK eys about to be turned on or off

SlowKeys key pressed
SlowKeys key accepted
SlowKeys key rejected

Accepted SlowKeys key released
BounceKeys key rejected
StickyKeys key latched

AX_IndicatorChange
AX_FeatureOn
AX_FeatureOff
AX_FeatureChange
AX_SlowKeysWarning
AX_SlowKeyPress
AX_SlowKeyAccept
AX_SlowKeyReject
AX_SlowKeyRelease
AX_BounceKeyReject
AX_StickyLatch

AX_StickyL ock
AX_StickyUnlock

StickyKeys key locked
StickyKeys key unlocked

9.2 Audible Bells

Using Xkb you can generate bell events that do not necessarily ring the system bell. This
isuseful if you need to use an audio server instead of the system beep. For example, when
an audio client starts, it could disable the audible bell (the system bell) and then listen for
XkbBellNotify events (see section 9.4). When it receives a XkbBel1lNot ify event, the
audio client could then send a request to an audio server to play a sound.

Y ou can control the audible bells feature by passing the XkbAudibleBellMask to
XkbChangeEnabledControls (see section 10.1.1). If you set XkbAudibleBellMask on,
the server rings the system bell when a bell event occurs. Thisisthe default. If you set
XkbAudibleBellMask off and a bell event occurs, the server does not ring the system
bell unless you call XkbForceDeviceBell or XkbForceBell (see section 9.3.3).

Audible bells are also part of the per-client auto-reset controls. For more information on
auto-reset controls, see section 10.1.2.

9.3 Bell Functions
Use the functions described in this section to ring bells and to generate bell events.

The input extension has two types of feedbacks that can generate bells — bell feedback
and keyboard feedback. Some of the functionsin this section have bell_class and bell_id
parameters; set them asfollows: Set bell_classto Bel1FeedbackClass or KbdFeed-
backClass. A device can have more than one feedback of each type; set bell_id to the
particular bell feedback of bell _classtype.

November 10, 1997 Library Version 1.0/Document Revision 1.1 48

The X Keyboard Extension 9 Bdls

9.3.1

Table 9.2 showsthe conditions that cause abell to sound or an XkbBel1NotifyEvent to
be generated when a bell function is called.

Table 9.2 Bell Sounding and Bell Event Generating

Server sounds Server sends an

Function called AudibleBell 2 bell XkbBelINotifyEvent
XkbDeviceBdll On Yes Yes
XkbDeviceBell Off No Yes
XkbBdl On Yes Yes
XkbBell Off No Yes
XkbDeviceBell Event On or Off No Yes
XkbBel|Event On or Off No Yes
XkbDeviceForceBell On or Off Yes No
XkbForceBell On or Off Yes No

Generating Named Bells

To ring the bell on an X input extension device or the default keyboard, use XkbDevice-
Bell.

Bool XkbDeviceBell(display, window, device id, bell_class, bell _id, percent, name)
Display * display; [* connection to the X server */
Window window; /* window for which the bell is generated, or None */
unsigned int device spec; /* devicelD, or XkbUseCoreKbd */
unsignedint bell _class;, /* X input extension bell class of the bell to be rung */

unsigned int bell _id; /* X input extension bell 1D of the bell to be rung */
int percent; /* bell volume, from -100 to 100 inclusive */
Atom name; /* anamefor the bell, or NULL */

Set percent to be the volume relative to the base volume for the keyboard as described for
XBell.

Note that bell _class and bell_id indicate the bell to physically ring. name is simply an
arbitrary moniker for the client application’s use.

To determine the current feedback settings of an extension input device, use XGetFeed-
backControl. See the X input extension documentation for more information on XGet-
FeedbackControl and related data structures.

If a compatible keyboard extension is not present in the X server, XkbDeviceBell immedi-
ately returns False. Otherwise, XkbDeviceBell rings the bell as specified for the display
and keyboard device and returns True. If you have disabled the audible bell, the server
does not ring the system bell, although it does generate a XkbBel1Notify event.

Y ou can call XkbDeviceBell without first initializing the keyboard extension.

As a convenience function, Xkb provides afunction to ring the bell on the default key-
board: XkbBell.

Bool XkbBell(display, window, percent, name)

Display * display; /* connection to the X server */

Window window; /* event window, or None*/

int percent; /* relative volume, which can range from -100 to 100 inclusive */
Atom name; /* abell name, or NULL */

November 10, 1997 Library Version 1.0/Document Revision 1.1 49

The X Keyboard Extension 9 Bdls

9.3.2

If acompatible keyboard extension isn’t present in the X server, XkbBell calls XBell with
the specified display and percent, and returns False. Otherwise, XkbBell calls XkbDevi-
ceBell with the specified display, window, percent, and name, adevice _spec of XkbUseC-
oreKbd, abell_class of XkbDf1tXIClass, and abell_id of XkbDf1tXIId, and returns
True.

If you have disabled the audible bell, the server does not ring the system bell, although it
does generate a XxkbBel1Notify event.

Y ou can call XkbBell without first initializing the keyboard extension.

Generating Named Bell Events

Using Xkb, you can aso generate a named bell event that does not ring any bell. This
allows you to do things such as generate events when your application starts.

For example, if an audio client listens for these types of bells, it can produce a “whoosh”
sound when it receives a named bell event to indicate a client just started. In this manner,
applications can generate start-up feedback and not worry about producing annoying
beepsif an audio server is not running.

To cause abell event for an X input extension device or for the keyboard, without ringing
the corresponding bell, use XkbDeviceBel | Event.

Bool XkbDeviceBellEvent(display, window, device_spec, bell_class, bell_id, percent, name)
Display * display; /* connection tothe X server */
Window window; /* event window, or None*/
unsigned int device spec;/* device ID, or XkbUseCoreKbd */
unsigned int bell_class;/* input extension bell class for the event */
unsignedint bell_id; /* input extension bell ID for the event */
int percent; /* volume for the bell, which can range from -100 to 100 inclusive */
Atom name; /* abell name, or NULL */

If a compatible keyboard extension isn’t present in the X server, XkbDeviceBell Event
immediately returns False. Otherwise, XkbDeviceBellEvent causes an XkbBel1Notify
event to be sent to all interested clients and returns True. Set percent to be the volumerrel-
ative to the base volume for the keyboard as described for XBell.

In addition, XkbDeviceBell Event may generate Atom protocol errors as well as Xkb-
BellNotify events. You can call XkbBell without first initializing the keyboard exten-
sion.

As aconvenience function, Xkb provides afunction to cause abell event for the keyboard
without ringing the bell: XkbBellEvent.

Bool XkbBellEvent(display, window, percent, name)

Display * display; /* connection to the X server */

Window window; [* the event window, or None */

int percent; [* relative volume, which can range from -100 to 100 inclusive */
Atom name; /* abell name, or NULL */

If acompatible keyboard extension isn’t present in the X server, XkbBell Event immedi-
ately returns False. Otherwise, XkbBellEvent calls XkbDeviceBel | Event with the speci-
fied display, window, percent, and name, a device_spec of XkbUseCoreKbd, abell_class

November 10, 1997 Library Version 1.0/Document Revision 1.1 50

The X Keyboard Extension 9 Bdls

9.3.3

9.4

of XkbDf1tXIClass, and abell_id of XkbDf1tXI1d, and returns what XkbDevice-
BellEvent returns.

XkbBellEvent generates a XkbBellNotify event.
Y ou can call XkbBellEvent without first initializing the keyboard extension.

Forcing a Server-Generated Bell

To ring the bell on any keyboard, overriding user preference settings for audible bells, use
XkbForceDeviceBell.

Bool XkbForceDeviceBell(display, window, device spec, bell _class, bell_id, percent)
Display * display; [* connection to the X server */
Window window; /* event window, or None */
unsigned int device spec; /* devicelD, or XkbUseCoreKbd */
unsignedint bell _class, /* input extension class of the bell to be rung */
unsigned int bell _id; /* input extension ID of the bell to be rung */
int percent; [* relative volume, which can range from -100 to 100 inclusive */

If acompatible keyboard extension isn’t present in the X server, XkbForceDeviceBell
immediately returns False. Otherwise, XkbForceDeviceBell ringsthe bell as specified for
the display and keyboard device and returns True. Set percent to be the volumerrelative to
the base volume for the keyboard as described for XBell. There is no name parameter
because XkbForceDeviceBell does not cause an XkbBel1Notify event.

Y ou can call XkbBell without first initializing the keyboard extension.

To ring the bell on the default keyboard, overriding user preference settings for audible
bells, use XkbForceBell.

Bool XkbForceBell(display, percent)
Display * display; /* connection tothe X server */
int percent; /* volume for the bell, which can range from -100 to 100 inclusive */

If a compatible keyboard extension isn’'t present in the X server, XkbForceBell calls XBell
with the specified display and percent and returns False. Otherwise, XkbForceBell calls
XkbForceDeviceBell with the specified display and percent, device spec =XkbUseC-
oreKbd, bell class= XkbDf1tXIClass, bell id=XkbDf1txXI1d, window = None, and
name = NULL, and returns what XkbForceDeviceBell returns.

XkbForceBell does not cause an XkbBel1Notify event.

Y ou can call XkbBell without first initializing the keyboard extension.

Detecting Bells

Xkb generates XxkbBel1Notify eventsfor all bells except for those resulting from calls
to XkbForceDeviceBell and XkbForceBell. To recelve XkbBel 1Notify events under all
possible conditions, pass XkbBellNotifyMask in both the bits_to_change and
values_for_bits parameters to XkbSel ectEvents (see section 4.3).

The XkbBellNotify event has no event details. It is either selected or it is not. How-
ever, you can call XkbSelectEventDetails using XkbBel1Notify asthe event_type and
specifying XkbAl11BellNotifyMask in bits to_change and values for_bits. This has
the same effect as a call to XkbSelectEvents.

November 10, 1997 Library Version 1.0/Document Revision 1.1 51

The X Keyboard Extension

9 Bedlls

The structure for the XkbBel1Notify event type contains:

typedef struct _XkbBelINotify {

int type;
unsigned long serid;

Bool send_event;
Display * display;
Time time;

int xkb_type;
unsignedint device;

int percent;

int pitch;

int duration;

unsignedint bell class;
unsignedint bell_id;

Atom name;
Window window;
Bool event_only;

} XkbBelINoatifyEvent;

I* Xkb extension base event code */

* X server serial number for event */

[* True => synthetically generated */

* server connection where event generated */

[* server time when event generated */

[* XkbBellNotify */

/* Xkb device ID, will not be XkbUseCoreKbd */
I* requested volume as % of max */

* requested pitch in Hz */

* requested duration in microseconds */

/* X input extension feedback class */

/* X input extension feedback ID */

/* “name” of requested bell */

/* window associated with event */

[* False -> the server did not produce a beep */

If your application needs to generate visual bell feedback on the screen when it receives a
bell event, use the window ID in the XkbBel1NotifyEvent, if present.

November 10, 1997 Library Version 1.0/Document Revision 1.1

52

The X Keyboard Extension 10 Keyboard Controls

10

Keyboard Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. This chapter discusses functions used to modify controls effecting the
behavior of the server portion of the Xkb extension. Chapter 11 discusses functions used
to modify controlsthat affect only the behavior of the client portion of the extension; those
controls are known as Library Controls.

Xkb contains control features that affect the entire keyboard, known as global keyboard
controls. Some of the controls may be selectively enabled and disabled; these controls are
known as the Boolean Controls. Boolean Controls can be turned on or off under program
control and can also be automatically set to an on or off condition when a client program
exits. Theremaining controls, known asthe Non-Boolean Controls, arealways active. The
XkbControlsRec structure describes the current state of most of the global controls and
the attributes effecting the behavior of each of these Xkb features. This chapter describes
the Xkb controls and how to manipulate them.

There are two possible components for each of the Boolean Controls: attributes describing
how the control should work, and a state describing whether the behavior asawholeis
enabled or disabled. The attributes and state for most of these controls are held in the
XkbControlsRec structure (see section 10.8).

Y ou can manipulate the Xkb controls individually, via convenience functions, or asa
whole. To treat them as a group, modify an XkbControlsRec structure to describe all of
the changes to be made, and then pass that structure and appropriate flagsto an Xkb
library function, or use a XkbControlsChangesRec (see section 10.10.1) to reduce net-
work traffic. When using a convenience function to manipulate one control individually,
you do not use an XkbControlsRec structure directly.

The Xkb controls are grouped as shown in Table 10.1.
Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control ?
Controls for enabling and disabling other controls EnabledControls No
AutoReset No
Control for bell behavior AudibleBell Boolean
Controls for repeat key behavior PerKeyRepeat No
RepeatKeys Boolean
DetectableAutorepeat Boolean
Controls for keyboard overlays Overlayl Boolean
Overlay?2 Boolean
Controls for using the mouse from the keyboard MouseKeys Boolean
MouseK eysAccel Boolean
Controlsfor better keyboard access by AccessX Feedback Boolean
physically impaired persons AccessXKeys Boolean
AccessX Timeout Boolean
BounceKeys Boolean
SlowKeys Boolean
StickyKeys Boolean
Controls for general keyboard mapping GroupsWrap No

November 10, 1997 Library Version 1.0/Document Revision 1.1 53

The X Keyboard Extension 10 Keyboard Controls

10.1

Table 10.1 Xkb Keyboard Controls

Type of Control Control Name Boolean Control ?
IgnoreGroupL ock Boolean
Ignorel.ockMods No
InternalMods No
Miscellaneous per-client controls GrabsUseXKBState ~ Boolean
L ookupStateWhenGrab Boolean
bed
SendEventUsesX KBStaBoolean
te

Theindividual categories and controls are described first, together with functions for
manipulating them. A description of the XkbControlsRec structure and the general
functions for dealing with all of the controls at once follow at the end of the chapter.

Controls that Enable and Disable Other Controls

Enable and disable the boolean controls under program control by using the Enabled-
Controls control; enable and disable them upon program exit by configuring the
AutoReset control.

10.1.1 The EnabledControls Control

The EnabledControls control isabit mask where each bit that is turned on means the
corresponding control is enabled, and when turned off, disabled. It corresponds to the
enabled_ctrisfield of an XkbControlsRec structure (see section 10.8). The bits describ-
ing which controls are turned on or off are defined in Table 10.7.

Use XkbChangeEnabledControls to manipulate the EnabledControls control.
Bool XkbChangeEnabledControls(dpy, device spec, mask, values)

Display * dpy; [* connection to X server */

unsigned int device spec; /* keyboard device to modify */
unsigned int mask; /* 1 bit -> controlsto enable / disable */
unsigned int values; /* 1 bit => enable, O bit => disable */

The mask parameter specifies the boolean controls to be enabled or disabled, and the val-
ues mask specifies the new state for those controls. Valid values for both of these masks
are composed of a bitwise inclusive OR of bits taken from the set of mask bitsin Table
10.7, using only those masks with “ok” in the enabled_ctrls column.

If the X server does not support a compatible version of Xkb or the Xkb extension has not
been properly initialized, XkbChangeEnabledControls returns False; otherwise, it sends
the request to the X server and returns True.

Note that the EnabledControls control only enables and disables controls; it does not
configure them. Some controls, such asthe AudibleBell control, have no configuration
attributes and are therefore manipulated solely by enabling and disabling them. Others,
however, have additional attributesto configure their behavior. For example, the
RepeatControl control usesrepeat_delay and repeat_interval fields to describe the
timing behavior of keys that repeat. The RepeatControl behavior isturned on or off

November 10, 1997 Library Version 1.0/Document Revision 1.1 54

The X Keyboard Extension 10 Keyboard Controls

depending on the value of the XkbRepeatKeysMask bit, but you must use other means,
as described in this chapter, to configure its behavior in detail.

10.1.2 The AutoReset Control

Y ou can configure the boolean controls to automatically be enabled or disabled when a
program exits. This capability is controlled viatwo masks maintained in the X server on a
per-client basis. Thereis no client-side Xkb data structure corresponding to these masks.
Whenever the client exits for any reason, any boolean controls specified in the auto-reset
mask are set to the corresponding value from the auto-reset values mask. This makesiit
possiblefor clientsto “clean up after themselves’ automatically, even if abnormally termi-
nated. The bits used in the masks correspond to the EnabledControls control bits.

For example, a client that replaces the keyboard bell with some other audible cue might
want to turn off the AudibleBel1l control to prevent the server from also generating a
sound and avoid cacophony. If the client wereto exit without resetting the AudibleBell
control, the user would be left without any feedback at all. Setting AudibleBell in both
the auto-reset mask and auto-reset values guarantees that the audible bell will be turned
back on when the client exits.

To get the current values of the auto-reset controls, use XkbGetAutoResetControls.
Bool XkbGetAutoResetControls(dpy, auto_ctrls, auto_values)

Display * dpy; [* connection to X server */
unsigned int * auto_ctrls, [* specifieswhich bitsin auto_values are relevant */
unsigned int * auto_values;, /* 1 bit => corresponding control has auto-reset on */

XkbGetAutoResetControls backfills auto_ctrls and auto_values with the AutoReset con-
trol attributes for this particular client. It returns True if successful, and False otherwise.

To change the current values of the AutoReset control attributes, use XkbSetAutoReset-

Controls.

Bool XkbSetAutoResetControls(dpy, changes, auto_ctrls, auto_values)
Display * dpy; /* connection to X server */
unsigned int changes, [* controls for which to change auto-reset values */
unsigned int * auto_ctrls; /* controls from changes that should auto reset */
unsigned int * auto_values;, /* 1 bit => auto-reset on */

XkbSetAutoResetControls changes the auto-reset status and associated auto-reset values
for the controls selected by changes. For any control selected by changes, if the corre-
sponding bit is set in auto_ctrls, the control is configured to auto-reset when the client
exits. If the corresponding bit in auto_valuesison, the control isturned on when the client
exits; if zero, the control isturned off when the client exits. For any control selected by
changes, if the corresponding bit is not set in auto_ctrls, the control is configured to not
reset when the client exits. For example:

To leave the auto-reset controls for StickyKeys the way they are:
ok = XkbSetAutoResetControls(dpy, 0, 0, 0);

To change the auto-reset controls so that St ickyKeys are unaffected when the client
exits:

ok = XkbSetAutoResetControl s(dpy, XkbStickyKeysMask, 0, 0);

November 10, 1997 Library Version 1.0/Document Revision 1.1 55

The X Keyboard Extension 10 Keyboard Controls

To change the auto-reset controls so that St ickyKeys are turned off when the client
exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask, 0);
To change the auto-reset controls so that St ickyKeys are turned on when the client exits:

ok = XkbSetAutoResetControls(dpy, XkbStickyKeysMask, XkbStickyKeysMask,
XkbStickyKeysMask);

XkbSetAutoResetControls backfills auto_ctrls and auto_values with the auto-reset con-
trolsfor this particular client. Note that all of the bits are valid in the returned values, not
just the ones selected in the changes mask.

10.2 Control for Bell Behavior

The X server’s generation of soundsis controlled by the AudibleBell control. Configu-
ration of different bell soundsis discussed in Chapter 9.

10.2.1 The AudibleBell Control

The audibleBell control isaboolean control that has no attributes. As such, you may
enable and disable it using either the EnabledControls control or the AutoReset con-
trol discussed in section 10.1.1. When enabled, protocol requests to generate a sound
result in the X server actually producing areal sound; when disabled, requests to the
server to generate a sound are ignored unless the sound is forced. See section 9.2.

10.3 Controls for Repeat Key Behavior

The repeating behavior of keyboard keys is governed by three controls, the PerKeyRe -
peat control, which is aways active, and the RepeatKeys and DetectableAutore-
peat controls, which are boolean controls that may be enabled and disabled.
PerKeyRepeat determines which keys are allowed to repeat. RepeatKeys governsthe
behavior of an individual key when it is repeating. DetectableAutorepeat allowsa
client to detect when akey is repeating as a result of being held down.

10.3.1 The PerKeyRepeat Control

The perKeyRepeat control isabitmask long enough to contain a bit for each key on the
device; it determines which individual keys are allowed to repeat. The Xkb PerKeyRe-
peat control provides no functionality different from that available viathe core X proto-
col. There are no convenience functions in Xkb for manipulating this control. The
PerKeyRepeat control settings are carried in the per_key repeat field of an XkbCon-
trolsRec structure, discussed in section 10.8.

10.3.2 The RepeatKeys Control

The core protocol allows only control over whether or not the entire keyboard or individ-
ual keys should auto-repeat when held down. RepeatKeys is aboolean control that
extends this capability by adding control over the delay until akey beginsto repeat and the
rate at which it repeats. RepeatKeys is coupled with the core auto-repeat control: when
RepeatKeys is enabled or disabled, the core auto-repeat is enabled or disabled and vice
versa.

November 10, 1997 Library Version 1.0/Document Revision 1.1 56

The X Keyboard Extension 10 Keyboard Controls

Auto-repeating keys are controlled by two attributes. The first, timeout, isthe delay after

theinitial press of an auto-repeating key and the first generated repeat event. The second,
interval, is the delay between all subsequent generated repeat events. Aswith all boolean
controls, configuring the attributes that determine how the control operates does not auto-
matically enable the control as awhole; see section 10.1.

To get the current attributes of the RepeatKeys control for akeyboard device, use Xkb-

GetAutoRepeatRate.

Bool XkbGetAutoRepeatRate(display, device _spec, timeout_rtrn, interval_rtrn)
Display * display; /* connection to X server */
unsigned int device spec; /* desired device ID, or XkbUseCoreKbd */
unsigned int * timeout_rtrn; /* backfilled with initial repeat delay, ms*/
unsigned int * interval_rtrn; /* backfilled with subsequent repeat delay, ms*/

XkbGetAutoRepeatRate queries the server for the current values of the RepeatControls
control attributes, backfillstimeout_rtrn and interval_rtrn with them, and returns True. If
acompatible version of the Xkb extension is not available in the server XkbGetAutoRepe-

atRate returns False.
To set the attributes of the RepeatK eys control for a keyboard device, use XkbSetAutoRe-
peatRate.
Bool XkbSetAutoRepeatRate(display, device spec, timeout, interval)
Display * display; /* connection to X server */
unsigned int device_spec; /* deviceto configure, or XkbUseCoreKbd */
unsigned int timeout; [* initial delay, ms*/
unsigned int interval; [* delay between repeats, ms*/

XkbSetAutoRepeatRate sends a request to the X server to configure the AutoRepeat con-
trol attributes to the values specified in timeout and interval.

XkbSetAutoRepeatRate does not wait for areply; it normally returns True. Specifying a
zero value for either timeout or interval causes the server to generate a Badvalue proto-
col error. If acompatible version of the Xkb extension is not available in the server, Xkb-
SetAutoRepeatRate returns False.

10.3.3 The DetectableAutorepeat Control

Auto-repeat is the generation of multiple key events by a keyboard when the user presses
akey and holds it down. Keyboard hardware and device-dependent X server software
often implement auto-repeat by generating multiple KeyPress events with no intervening
KeyRelease event. The standard behavior of the X server isto generate a KeyRelease
event for every KeyPress event. If the keyboard hardware and device-dependent soft-
ware of the X server implement auto-repeat by generating multiple KeyPress events, the
device-independent part of the X server by default synthetically generates aKeyRelease
event after each KeyPress event. This provides predictable behavior for X clients, but
does not allow those clients to detect the fact that a key is auto-repeating.

Xkb allows clients to request detectable auto-repeat. If a client requests and the server
supports DetectableAutorepeat, Xkb generates KeyRelease events only when the
key isphysicaly released. If DetectableAutorepeat isnot supported or has not been
requested, the server synthesizes a KeyRelease event for each repeating KeyPress
event it generates.

November 10, 1997 Library Version 1.0/Document Revision 1.1 57

The X Keyboard Extension 10 Keyboard Controls

10.4

DetectableAutorepeat, unlike the other controlsin this chapter, is not contained in
the XkbControlsRec structure, nor can it be enabled or disabled viathe EnabledCon-
trols control. Instead, query and set DetectableAutorepeat using XkbGetDetectab-
leAutorepeat and XkbSetDetectabl eAutorepeat.

DetectableAutorepeat isacondition that appliesto all keyboard devicesfor aclient’s
connection to agiven X server; it cannot be selectively set for some devices and not for
others. For this reason, none of the Xkb library functions involving DetectableAu-
torepeat involve adevice specifier.

To determine whether or not the server supports DetectableAutorepeat, use XkbGet-
DetectableAutorepeat.

Bool XkbGetDetectableAutor epeat(display, supported _rtrn)
Display * display; [* connection to X server */
Bool * supported rtrn; /* backfilled True if DetectableAutorepeat supported */

XkbGetDetectableAutorepeat queries the server for the current state of DetectableAu-
torepeat and waitsfor areply. If supported rtrnisnot NULL, it backfills supported_rtrn
with True if the server supports DetectableAutorepeat, and False otherwise. Xkb-
GetDetectabl eAutorepeat returns the current state of DetectableAutorepeat for the
reguesting client: True if DetectableAutorepeat is set, and False otherwise.

To set DetectableAutorepeat, use XkbSetDetectableAutorepeat. This request affects
al keyboard activity for the requesting client only; other clients still see the expected non-
detectable auto-repeat behavior, unless they have requested otherwise.

Bool XkbSetDetectableAutor epeat(display, detectable, supported_rtrn)

Display * display; [* connection to X server */
Bool detectable; [* True => set DetectableAutorepeat */
Bool * supported_rtrn; /* backfilled True if DetectableAutorepeat supported */

XkbSetDetectableAutorepeat sends a request to the server to set DetectableAutore-
peat on for the current client if detectable is True, and off it detectableis False; it then
waitsfor areply. If supported_rtrn isnot NULL, XkbSetDetectableAutorepeat backfills
supported_rtrn with True if the server supports DetectableAutorepeat, and False
if it does not. XkbSetDetectableAutorepeat returns the current state of Detectablelu-
torepeat for therequesting client: True if DetectableAutorepeat iSset, and False
otherwise.

Controls for Keyboard Overlays (Overlayl and Overlay2 Controls)

A keyboard overlay allows some subset of the keyboard to report alternate keycodes when
the overlay isenabled. For example, akeyboard overlay can be used to simulate a numeric
or editing keypad on a keyboard that does not actually have one by reusing some portion
of the keyboard as an overlay. This technique is very common on portable computers and
embedded systems with small keyboards.

Xkb includes direct support for two keyboard overlays, using the Overlayl and
Overlay?2 controls. When Overlay1l isenabled, al of the keys that are members of the
first keyboard overlay generate an alternate keycode. When Overlay?2 isenabled, al of
the keys that are members of the second keyboard overlay generate an alternate keycode.
The two overlays are mutually exclusive; any particular key may be in at most one over-
lay. Overlayl and Overlay2 are boolean controls. As such, you may enable and disable

November 10, 1997 Library Version 1.0/Document Revision 1.1 58

The X Keyboard Extension 10 Keyboard Controls

10.5

them using either the EnabledControls control or the AutoReset control discussed in
section 10.1.1.

To specify the overlay to which akey belongs and the alternate keycode it should generate
when that overlay isenabled, assign it either the XkbKB Overlayl or XkbKB Overlay?2
key behaviors, as described in section 16.2.

Controls for Using the Mouse from the Keyboard

Using Xkb, it is possible to configure the keyboard to allow simulation of the X pointer
device. This simulation includes both movement of the pointer itself and press and release
events associated with the buttons on the pointer. Two controls affect this behavior: the
MouseKeys control determines whether or not ssmulation of the pointer deviceis active,
aswell as configuring the default button; the MouseKeysAccel control determines the
movement characteristics of the pointer when simulated via the keyboard. Both of them
are boolean controls; as such, you may enable and disable them using either the
EnabledControls control or the AutoReset control discussed in section 10.1.1. The
individual keysthat simulate different aspects of the pointer device are determined by the
keyboard mapping, discussed in Chapter 16.

10.5.1 The MouseKeys Control

The MouseKeys control allows a user to control al the mouse functions from the key-
board. When MouseKeys are enabled, all keys with MouseKeys actions bound to them
generate core pointer eventsinstead of normal KeyPress and KeyRelease events.

The MouseKeys control has asingle attribute, mk_dflt_btn that specifies the core button
number to be used by mouse keys actions that do not explicitly specify abutton. Thereis
no convenience function for getting or setting the attribute; instead use XkbGetControls
and XkbSetControls (see sections 10.9 and 10.10).

Note MouseKeys can aso beturned on and off by pressing the key combination necessary
to produce an XK Pointer EnableKeys keysym. The de facto default standard
for thisis Shift+Alt+NumLock, but this may vary depending on the keymap.

10.5.2 The MouseKeysAccel Control

When the MouseKeysAccel control is enabled, the effect of a key-activated pointer
motion action changes as akey is held down. If the control is disabled, pressing a
mouse-pointer key yields one mouse event. When MouseKeysAccel is enabled, mouse
movement is defined by an initial distance specified in the XkbsSa MovePtr action and
the following fields in the XkbControlsRec structure (see section 10.8).

Table 10.2 MouseKeysAccel Fields

Field Function

mk_delay Time (ms) between the initial key press and the first repeated motion event
mk_interval Time (ms) between repeated motion events

mk_time_to_max Number of events (count) before the pointer reaches maximum speed
mk_max_speed The maximum speed (in pixels per event) the pointer reaches

mk_curve The ramp used to reach maximum pointer speed

November 10, 1997 Library Version 1.0/Document Revision 1.1 59

The X Keyboard Extension 10 Keyboard Controls

There are no convenience functions to query or change the attributes of the MouseKey -
sAccel control; instead use XkbGetControls and XkbSetControls (see sections 10.9 and
10.10).

The effects of the attributes of the MouseKeysAccel control depend on whether the
XkbSA MovePtr action (see section 16.1) specifies relative or absolute pointer motion.

Absolute Pointer Motion

If an XkbSA MovePtr action specifies an absolute position for one of the coordinates but
still allows acceleration, all repeated events contain any absolute coordinates specified in
the action. For example, if the XkbSA MovePtr action speC|f|es an absolute posm on for
the X direction, but a relative motion for the Y direction, the pointer acceleratesin the Y
direction, but stays at the same X position.

Relative Pointer Motion

If the XkbSA MovePtr action specifies relative motion, the initial event always moves
the cursor the distance specified in the action. After mk_delay milliseconds, a second
motion event is generated, and another occurs every mk_interval milliseconds until the
user releases the key.

Between the time of the second motion event and mk_time to_max intervals, the change

in pointer distance per interval increases with each interval. After mk_time_to_max inter-
vals have elapsed, the change in pointer distance per interval remains the same and is cal-
culated by multiplying the original distance specified in the action by mk_max_speed.

For example, if the XkbSA MovePtr action specifies arelative motion in the X direction
of 5, mk_delay=160, mk_interval=40, mk_time to_max=30, and mk_max_speed=30, the
following happens when the user presses the key:

» The pointer immediately moves 5 pixelsin the X direction when the key is pressed.

» After 160 milliseconds (mk_delay), and every 40 milliseconds thereafter (mk_interval),
the pointer movesin the X direction.

» Thedistancein the X direction increases with each interval until 30 intervals
(mk_time to_max) have elapsed.

» After 30 intervals, the pointer stops accelerating, and moves 150 pixels
(mk_max_speed * the original distance) every interval thereafter, until the key is
released.

Theincrease in pointer difference for each interval isafunction of mk_curve. Events after
the first but before maximum acceleration has been achieved are accelerated according to
the formula:

max_accel
steps to maxcurveFactor

d(step) = action_deltax () X stepourveractor

Where action_delta is the relative motion specified by the XkbSA MovePtr action,
mk_max_speed and mk_time_to_max are parameters to the MouseKeysAccel control,
and the curveFactor is computed using the MouseKeysAccel mk_curve parameter as fol-
lows:

curve

=1+
curveFactor(curve) = 1 1000

November 10, 1997 Library Version 1.0/Document Revision 1.1 60

The X Keyboard Extension 10 Keyboard Controls

With the result that a mk_curve of zero causes the distance moved to increase linearly
from action_delta to (mk_max_speed x action_delta). A negative mk_curve causes an initial
sharp increase in accel eration that tapers off, and a positive curve yields a slower initial
increase in acceleration followed by a sharp increase as the number of pointer events gen-
erated by the action approaches mk_time _to_max. The legal values for mk_curve are
between -1000 and 1000.

A distance vs. time graph of the pointer motion is shown in Figure 10.1.

mk_max_speed * Action delta

DOSY W O

Action delta

|IIIIIIIIIIIIIIIIIII\)IIIIII
mk_delay ik time to max mk_interval
(msec) (count) ~ (msec)

e MK _curve=0
— MK_cUrve<0
rrsrsrrs MK _curve>0

Figure 10.1 MouseK eys Acceleration

10.6 Controls for Better Keyboard Access by Physically Impaired Persons

The Xkb extension includes several controls specifically aimed at making keyboard use
more effective for physically impaired people. All of these controls are boolean controls
and may be individually enabled and disabled, as well as configured to tune their specific
behavior. The behavior of these controls is based on the AccessDOS package®.

1. AccessDOS provides access to the DOS operating system for people with physical impairments and was devel-
oped by the Trace R& D Center at the University of Wisconsin. For more information on AccessDOS, contact the
Trace R&D Center, Waisman Center and Department of Industrial Engineering, University of Wisconsin-Madison
WI 53705-2280. Phone: 608-262-6966. e-mail: info@trace.wisc.edu.

November 10, 1997 Library Version 1.0/Document Revision 1.1 61

The X Keyboard Extension 10 Keyboard Controls

10.6.1 The AccessXKeys Control

Enabling or disabling the keyboard controls through a graphical user interface may be
impossible for people who need to use the controls. For example, a user who needs
SlowKeys (see section 10.6.6) may not even be able to start the graphical application, let
aoneuseit, if SlowKeys ishot enabled. To allow easier access to some of the controls,
the AccessXKeys control provides a set of specia key sequences similar to those avail-
ablein AccessDOS.

When the AccessXKeys control is enabled, the user can turn controls on or off from the
keyboard by entering the following standard key sequences.

» Holding down a shift key by itself for eight seconds toggles the S1lowKeys control.

» Pressing and releasing the left or right Shift key five times in a row, without any inter-
vening key events and with less than 30 seconds delay between consecutive presses,
toggles the state of the StickyKeys control.

» Simultaneously operating two or more modifier keys deactivates the St ickyKeys
control.

When the AccessXKeys control is disabled, Xkb does not ook for the above special key
sequences.

Some of these key sequences optionally generate audible feedback of the change in state,
as described in section 10.6.3, or XkbControlsNotify events, described in section
10.11.

10.6.2 The AccessXTimeout Control

In environments where computers are shared, features such as S1lowKeys present a prob-
lem: if SlowKeys ison, the keyboard can appear to be unresponsive because keys are not
accepted until they are held for a certain period of time. To help solve this problem, Xkb
provides an AccessXTimeout control to automatically change the enabled/disabled state
of any boolean controls and to change the value of the AccessXKeys and AccessX-
Feedback control attributes if the keyboard isidle for a specified period of time.

When atimeout as specified by AccessXTimeout occurs and a control is consequently
modified, Xkb generates an XxkbControlsNotify event. For more information on Xkb-
ControlsNotify events, refer to section 10.11.

Use XkbGetAccessXTimeout to query the current AccessXTimeout options for a key-
board device.

Bool XkbGetAccessX Timeout(display, device_spec, timeout_rtrn, ctrls_mask rtrn,
ctrls values rtrn, options_mask_rtrn, options_values rtrn)

Display * display; /* connection to X server */

unsigned int device_spec; [* device to query, or XkbUseCoreKbd */
unsigned short * timeout_rtrn; /* delay until AccessX Timeout, seconds */
unsigned int * ctrls_mask_rtrn; /* backfilled with controls to modify */
unsigned int * ctrls values rtrn; * backfilled with on/off statusfor controls*/
unsigned short * opts_mask_rtrn; /* backfilled with ax_options to modify */
unsigned short * opts values rtrn; /* backfilled with values for ax_options */

XkbGetAccessXTimeout sends arequest to the X server to obtain the current valuesfor the
AccessXTimeout attributes, waits for areply, and backfills the values into the appropri-
ate arguments. The parameters opts_mask_rtrn and opts_values rtrn are backfilled with

November 10, 1997 Library Version 1.0/Document Revision 1.1 62

The X Keyboard Extension 10 Keyboard Controls

the options to modify and the values for ax_options, which isafield in the XkbCon -
trolsRec structure (see section 10.8). XkbGetAccessXTimeout returns True if success-
ful; if acompatible version of the Xkb extension is not available in the server,
XkbGetAccessXTimeout returns False.

To configure the AccessXTimeout options for a keyboard device, use XkbSetAccessX-
Timeout.

Bool XkbSetAccessX Timeout(display, device_spec, timeout, ctrls mask, ctrls values,
opts_mask, opts_values)

Display * display; [* connection to X server */

unsigned int device spec; /* deviceto configure, or XkbUseCoreKbd */
unsigned short timeout; /* seconds idle until AccessX Timeout occurs*/
unsigned int ctrls_mask; /* boolean controlsto modify */

unsigned int ctrls values, /* new bitsfor controls selected by ctrls mask */
unsigned short opts_mask; [* ax_optionsto change */

unsigned short opts values; /* new bitsfor ax_options selected by opts_mask */

timeout specifies the number of seconds the keyboard must be idle before the controls are
modified. ctrls_mask specifies what controls are to be enabled or disabled, and
ctrls_values specifies whether those controls are to be enabled or disabled. The bit values
correspond to those for enabling and disabling boolean controls (see section 10.1.1). The
opts_mask field specifies which attributes of the AccessXKeys and AccessXFeedback
controls are to be changed, and opts_values specifies the new values for those options.
The bit values correspond to those for the ax_optionsfield of an XkbDescRec (See section
10.8).

XkbSetAccessXTimeout sends a request to configure the AccessXTimeout control to the
server. It does not wait for areply, and normally returns True. If a compatible version of
the Xkb extension is not available in the server, XkbSetAccessXTimeout returns False.

10.6.3 The AccessXFeedback Control

Just as some keyboards can produce keyclicks to indicate when akey is pressed or repeat-
ing, Xkb can provide feedback for the controls by using specia beep codes. Use the
AccessXFeedback control to configure the specific types of operations that generate
feedback.

Thereisno convenience function for modifying the AccessXFeedback control, although
the feedback as a whole can be enabled or disabled just as other boolean controls are (see
section 10.1). Individual beep codes are turned on or off by modifying the following bits
in the ax_options field of an XkbControlsRec structure and using XkbSetControls (see

section 10.10):

Table 10.3 AccessXFeedback Masks
Action Beep Code ax_options bit
LED turned on High-pitched beep XkbAX_IndicatorFBMask
LED turned off L ow-pitched beep XkbAX _IndicatorFBMask
More than one LED changed state Two high-pitched beeps XkbAX_IndicatorFBMask
Control turned on Rising tone XkbAX_FeatureFBMask
Control turned off Falling tone XkbAX_FeatureFBMask
More than one control changed stateTwo high-pitched beeps XkbAX_FeatureFBMask

November 10, 1997 Library Version 1.0/Document Revision 1.1 63

The X Keyboard Extension

10 Keyboard Controls

Table 10.3 AccessXFeedback M asks

Action Beep Code ax_options bit

SlowKeys and BounceKeys about Three high-pitched beeps XkbAX_SlowWarnFBMask
to be turned on or off

SlowKeys key pressed M edium-pitched beep XkbAX_SKPressFBMask
SlowKeys key accepted Medium-pitched beep XkbAX_SKAcceptFBMask
SlowKeys key rejected L ow-pitched beep XkbAX_SKRejectFBMask
Accepted SlowKeyskey released Medium-pitched beep XkbAX_SKReleaseFBMask
BounceKeys key rejected L ow-pitched beep XkbAX_BKRejectFBMask

StickyKeys key latched

L ow-pitched beep followed by XkbAX_StickyKeysFBMask

high-pitched beep

StickyKeys key locked
StickyKeys key unlocked

High-pitched beep
L ow-pitched beep

XkbAX_StickyK eysFBMask
XkbAX_StickyK eysFBMask

I mplementations that cannot generate continuous tones may generate multiple beeps
instead of falling and rising tones; for example, they can generate a high-pitched beep fol-
lowed by alow-pitched beep instead of a continuous falling tone. Other implementations
can only ring the bell with one fixed pitch. In these cases, use the

XkbAX DumbBellFBMask bit of ax_optionsto indicate that the bell can only ring with a

fixed pitch.

When any of the above feedbacks occur, Xkb may generate axkbBellNotify event (see

section 9.4).

10.6.4 AccessXNotify Events

The server can generate XkbAccessxXNotify events for some of the global keyboard
controls. The structure for the XkbAccessXNotify event typeisasfollows:

typedef struct {
int type;
unsigned long seridl;
Bool send_event;
Display * display;
Time time;
int xkb_type;
int device
int detail;
KeyCode keycode;
int slowKeysDelay;
int debounceDelay;

} XkbAccessXNotifyEvent;

[* Xkb extension base event code */

[* X server serial number for event */

[* True => synthetically generated */

[* server connection where event generated */
[* server time when event generated */

[* XkbAccessxXNotify */

/* Xkb device ID, will not be XkbUseCoreKbd */
I* XKDAXN_* */

/* key of event */

[* current SlowKeys delay */

[* current debounce delay */

The detail field describes what AccessX event just occurred and can be any of the values

in Table 10.4.

Table 10.4 AccessXNotify Events

detail Reason

XkbAXN_SKPress
XKkbAXN_SKA ccept
XkbAXN_SKRelease
XkbAXN_SKReject

A key was pressed when SlowKeys was enabled.

A key was accepted (held longer than the SlowKeys delay).

An accepted SlowKeys key was released.

A key was rejected (released before the SlowKeys delay expired).

November 10, 1997

Library Version 1.0/Document Revision 1.1 64

The X Keyboard Extension 10 Keyboard Controls

Table 10.4 AccessXNotify Events

detail Reason

XkbAXN_BKA ccept A key was accepted by BounceKeys.

XkbAXN_BKReject A key was rejected (pressed before the BounceK eys delay
expired).

XkbAXN_AXKWarning AccessXKeysis about to turn on/off StickyKeys or BounceKeys.

The keycode field reports the keycode of the key for which the event occurred. If the
action isrelated to S1owKeys, the slowKeysDelay field contains the current S1lowKeys
acceptance delay. If the actionisrelated to BounceKeys, the debounceDelay field contains
the current BounceKeys debounce delay.

Selecting for AccessX Events

To receive XkbAccessXNot ify events under all possible conditions, use XkbSelect-
Events (see section 4.3) and pass XkbAccesXNot ifyMask in both bits to_change and
values for_bits.

To receive XkbStateNotify events only under certain conditions, use XkbSel ectEvent-
Details using XkbAccessxXNotify asthe event_type and specifying the desired state
changesin bits_to_change and values_for_bits using mask bits from Table 10.5.

Table 10.5 AccessXNotify Event Details
XkbAccessXNotify Event Details Value Circumstances

XkbAXN_SKPressMask (1<<0) Slow key press notification wanted
XKbAXN_SKAcceptMask (1=<1) Slow key accept notification wanted
XKbAXN_SKRejectMask (1<<2) Slow key reject notification wanted
XkbAXN_SKReleaseMask (1<<3) Slow key release notification wanted
XKbAXN_BKAcceptMask (1<<4) Bounce key accept notification wanted
XKkbAXN_BKRejectMask (1<<5) Bounce key reject notification wanted
XKkbAXN_AXKWarningMask (1<<6) AccessX warning notification wanted
XkbAXN_AllEventsMask (Ox7f) All AccessX features notifications wanted

10.6.5 StickyKeys, RepeatKeys, and MouseKeys Events

The StickyKeys, RepeatKeys, and MouseKeys controls do not generate specific
events. Instead, the latching, unlatching, locking, or unlocking of modifiersusing Stick-
yKeys generates XkbStateNot ify events as described in section 5.4. Repeating keys
generate normal KeyPress and KeyRelease events, though the auto-repeat can be
detected using DetectableAutorepeat (see section 10.3.3). Finally, MouseKeys gen-
erates pointer events identical to those of the core pointer device.

10.6.6 The SlowKeys Control

Some users may accidentally bump keys while moving a hand or typing stick toward the
key they want. Usually, the keys that are accidentally bumped are just hit for a very short
period of time. The S1lowKeys control helps filter these accidental bumps by telling the

server to wait a specified period, called the SowKeys acceptance delay, before delivering
key events. If the key is released before this period el apses, no key events are generated.

Users can then bump any number of keys on their way to the one they want without acci-
dentally getting those characters. Once they have reached the key they want, they can then

November 10, 1997 Library Version 1.0/Document Revision 1.1 65

The X Keyboard Extension 10 Keyboard Controls

hold the desired key long enough for the computer to accept it. SlowKeys is aboolean
control with one configurable attribute.

When the S1lowKeys control is active, the server reports theinitial key press, subsequent
acceptance or rejection, and release of any key to interested clients by sending an appro-
priate AccessXNot ify event (see section 10.6.4).

To get the S1owKeys acceptance delay for a keyboard device, use XkbGetS owKeysDe-

lay.

Bool XkbGetSlowK eysDelay(display, device_spec, delay_rtrn)
Display * display; /* connection to X server */
unsigned int device_spec; /* device D, or XkbUseCoreKbd */
unsigned int * delay rtrn; /* backfilled with SlowKeys delay, ms*/

XkbGetS owKeysDelay requests the attributes of the S1owKeys control from the server,
waits for areply and backfills delay_rtrn with the S1owKeys delay attribute. Xkb-
GetSowKeysDelay returns True if successful; if acompatible version of the Xkb exten-
sion isnot available in the server, XkbGetSowKeysDelay returns False.

To set the S1lowKeys acceptance delay for a keyboard device, use XkbSetS owKeysDelay.
Bool XkbSetSlowK eysDelay(display, device spec, delay)

Display * display; /* connection to X server */
unsigned int device_spec; /* deviceto configure, or XkbUseCoreKbd */
unsigned int delay; [* SlowKeys delay, ms*/

XkbSetS owKeysDelay sends a request to configure the S1lowKeys control to the server. It
does not wait for areply, and normally returns True. Specifying avalue of 0 for the delay
parameter causes XkbSetS owKeys to generate aBadvalue protocol error. If acompatible
version of the Xkb extension is not available in the server XkbSetS owKeysDelay returns
False.

10.6.7 The BounceKeys Control

Some users may accidentally “bounce” on a key when they release it. They pressit once,
then accidentally pressit again after they release it. The BounceKeys control temporarily
disables akey after it has been pressed, effectively “debouncing” the keyboard. The
period of time the key is disabled after it is released is known as the BounceKeys delay.
BounceKeys is a boolean control.

When the BounceKeys control is active, the server reports acceptance or rejection of any
key to interested clients by sending an appropriate AccessXNotify event (See section

10.6.4).
Use XkbGetBounceKeysDelay to query the current BounceKeys delay for a keyboard
device.
Bool XkbGetBounceK eysDelay(display, device_spec, delay_rtrn)
Display * display; /* connection to X server */
unsigned int device spec; /* devicelD, or XkbUseCoreKbd */
unsigned int * delay rtrn; /* backfilled with bounce keys delay, ms*/

XkbGetBounceKeysDelay requests the attributes of the BounceKeys control from the
server, waits for areply, and backfills delay_rtrn with the BounceKeys delay attribute.

November 10, 1997 Library Version 1.0/Document Revision 1.1 66

The X Keyboard Extension 10 Keyboard Controls

XkbGetBounceKeysDelay returns True if successful; if acompatible version of the Xkb
extension is not available in the server XkbGetS owKeysDelay returns False.

To set the BounceKeys delay for akeyboard device, use XkbSetBounceKeysDelay.
Bool XkbSetBounceK eysDelay(display, device spec, delay)

Display * display; /* connection to X server */
unsigned int device_spec; /* deviceto configure, or XkbUseCoreKbd */
unsigned int delay; /* bounce keys delay, ms*/

XkbSetBounceKeysDelay sends a request to configure the BounceKeys control to the
server. It does not wait for areply and normally returns True. Specifying avaue of zero
for the delay parameter causes XkbSetBounceKeysDelay to generate aBadvalue protocol
error. If acompatible version of the Xkb extension is not available in the server, XkbSet-
BounceKeysDelay returns False.

10.6.8 The StickyKeys Control

Some people find it difficult or even impossible to press two keys at once. For example, a
one-fingered typist or someone using amouth stick cannot press the Shift and 1 keys at the
sametime. The StickyKeys control solvesthis problem by changing the behavior of the
modifier keys. With stickyKeys, the user can first pressamodifier, releaseit, then press
another key. For example, to get an exclamation point on a PC-style keyboard, the user
can press the Shift key, release it, and then pressthe 1 key.

StickyKeys aso alows usersto lock modifier keys without requiring special locking
keys. When stickyKeys isenabled, amodifier islatched when the user pressesit just
once. The user can pressamodifier twicein arow to lock it, and then unlock it by pressing
it one more time.

When amodifier islatched, it becomes unlatched when the user presses anonmodifier key
or apointer button. For instance, to enter the sequence Shift+Control+Z the user could
press and release the Shift key to latch it, then press and release the Control key to latch it,
and finally press and release the Z key. Because the Control key isamodifier key, pressing
it does not unlatch the Shift key. Thus, after the user presses the Control key, both the
Shift and Control modifiers are latched. When the user pressesthe Z key, the effect is
as though the user had pressed shift+Control+Z. In addition, because the Z key is not
amodifier key, the shift and Control modifiers are unlatched.

Locking amodifier key means that the modifier affects any key or pointer button the user
presses until the user unlocksit or it is unlocked programmatically. For example, to enter
the sequence (“XKB”) on akeyboard where ‘(" isashifted ‘9, *)’ isashifted ‘0", and ‘™’
isashifted single quote, the user could press and rel ease the Shift key twice to lock the
Shift modifier. Then, when the user pressesthe 9, , x, k, b, ‘, and 0 keysin sequence, it
generates (“XKB”). To unlock the Shift modifier, the user can press and rel ease the Shift
key.

StickyKeys isaboolean control with two separate attributes that may be individually
configured: one to automatically disableit, and one to control the latching behavior of
modifier keys.

November 10, 1997 Library Version 1.0/Document Revision 1.1 67

The X Keyboard Extension 10 Keyboard Controls

10.7

StickyKeys Options

The stickyKeys control has two options that can be accessed viathe ax_options of an
XkbControlsRec structure (see section 10.8). Thefirst option, TwoKeys, specifies
whether stickyKeys should automatically turn off when two keys are pressed at the
sametime. Thisfeatureisuseful for shared computers so people who do not want them do
not need to turn StickyKeys off if aprevious user left StickyKeys on. The second
option, LatchToLock, specifies whether or not StickyKeys locks a modifier when
pressed twicein arow.

Use XkbGetStickyKeysOptions to query the current StickyKeys attributesfor akeyboard
device.

Bool XkbGetStickyK eysOptions(display, device spec, options rtrn)

Display * display; /* connection to X server */
unsigned int device_spec; /* devicelD, or XkbUseCoreKbd */
unsigned int * options_rtrn; /* backfilled with StickyKeys option mask */

XkbGetStickyKeysOptions requests the attributes of the StickyKeys control from the
server, waits for areply, and backfills options_rtrn with amask indicating whether the
individual stickyKeys options are on or off. Valid bitsin options_rtrn are:

XkbAX TwoKeysMask
XkbAX LatchToLockMask

XkbGetStickyKeysOptions returns True if successful; if a compatible version of the Xkb
extension is not available in the server XkbGetStickyKeysOptions returns False.

To set the stickyKeys attributes for a keyboard device, use XkbSetSti ckyKeysOptions.
Bool XkbSetStickyK eysOptions(display, device _spec, mask, values)

Display * display; /* connection to X server */

unsigned int device_spec; /* deviceto configure, or XkbUseCoreKhbd */
unsigned int mask; [* selects StickyKeys attributes to modify */
unsigned int values; /* values for selected attributes */

XkbSetSti ckyKeysOptions sends a request to configure the St ickyKeys control to the
server. It does not wait for areply and normally returns True. The valid bitsto use for
both the mask and values parameters are:

XkbAX TwoKeysMask
XkbAX LatchToLockMask

If a compatible version of the Xkb extension is not available in the server, XkbSetStick-
yKeysOptions returns False.

Controls for General Keyboard Mapping

There are several controls that apply to the keyboard mapping in general. They control
handling of out-of-range group indices and how modifiers are processed and consumed in
the server. These are:

GroupsWrap
IgnoreGrouplLock
IgnoreLockMods
InternalMods

November 10, 1997 Library Version 1.0/Document Revision 1.1 63

The X Keyboard Extension 10 Keyboard Controls

IgnoreGroupLock isaboolean control; the rest are always active.

Without the modifier processing options provided by Xkb, passive grabs set viatransa-
tionsin aclient (for example, Alt<KeyPress>space) do not trigger if any modifiers
other than those specified by the translation are set. This resultsin problemsin the user
interface when either NumLock or a secondary keyboard group is active. The Ignore-
LockMods and IgnoreGroupLock controls make it possible to avoid this behavior with-
out exhaustively specifying agrab for every possible modifier combination.

10.7.1 The GroupsWrap Control

The GroupsWrap control determines how illegal groups are handled on a global basis.
There are anumber of valid keyboard sequences that can cause the effective group num-
ber to go out of range. When this happens, the group must be normalized back to avalid
number. The GroupsWrap control specifies how thisis done.

When dealing with group numbers, all computations are done using the group index,
which is the group number minus one. There are three different agorithms; the
GroupsWrap control specifies which oneis used:

» XkbRedirectIntoRange

All invalid group numbers are converted to avalid group number by taking the last
four bits of the GroupsWrap control and using them as the group index. If the
result is still out of range, Group oneis used.

» XkbClampIntoRange

All invalid group numbers are converted to the nearest valid group number. Group
numbers larger than the highest supported group number are mapped to the highest
supported group; those less than one are mapped to group one.

» XkbWraplntoRange

All invalid group numbers are converted to avalid group number using integer
modulus applied to the group index.

There are no convenience functions for manipulating the GroupsWrap control. Manipu-
late the GroupsWrap control viathe groups wrap field in the XxkbControlsRec struc-
ture, then use XkbSetControls and XkbGetControls (see section 10.9 and section 10.10) to
guery and change this control.

Note Seealso section 15.3.2 or adiscussion of the related field, group_info, which also nor-
malizes a group under certain circumstances.

10.7.2 The IgnoreLockMods Control

The core protocol does not provide away to exclude specific modifiers from grab calcula-
tions, with the result that locking modifiers sometimes have unanticipated side effects.

The IgnoreLockMods control specifies modifiers that should be excluded from grab cal-
culations. These modifiers are also not reported in any core events except KeyPress and
KeyRelease eventsthat do not activate a passive grab and that do not occur while agrab
isactive.

November 10, 1997 Library Version 1.0/Document Revision 1.1 69

The X Keyboard Extension 10 Keyboard Controls

Manipulate the IgnoreLockMods control viatheignore lock field in the XkbCon-
trolsRec structure, then use XkbSetControls and XkbGetControls (see sections 10.9 and
10.10) to query and change this control. Alternatively, use XkbSetlgnorel.ockMods.

To set the modifiersthat, if locked, are not to be reported in matching events to passive
grabs, use XkbSetlgnorel.ockMods.

Bool XkbSetl gnorel ockM ods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_values)
Display * display; [* connection to the X server */
unsigned int device spec; /* devicelD, or XkbUseCoreKbd */
unsigned int affect real; /* mask of real modifiers affected by this call */
unsigned int real values, /* valuesfor affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtual;/* mask of virtual modifiers affected by this call */
unsigned int virtual_values;/* valuesfor affected virtual modifiers (1=>set, 0=>unset) */

XkbSetlgnorel.ockMods sends a request to the server to change the server’'s Ignore-
LockMods control. affect_real and real_values are masks of real modifier bits indicating
which real modifiers are to be added and removed from the server’s IgnoreLockMods
control. Modifiers selected by both affect_real and real_values are added to the server’s
IgnoreLockMods control; those selected by affect_real but not by real _values are
removed from the server’s IgnoreLockMods control. Valid values for affect_real and
real_values consist of any combination of the eight core modifier bits: ShiftMask,
LockMask, ControlMask, Mod1Mask - Mod5Mask. affect_virtual and virtual valuesare
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the server’s IgnoreLockMods control. Modifiers selected by both
affect_virtual and virtual _values are added to the server’ s IgnoreLockMods control;
those selected by affect_virtual but not by virtual _values are removed from the server’s
IgnoreLockMods control. See section 7.1 for adiscussion of virtual modifier masks to
usein affect_virtual and virtual _values. XkbSetlgnorel ockMods does not wait for areply
from the server. It returns True if the request was sent, and False otherwise.

10.7.3 The IgnoreGroupLock Control

The IgnoreGroupLock control isaboolean control with no attributes. If enabled, it
specifies that the locked state of the keyboard group should not be considered when acti-
vating passive grabs.

Because IgnoreGroupLock is aboolean control with no attributes, use the general bool-
ean controls functions (see section 10.1) to change its state.

10.7.4 The InternalMods Control

The core protocol does not provide any means to prevent a modifier from being reported
in events sent to clients; Xkb, however makes this possible viathe InternalMods con-
trol. It specifies modifiers that should be consumed by the server and not reported to cli-
ents. When akey is pressed and a modifier that hasits bit set in the InternalMods
control isreported to the server, the server uses the modifier when determining the actions
to apply for the key. The server then clearsthe bit, so it is not actually reported to the cli-
ent. In addition, modifiers specified in the InternalMods control are not used to deter-
mine grabs and are not used to calculate core protocol compatibility state.

November 10, 1997 Library Version 1.0/Document Revision 1.1 70

The X Keyboard Extension 10 Keyboard Controls

10.8

Manipulate the InternalMods control viathe internal field in the XkbControlsRec
structure, using XkbSetControls and XkbGetControls (see sections10.9 and 10.10). Alter-
natively, use XkbSetServerInternalMods.

To set the modifiers that are consumed by the server before events are delivered to the cli-
ent, use XkbSetServer InternalMods.

Bool XkbSetServerInternalM ods(display, device_spec, affect_real, real_values, affect_virtual,
virtual_values)
Display * display; [* connection to the X server */
unsigned int device spec;’ /* device ID, or XkbUseCoreKbd */
unsigned int affect real; /* mask of real modifiers affected by this call */
unsigned int real values, /* valuesfor affected real modifiers (1=>set, 0=>unset) */
unsigned int affect_virtual;/* mask of virtual modifiers affected by this call */
unsigned int virtual_values;/* valuesfor affected virtual modifiers (1=>set, 0=>unset) */

XkbSetServer InternalMods sends a request to the server to change the internal modifiers
consumed by the server. affect_real and real_values are masks of real modifier bitsindi-
cating which real modifiers are to be added and removed from the server’sinternal modi-
fiers control. Modifiers selected by both affect_real and real_values are added to the
server’ sinternal modifiers control; those selected by affect_real but not by real valuesare
removed from the server’ s internal modifiers mask. Valid values for affect_real and
real_values consist of any combination of the eight core modifier bits: shiftMask,
LockMask, ControlMask, Mod1Mask - Mod5Mask. affect_virtual and virtual _valuesare
masks of virtual modifier bits indicating which virtual modifiers are to be added and
removed from the server’sinternal modifiers control. Modifiers selected by both
affect_virtual and virtual _values are added to the server’ sinternal modifiers control; those
selected by affect_virtual but not by virtual values are removed from the server’ sinternal
modifiers control. See section 7.1 for adiscussion of virtual modifier masksto usein
affect_virtual and virtual_values. XkbSetServerInternalMods does not wait for areply
from the server. It returns True if the request was sent and False otherwise.

The XkbControlsRec Structure

Many of theindividual controls described in sections 10.1 through 10.7 may be manipu-
lated via convenience functions discussed in those sections. Some of them, however, have
no convenience functions. The XkbControlsRec structure allows the manipulation of
one or more of the controls in a single operation and to track changesto any of themin
conjunction with the XkbGetControls and XkbSetControls functions. Thisisthe only way
to manipul ate those controls that have no convenience functions.

The XkbControlsRec structureis defined as follows:

#define XkbMaxL egalKeyCode 255

#define XkbPerKeyBitArraySize ((XkbMaxLegalKeyCode+1)/8)

typedef struct {
unsigned char ~ mk_dflt_btn; /* default button for keyboard driven mouse */
unsigned char num_groups; /* number of keyboard groups */
unsigned char groups wrap; /* how to wrap out-of-bounds groups */
XkbModsRec internal; * defines server internal modifiers*/
XkbModsRec ignore lock; /* modifiers to ignore when checking for grab */

unsigned int enabled _ctrls; /* 1 bit => corresponding boolean control enabled */

November 10, 1997 Library Version 1.0/Document Revision 1.1 71

The X Keyboard Extension

10 Keyboard Controls

unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
unsigned short
short

unsigned short
unsigned short
unsigned short
unsigned short
unsigned int
unsigned int
unsigned char

repeat_delay;
repeat_interval;

/* msdelay until first repeat */
/* msdelay between repeats */

sow_keys delay; /* ms minimum time key must be down to be ok */
debounce_delay; /* msdelay before key reactivated */

mk_delay;
mk_interval;

/* ms delay to second mouse motion event */
/* ms delay between repeat mouse events */

mk_time to_max; /* # intervals until constant mouse move */
mk_max_speed; /* multiplier for maximum mouse speed */

mk_curve;
ax_options;
ax_timeout;
axt_opts_mask;

/* determines mouse move curve type */

/* 1 bit => Access X option enabled */

/* seconds until Access X disabled */

/* 1 bit => options to reset on Access X timeout */

axt_opts values; /* 1 bit => turn option on, 0=> off */

axt_ctrls_ mask;

/* which bitsin enabled_ctrlsto modify */

axt_ctrls values; /* valuesfor new bitsin enabled_ctrls*/
per_key repeat[XkbPerKeyBitArraySize]; /* per key auto repeat */
} XkbControlsRec, * XkbControl sPtr;

The general-purpose functions that work with the XkbControlsRec structure use a mask
to specify which controls are to be manipulated. Table 10.6 lists these controls, the masks
used to select them in the general function calls (which parameter), and the datafields in
the XkbControlsRec structure that comprise each of the individual controls. Also listed
are the bit used to turn boolean controls on and off and the section where each control is
described in more detail.

Table 10.6 Xkb Controls

Control Con_trol Selection Mask Rel evar_lt XkbControlsRec Boolean Contrql Secti
(which parameter) Data Fields enabled_ctrls bit on
AccessX Feedback XkbA ccessX FeedbackMask ax_options: XkbA ccessX FeedbackMask 10.6.3
XKbAX_*FBMask

AccessXKeys XkbA ccessXKeysMask 10.6.1
AccessXTimeout XkbAccessX TimeoutMask ax_timeout XkbAccessX TimeoutMask 10.6.2

axt_opts_mask

axt_opts values

axt_ctrls_mask

axt_ctrls values
AudibleBell XkbAudibleBellMask 9.2
AutoReset 10.1.2
BounceKeys XkbBounceK eysMask debounce_delay XkbBounceK eysMask 10.6.7
Detectable- 10.3.3
Autorepeat
EnabledControls XkbControlsEnabledMask enabled_ctrls Non-Boolean Control 10.1.1
GroupsWrap XkbGroupswWrapM ask groups_wrap Non-Boolean Control 10.7.1
IgnoreGroupL ock XkblgnoreGroupLockMask 10.7.3
IgnoreLockMods XkblgnoreLockModsMask ignore_|ock Non-Boolean Control 51
InternalMods XkblnternalModsMask internal Non-Boolean Control 51
MouseKeys XkbM ouseK eysMask mk_dflt_btn XkbM ouseK eysMask 105.1
November 10, 1997 Library Version 1.0/Document Revision 1.1 72

The X Keyboard Extension 10 Keyboard Controls

Table 10.6 Xkb Controls

Control Con_trol Selection Mask Rel evar_lt XkbControlsRec Boolean Contrql Secti
(which parameter) Data Fields enabled_ctrls bit on
MouseKeysAcce XkbMouseKeysAccelMask mk_delay XkbMouseKeysAccelMask 10.5.2
mk_interval
mk_time_to_max
mk_max_speed
mk_curve
Overlayl XkbOverlaylMask 104
Overlay?2 XkbOverlay2Mask 104
PerKeyRepeat XkbPerK eyRepeatM ask per_key repeat Non-Boolean Control 10.3.1
RepeatKeys XkbRepeatK eysiM ask repeat_delay XkbRepeatK eysM ask 10.3
repeat_interval
SlowKeys XkbSlowKeysMask slow_keys delay XkbSlowKeysMask 10.6.6
StickyKeys XkbStickyKeysMask ax_options: XkbStickyKeysMask 10.6.8

XkbAX_TwoKeysMask
XkbAX _LatchToLockMask

Table 10.7 shows the actual values for the individual mask bits used to select controls for
modification and to enable and disable the control. Note that the same mask bit is used to
specify general modificationsto the parameters used to configure the control (which), and
to enable and disable the control (enabled_ctrls). The anomaliesin the table (no “ok” in
column) are for controls that have no configurable attributes; and for controls that are not
boolean controls and therefore cannot be enabled or disabled.

Table 10.7 Controls Mask Bits

Mask Bit which or enabled ctrls Value
changed ctrls
XkbRepeatK eysMask ok ok (1L<<0)
XkbSlowKeysMask ok ok (1L<<1)
XkbBounceK eysMask ok ok (1L<<2)
XkbStickyKeysMask ok ok (1L<<3)
XkbM ouseK eysM ask ok ok (1L<<4)
XkbMouseKeysAccel Mask ok ok (1L<<5)
XkbA ccessXKeysMask ok ok (1L<<6)
XkbA ccessX TimeoutM ask ok ok (AL<<7)
XKkbA ccessX FeedbackMask ok ok (1L<<8)
XkbAudibleBellMask ok (1L<<9)
XkbOverlaylMask ok (1L<<10)
XkbOverlay2Mask ok (1L<<11)
XkblgnoreGroupL ockMask ok (1L<<12)
XkbGroupswWrapM ask ok (1L<<27)
XkblnternalM odsM ask ok (1L<<28)
Xkblgnorel ockModsMask ok (1L<<29)
XkbPerK eyRepeatM ask ok (1L<<30)
XkbControlsEnabledM ask ok (1L<<31)
XkbA ccessX OptionsMask ok ok (XkbStickyKeysMask |

XkbA ccessX FeedbackMask)

November 10, 1997 Library Version 1.0/Document Revision 1.1 73

The X Keyboard Extension 10 Keyboard Controls

Table 10.7 Controls Mask Bits

Mask Bit which or enabled ctrls Value
changed ctrls -

XkbAllBooleanCtrlsMask ok (OxO0001FFF)

XkbAllControlsMask ok (OxF8001FFF)

Theindividual fields of the XkbControlsRec structure are defined as follows.

mk_dflt_btn

mk_dflt_btn is an attribute of the MouseKeys control (see section 10.5). It specifiesthe
mouse button number to use for keyboard simulated mouse button operations. Its value
should be one of the core symbols Buttonl - Buttons.

num_groups

num_groupsis not apart of any control, but isreported in the XkbControlsRec structure
whenever any of its components are fetched from the server. It reports the number of
groups the particular keyboard configuration uses and is computed automatically by the
server whenever the keyboard mapping changes.

groups_wrap

groups_wrap is an attribute of the GroupsWrap control (see section 10.7.1). It specifies
the handling of illegal groupson aglobal basis. Valid values for groups_wrap are shown
in Table 10.8.

Table 10.8 GroupsWrap options (groups wrap field)

groups_wrap symbolic name value

XkbWraplntoRange (0x00)
XkbClamplntoRange (Ox40)
XkbRedirectIntoRange (0x80)

When groups wrap is set to XkbRedirect IntoRange, its four low-order bits specify
the index of the group to use.

internal

internal is an attribute of the InternalMods control (see section 10.7.4). It specifies
modifiers to be consumed in the server and not passed on to clients when events are
reported. Valid values consist of any combination of the eight core modifier bits: Shift-
Mask, LockMask, ControlMask, Mod1Mask - Mod5Mask.

ignore_lock

ignore_lock is an attribute of the IgnoreL.ockMods control (see section 10.7.2). It speci-
fies modifiersto be ignored in grab calculations. Valid values consist of any combination
of the eight core modifier bits: ShiftMask, LockMask, ControlMask, Mod1Mask -
Mod5SMask.

enabled_ctrls

enabled_ctrlsisan attribute of the EnabledControls control (see section 10.1.1). It
contains one bit per boolean control. Each bit determines whether the corresponding con-

November 10, 1997 Library Version 1.0/Document Revision 1.1 74

The X Keyboard Extension 10 Keyboard Controls

trol is enabled or disabled; a one bit means the control is enabled. The mask bits used to
enable these controls are listed in Table 10.7, using only those masks with “ok” in the
enabled_ctrls column.

repeat_delay and repeat_interval

repeat_delay and repeat_interval are attributes of the RepeatKeys control (see section
10.3.2). repeat_delay istheinitial delay before a key begins repeating, in milliseconds,
repeat_interval isthe delay between subsequent key events, in milliseconds.

slow_keys_delay

slow_keys delay is an attribute of the S1owKeys control (see section 10.6.6). Its value
specifies the S1lowKeys acceptance delay period in milliseconds before akey pressis
accepted by the server.

debounce_delay

debounce_delay is an attribute of the BounceKeys control (see section 10.6.7). Itsvalue
specifies the BounceKeys delay period in milliseconds for which the key is disabled after
having been pressed before another press of the same key is accepted by the server.

mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and mk_curve

mk_delay, mk_interval, mk_time_to_max, mk_max_speed, and mk_curve are attributes of
the MouseKeysAccel control. Refer to section 10.5.2 for a description of these fields and
the unitsinvolved.

ax_options

The ax_options field contains attributes used to configure two different controls, the
StickyKeys control (see section 10.6.8) and the AccessXFeedback control (see sec-
tion 10.6.3). The ax_optionsfield is a bitmask and may include any combination of the
bits defined in Table 10.9.

Table 10.9 Access X Enable/Disable Bits (ax_optionsfield)

Access X Control ax_options bit value

AccessXFeedback XkbAX_SKPressFBMask (1L<<0)
XkbAX_SKAcceptFBMask (1L << 1)
XKkbAX_FeatureFBMask (1L << 2)
XkbAX_SlowWarnFBMask (1L << 3)
XkbAX_IndicatorFBMask (1L << 4)
XKbAX_StickyKeysFBMask (1L << 5)
XKbAX_SKReleaseFBMask (1L << 8)
XkbAX_SKRejectFBMask (1L <<9)
XkbAX_BKRejectFBMask (1L << 10)
XKkbAX_DumbBellFBMask (1L << 11)

StickyKeys XkbAX_TwoKeysMask (1L << 6)
XkbAX_LatchTol ockMask (1L << 7)
XKbAX_AllOptionsMask (OXFFF)

November 10, 1997 Library Version 1.0/Document Revision 1.1 75

The X Keyboard Extension 10 Keyboard Controls

The fields pertaining to each control are relevant only when the control is enabled (XkbAc-
cessXFeedbackMask or XkbStickyKeysMask bit isturned on in the enabled_cntrls
field).

Xkb provides a set of convenience macros for working with the ax_options field of an
XkbControlsRec structure:

#define XkbAX_NeedOption(c,w) ((c)->ax_options& (w))

The XkbAX_NeedOption macro is useful for determining whether a particular AccessX
option isenabled or not. It accepts a pointer to an XkbControlsRec structure and avalid
mask bit from Table 10.9. If the specified mask bit in the ax_optionsfield of the controls
structure is set, the macro returns the mask bit. Otherwise, it returns zero. Thus,

XkbAX_NeedOption(ctlrec, XkbAX_LatchToL ockMask)

isnonzero if the latch to lock transition for latching keysis enabled, and zero if it isdis-
abled. Note that XkbAX_ NeedOption only determines whether or not the particular capa-
bility is configured to operate; the XkbAccessXFeedbackMask bit must also be turned
oninenabled ctrisfor the capability to actualy be functioning.

#define XkbAX_AnyFeedback(c) ((c)->enabled_ctrls& XkbA ccessX FeedbackM ask)

The XkbAX_AnyFeeback macro accepts a pointer to an XkbControlsRec structure and
tellswhether the AccessXFeedback control isenabled or not. If the AccessXFeedback
control is enabled, the macro returns XkbAccessXFeedbackMask. Otherwise, it returns
Zero.

#define XkbAX_NeedFeedback(c,w)
(XkbAX_AnyFeedback(c)& & XkbAX _NeedOption(c,w))

The XkbAX_NeedFeedback macro is useful for determining if both the AccessXFeed-
back control and a particular AccessX feedback option are enabled. The macro accepts a
pointer to an XkbControlsRec structure and afeedback option from the table above. If
both the AccessXFeedback control and the specified feedback option are enabled, the
macro returns True. Otherwise it returns False.

ax_timeout, axt_opts_mask, axt_opts_values, axt_ctrls_mask, and
axt_ctrls_values

ax_timeout, act_opts_mask, axt_opts values, axt_ctrls mask, and axt_ctrls values are
attributes of the AccessxTimeout control. Refer to section 10.6.2 for a description of
these fields and the units involved.

per_key repeat

The per_key repeat field mirrorsthe auto_repeats field of the core protocol XxkKeyboard-
State structure: changing the auto_repeats field automatically changes per_key repeat

and vice versa. It is provided for convenience and to reduce protocol traffic. For example,
to obtain the individual repeat key behavior as well as the repeat delay and rate, use Xkb-

GetControls. If the per_key repeat were not in this structure, you would have to call both
XGetKeyboardControl and XkbGetControlsto get thisinformation. The bits correspond to
keycodes. Thefirst seven keys (keycodes 1-7) areindicated in per_key repeat[0Q], with bit

November 10, 1997 Library Version 1.0/Document Revision 1.1 76

The X Keyboard Extension 10 Keyboard Controls

10.9

10.10

position O (low order) corresponding to thefictitious keycode 0. Following array elements
correspond to 8 keycodes per element. A 1 bit indicates that the key is arepeating key.

Querying Controls
Use XkbGetControlsto find the current state of Xkb server controls.
Status XkbGetControls(display, which, xkb)

Display * display; /* connection to X server */
unsigned long which; /* mask of controls requested */
XkbDescPtr xkb; /* keyboard description for controls information*/

XkbGetControls queries the server for the requested control information, waitsfor areply,
and then copies the server’ s values for the requested information into the ctrls structure of
the xkb argument. Only those components specified by the which parameter are copied.
Valid values for which are any combination of the maskslisted in Table 10.7 that have
“ok” in the which column.

If xkb->ctrlsis NULL, XkbGetControls allocates and initializes it before obtaining the val-
ues specified by which. If xkb->ctrlsis not NULL, XkbGetControls modifies only those
portions of xkb->ctrls corresponding to the values specified by which.

XkbGetControls returns Success if successful; otherwise, it returns Badalloc if it can-
not obtain sufficient storage, BadMatch if xkb is NULL or which is empty, or BadImple-
mentation.

To free the ctrls member of akeyboard description, use XkbFreeControls (see section
10.12)

The num_groupsfield in the ctrls structure is always filled in by XkbGetControls, regard-
less of which bits are selected by which.

Changing Controls

There are two ways to make changes to controls: either change alocal copy keyboard
description and call XkbSetControls, or, to reduce network traffic, use an XkbCon-
trolsChangesRec structure and call XkbChangeControls.

To change the state of one or more controls, first modify the ctrls structure in alocal copy
of the keyboard description and then use XkbSetControls to copy those changes to the X
server.

Bool XkbSetControls(display, which, xkb)

Display * display; /* connection to X server */
unsigned long which; /* mask of controlsto change */
XkbDescPtr xkb; [* ctrlsfield contains new values to be set */

For each bit that is set in the which parameter, XkbSetControls sends the corresponding
values from the xkb->ctrls field to the server. Valid values for which are any combination
of the maskslisted in Table 10.7 that have “ok” in the which column.

If xkb->ctrlsis NULL, the server does not support a compatible version of Xkb, or the Xkb
extension has not been properly initialized, XkbSetControls returns False. Otherwise, it
sends the request to the X server and returns True.

November 10, 1997 Library Version 1.0/Document Revision 1.1 77

The X Keyboard Extension 10 Keyboard Controls

Note that changesto attributes of controlsin the XkbControlsRec structure are apparent
only when the associated control is enabled, although the corresponding values are still
updated in the X server. For example, the repeat_delay and repeat_interval fields are
ignored unless the RepeatKeys control is enabled (that is, the X server’s equivalent of
xkb->ctrls has XkbRepeatKeyMask set in enabled ctrls). It is permissible to modify the
attributes of acontrol in one call to XkbSetControls and enable the control in a subsequent
call. See section 10.1.1 for more information on enabling and disabling controls.

Note that the enabled_ctrisfield isitself acontrol — the EnabledControls control. As
such, to set a specific configuration of enabled and disabled boolean controls, you must set
enabled_ctrlsto the appropriate bits to enable only the controls you want and disable all
others, then specify the XkbControlsEnabledMask in acall to XkbSetControls.
Because thisis somewhat awkward if all you want to do is enable and disable controls,
and not modify any of their attributes, a convenience function isalso provided for this pur-
pose (XkbChangeEnabledControls, section 10.1.1).

10.10.1The XkbControlsChangesRec Structure

The XkbControlsChangesRec structure allows applications to track modifications to
an XkbControlsRec structure and thereby reduce the amount of traffic sent to the server.
The same XkbControlsChangesRec structure may be used in several successive modi-
fications to the same XkbControlsRec structure, then subsequently used to cause all of
the changes, and only the changes, to be propagated to the server. The XkbCon-
trolsChangesRec structure is defined as follows:

typedef struct XkbControlsChanges {

unsigned int changed_ctrls; /* bitsindicating changed control data*/
unsigned int enabled_ctrls changes; /* bitsindicating enabled/disabled controls */
Bool num_groups_changed; /* True if number of keyboard groups changed */

} XkbControlsChangesRec,* XkbControl sChangesPtr;

The changed_ctrisfield isamask specifying which logical sets of datain the controls
structure have been modified. In this context, modified means set, that is, if avalueis set
to the same value it previously contained, it has still been modified, and is noted as
changed. Valid values for changed ctrls are any combination of the maskslisted in Table
10.7 that have “ok” in the changed_ctrls column. Setting a bit implies the corresponding
data fields from the “ Relevant XkbControlsRec Data Fields’ column in Table 10.6 have
been modified. The enabled ctrls changes field specifies which bitsin the enabled ctrls
field have changed. If the number of keyboard groups has changed, the
num_groups_changed field is set to True.

If you have an Xkb description with controls that have been modified and an XkbCon-
trolsChangesRec that describes the changes that have been made, the XkbChangeCon-
trols function provides a flexible method for updating the controls in a server to match
those in the changed keyboard description.

Bool XkbChangeControls(dpy, xkb, changes)
Display * dpy; /* connection to X server */
XkbDescPtr xkb; [* keyboard description with changed xkb->ctrls */
XkbControlsChangesPtr changes; /* which parts of xkb->ctrls have changed */

XkbChangeControls copies any controls fields specified by changes from the keyboard
description controls structure, xkb->ctrls, to the server specified by dpy.

November 10, 1997 Library Version 1.0/Document Revision 1.1 78

The X Keyboard Extension 10 Keyboard Controls

10.11 Tracking Changes to Keyboard Controls

Whenever afield in the controls structure changes in the server’ s keyboard description,
the server sends an XkbControlsNotify event to all interested clients.To receive Xkb-
ControlsNotify eventsunder all possible conditions, use XkbSel ectEvents (see section
4.3) and pass XkbControlsNotifyMask in both bits to_change and values for_hits.

To receive XkbControlsNotify events only under certain conditions, use XkbSel ect-
EventDetails using XkbControlsNotify asthe event_type and specifying the desired
state changesin bits_to_change and values for_bits using mask bits from Table 10.7.

The structure for the XkbControlsNot i fy event is defined as follows:

typedef struct {
int type; I* Xkb extension base event code */
unsigned long serid; * X server serial number for event */
Bool send_event; [* True => synthetically generated */
Display * display; [* server connection where event generated */
Time time; * server time when event generated */
int xkb_type; [* XkbCompatMapNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */

unsigned int changed ctrls; /* bitsindicating which controls data have changed*/
unsigned int enabled ctrls; /* controls currently enabled in server */
unsigned int enabled ctrl_changes; /* bitsindicating enabled/disabled controls*/

int num_groups, /* current number of keyboard groups */
KeyCode keycode; * 1= 0 => keycode of key causing change */
char event_type; I* Type of event causing change */

char req_major; I* major event code of event causing change */
char req_minor; /* minor event code of event causing change */

} XkbControlsNotifyEvent;

The changed_ctrlsfield specifies the controls components that have changed and consists
of bits taken from the masks defined in Table 10.7 with “ok” in the changed_ctrls column.

The controls currently enabled in the server are reported in the enabled ctrisfield. If any
controls were just enabled or disabled (that is, the contents of the enabled ctrlsfield
changed), they are flagged in the enabled_ctrl_changesfield. The valid bits for these
fields are the maskslisted in Table 10.7 with “ok” in the enabled_ctrls column. The
num_groups field reports the number of groups bound to the key belonging to the most
number of groups and is automatically updated when the keyboard mapping changes.

If the change was caused by arequest from a client, the keycode and event_type fields are
set to zero and thereq_major and req_minor fieldsidentify the request. The req_major
value is the same as the major extension opcode. Otherwise, event_typeis set to the type of
event that caused the change (one of KeyPress, KeyRelease, DeviceKeyPress,
DeviceKeyRelease, ButtonPress Of ButtonRelease), and req_major and
reqg_minor are undefined. If event_type is KeyPress, KeyRelease, DeviceKeyPress,
or DeviceKeyRelease, the keycode field is set to the key that caused the change. If
event_type is ButtonPress Or ButtonRelease, keycode contains the button number.

November 10, 1997 Library Version 1.0/Document Revision 1.1 79

The X Keyboard Extension 10 Keyboard Controls

10.12

When a client receives an XkbControlsNotify event, it can note the changesin a
changes structure using XkbNoteControl sChanges.

void XkbNoteControlsChanges(changes, new, wanted)
XkbControlsChangesPtr changes; /* records changesindicated by new */
XkbControlsNotifyEvent * new; [* tells which things have changed */
unsigned int wanted; /* tellswhich parts of new to record in changes */

The wanted parameter is a bitwise inclusive OR of bits taken from the set of masks speci-
fied in Table 10.7 with “ok” in the changed_ctrls column. XkbNoteControl sChanges cop-
ies any changes reported in new and specified in wanted into the changes record specified
by old.

Use XkbGetControlsChanges to update a local copy of a keyboard description with the
changes previously noted by one or more calls to XkbNoteControlsChanges.

Status XkbGetControlsChanges(dpy, xkb, changes)

Display * dpy; [* connection to X server */
XkbDescPtr xkb; I* xkb->ctrlswill be updated */
XkbNameChangesPtr changes; /* indicates which parts of xkb->ctrlsto update */

XkbGetControl sChanges examines the changes parameter, queries the server for the nec-
essary information, and copies the results into the xkb->ctrls keyboard description. If the
ctrisfield of xkb is NULL, XkbGetControlsChanges allocates and initializesit. To free the
ctrisfield, use XkbFreeControls (see section 10.12).

XkbGetControlsChanges returns Success if successful and can generate Badalloc,
BadImplementation, and BadMatch errors.

Allocating and Freeing an XkbControlsRec

The need to allocate an XkbControlsRec structure seldom arises; Xkb creates one when
an application calls XkbGetControls or arelated function. For those situations where there
isnot an XkbControlsRec structure allocated in the XkbDescRec, alocate one by call-
ing XkbAllocControls.

Status XkbAllocControls(xkb, which)
XkbDescPtr xkb; /* Xkb description in which to allocate ctrlsrec */
unsigned int which; /* mask of components of ctrls to allocate */

XkbAllocControls allocates the ctrisfield of the xkb parameter, initializes all fieldsto zero,
and returns Success. If the ctrisfield is not NULL, XkbAllocControls simply returns Suc-
cess. If xkb is NULL, XkbAllocControls reports aBadMatch error. If the ctrlsfield could
not be allocated, it reports aBadAlloc efror.

The which mask specifiesthe individual fields of the ctrls structure to be allocated and can
contain any of the valid masks defined in Table 10.7. Because none of the currently exist-
ing controls have any structures associated with them, which is currently of little practical
valuein thiscall.

November 10, 1997 Library Version 1.0/Document Revision 1.1 80

The X Keyboard Extension 10 Keyboard Controls

10.13

To free memory used by the ctrls member of an XkbDescRec structure, use XkbFree-
Controls:

void XkbFreeControls(xkb, which, free_all)

XkbDescPtr xkb; /* Xkb description in which to free controls components */
unsignedint which; /* mask of components of ctristo free */
Bool free all; /* True => free everything + ctrlsitself */

XkbFreeControls frees the specified components of the ctrls field in the xkb keyboard
description and sets the corresponding structure component values to NULL or zero. The
which mask specifies the fields of ctrlsto be freed and can contain any of the controls
components specified in Table 10.7.

If free_all is True, XkbFreeControls frees every non-NULL structure component in the
controls, freesthe XkbControlsRec structure referenced by the ctrls member of xkb, and
sets ctrlsto NULL.

The Miscellaneous Per-client Controls

Y ou can configure the bool ean per-client controls which affect the state reported in button
and key events. See section 12.1.1, 12.3, 12.5, and 16.3.11 of the XKB Protocol specifica-
tion for more details.

To get the current values of the per-client controls, use XkbGetPer ClientControls.

Bool XkbGetPer ClientControls(dpy, ctrls)
Display * dpy; /* connection to X server */
unsigned int * ctrls; /* 1 bit => corresponding control ison */

XkbGetPer ClientControls backfills ctrls with the per-client control attributesfor this
particular client. It returns True if successful, and False otherwise.

To change the current values of the per-client control attributes, use XkbSetPer Client-
Controls.

Bool XkbSetPer ClientControls(dpy, ctrls)

Display * dpy; /* connection to X server */
unsigned int change; /* 1 bit => change control */
unsigned int * value; /* 1 bit => control on */

XkbSetPer ClientControl s changes the per-client values for the controls sel ected by change
to the corresponding value in value. Legal values for change and value are:
XkbPCF_GrabsUseXKBStateMask, XkbPCF _LookupStateWhenGrabbed, and
XkbPCF_SendEventUsesXKBState. M ore than one control may be changed at one time by
OR-ing the values together. XkbSetPer ClientControls backfills value with the per-c1i-
ent control attributes for this particular client. It returns True if successful, and False
otherwise.

November 10, 1997 Library Version 1.0/Document Revision 1.1 81

The X Keyboard Extension 11 X Library Controls

11

111

X Library Controls

The Xkb extension is composed of two parts: a server extension, and a client-side X
library extension. Chapter 10 discusses functions used to modify controls affecting the
behavior of the server portion of the Xkb extension. This chapter discusses functions used
to modify controlsthat affect only the behavior of the client portion of the extension; these
controls are known as Library Controls.

All of the Library Controls are boolean flags that may be enabled and disabled. The con-
trols can be divided into several categories:

» Controls affecting genera string lookups
» Controls affecting compose processing
» Controls affecting event delivery

There are two types of string lookups performed by XLookupString. The first type
involves translating a single keycode into a string; the controlsin the first category affect
thistype of lookup. The second type involves translating a series of keysymsinto a string;
the controls in the second category affect this type of lookup.

An Xkb implementation is required to support the programming interface for all of the
controls. However, an implementation may choose not to support the semantics associated
with the controls that deal with compose processing. In this case, a program that accesses
these controls should still function normally; however, the feedback that would normally
occur with the controls enabled may be missing.

Controls Affecting Keycode-to-String Translation

Thefirst type of string lookups, which are here called simple string lookups, involves
trandating a single keycode into a string. Because these simple lookups involve only a
single keycode, al of the information needed to do the trandlation is contained in the key-
board state in asingle event. The controls affecting simple string lookups are:

ForceLatinlLookup
ConsumeLookupMods
LevelOneUsesShiftAndLock

11.1.1 ForceLatinlLookup

If the ForceLatinlLookup control isenabled, XLookupString only returns strings using
the Latinl character set. If ForceLatinlLookup is not enabled, XLookupString can
return characters that are not in the Latinl set. By default, this control is disabled, alow-
ing characters outside of the Latinl set to be returned.

11.1.2 ConsumelLookupMods

Simple string lookups in XLookupString involve two different trandlation phases. Thefirst
phase translates raw device keycodesto individual keysyms. The second phase attemptsto
map the resulting keysym into a string of one or more characters. In the first phase, some
of the modifiers are normally used to determine the appropriate shift level for akey.

The ConsumeLookupMods control determines whether or not XLookupString consumes
the modifiersit uses during the first phase of processing (mapping a keycode to a key-
sym). When amodifier is consumed, it is effectively removed from the working copy of

November 10, 1997 Library Version 1.0/Document Revision 1.1 82

The X Keyboard Extension 11 X Library Controls

the keyboard state information XLookupString is using and appears to be unset for the
remainder of the processing.

If the ConsumeLookupMods control is enabled, XLookupString does not use the modifi-

ers used to trandlate the keycode of the event to akeysym when it is determining the string
associated with akeysym. For example, assume the keymap for the ‘A’ key only contains
the shift modifier and the ConsumeLookupMods control is enabled. If a user presses the

Shift key and the A key whilethe Num_Lock key islocked, XLookupString usesthe shift
modifier when mapping the keycode for the‘a key to the keysym for ‘A’ ; subsequently, it
only uses the NumLock modifier when determining the string associated with the keysym
‘A’

If the ConsumeLookupMods control is not enabled, XLookupString uses all of the event
modifiers to determine the string associated with a keysym. This behavior mirrors the
behavior of XLookupString in the core implementation.

The ConsumeLookupMods control is unset by default. For more information on modifier
consumption, refer to Chapter 12.

11.1.3 AlwaysConsumeShiftAndLock

The AlwaysConsumeShiftAndLock control, if enabled, forces XLookupString to con-
sume the shift and Lock modifiers when processing all keys, even if the definition for
the key type does not specify these modifiers. The AlwaysConsumeShiftAndLock con-
trol is unset by default. See section 15.2 for adiscussion of key types.

11.2 Controls Affecting Compose Processing

The second type of string lookup performed by XLookupString involves translating a
series of keysymsinto a string. Because these lookups can involve more than one key
event, they require XLookupString to retain some state information between successive
calls. The process of mapping a series of keysyms to a string is known as compose pro-
cessing. The controls affecting compose processing are:

ConsumeKeysOnComposeFail
ComposeLED
BeepOnComposeFail

Because different vendors have historically used different algorithms to implement com-
pose processing, and these algorithms may be incompatible with the semantics required
by the Xkb compose processing controls, implementation of the compose processing con-
trolsisoptional in an Xkb implementation.

11.2.1 ConsumeKeysOnComposeFail

Some compose processing algorithms signal the start of a compose sequence by a key
event meaning “start compose” .1 The subsequent key events should normally result in a
valid composition yielding avalid trandation to a string. If the subsequent key events do
not have avalid trandlation, some decision must be made about what to do with the key
events that were processed while attempting the compose. The ConsumeKeysOnCom-

1. Another possihility is to have the compose processing simply be the result of afinite state acceptor; a compose
seguence would never fail for a properly written finite state acceptor.

November 10, 1997 Library Version 1.0/Document Revision 1.1 83

The X Keyboard Extension 11 X Library Controls

poseFail control alowsaclient to specify what happens with the key events XLookup-
Sring has been considering when it reaches a dead end in a compose sequence.

If the ConsumeKeysOnComposeFail control is set, all keys associated with afailed
compose sequence should be consumed (discarded). If the ConsumeKeysOnCompose-
Fail control isnot set, the key events associated with a failed compose sequence should
be processed as a normal sequence of key events.

The ConsumeKeysOnComposeFail control is disabled by default.

11.2.2 ComposeLED

The ComposeLED control allows aclient to specify whether or not an indicator should be
set and cleared to provide feedback when compose processing isin progress. The control
does not specify which indicator should be used; the mapping for thisis up to the individ-
ual implementation. If the ComposeLED control is enabled, it specifies that an indicator
should be set when a compose sequence isin progress and cleared when oneisnot in
progress. The ComposeLED control is disabled by default.

While the Xkb extension does not specify the type of type of indicator to be used when the
ComposeLED control isimplemented, a consistent convention between implementations
isto everyone's benefit. If anamed indicator is used for this purpose, the recommended
nameis“Compose”. Note that some implementations may use an unnamed, custom hard-
ware LED for this purpose.

11.2.3 BeepOnComposeFail

The BeepOnComposeFail control allows a client to specify whether or not abell should
be activated to provide feedback when a compose sequence fails. The control does not
specify the type of bell that should be used; the mapping for thisis up to the individual
implementation. If the BeepOnComposeFail control isenabled, it specifies that a bell
should be activated when a compose sequencefails. The BeepOnComposeFail control is
disabled by default. If implemented, the bell should be activated using XkbBell or XkbDe-
viceBell.

While the Xkb extension does not specify the type of bell to be used when the BeepOn -
ComposeFail control isimplemented, a consistent convention between implementations
isto everyone' s benefit. If anamed bell isused for this purpose, the recommended nameis
“ComposeFail”.

11.3 Controls Effecting Event Delivery

11.3.1IgnoreNewKeyboards

When Xkb isinitialized, it implicitly forces requests for NewKeyboardNotify events.
These events may be used by the Xkb library extension internally; they are normally trans-
lated into core protocol MappingNotify events before being passed to the client. While
delivering the event to the client is appropriate in most cases, it is not appropriate for some
clients that maintain per-key data structures. This is because once the server has sent a
NewKeyboardNotify event, it isfreeto send the client eventsfor al keysin the new
range and that range may be outside of the per-key data structures the client is maintain-
ing.

November 10, 1997 Library Version 1.0/Document Revision 1.1 84

The X Keyboard Extension 11 X Library Controls

The IgnoreNewKeyboards control, if enabled, prevents Xkb from mapping NewKey -
boardNotify eventsto core MappingNot i fy events and passing them to the client. The
control isinitially disabled.

11.4 Manipulating the Library Controls

The Library Controls are manipulated using functions that deal with bitmasks to indicate
which controls to manipulate. The controls are identified by the masks defined in Table

11.1.

Table11.1 Library Control Masks
Library Control Mask Value
XkbLC_Forcel atinlLookup (1<<0)
XkbLC_Consumel ookupMods (1<<1])
XkbLC_AlwaysConsumeShiftAndL ock 1<<2)
XkbLC IgnoreNewKeyboards (1<<3)
XkbLC_ConsumeKeysOnComposeFail (1<<29)
XkbLC _ComposeL ED (1<<30)
XkbLC_ BeepOnComposeFail (1<<3l
XkbLC_AllIControls (0Oxc0000007)

11.4.1 Determining Which Library Controls are Implemented

To determine which Library Controls are actually implemented, use XkbXlibControlslm-
plemented.

unsigned int XkbXlibControlsl mplemented(display)
Display * display; /* connection to X server */

XkbXlibControlslmplemented returns a bitmask indicating the controls actually imple-
mented in the Xkb library and is composed of an inclusive OR of bitsfrom Table 11.1.

11.4.2 Determining the State of the Library Controls
To determine the current state of the Library Controls, use XkbGetXlibControls.

unsigned int XkbGetXlibControls(display)
Display * display; /* connection to X server */

XkbGetXlibControls returns the current state of the Library Controls as a bit mask that is
aninclusive OR of the control masksfrom Table 11.1 for the controlsthat are enabled. For
the optional compose processing controls, the fact that a control is enabled does not imply
that it is actually implemented.

11.4.3 Changing the State of the Library Controls
To change the state of the Library Controls, use XkbSetXlibControls.
Bool XkbSetXlibControls(display, bits to_change, values for_bits)

Display * display; /* connection to X server */
unsigned long bits to_change; * selects controls to be modified */
unsigned long values for_hits; * turns selected controls on (1) or off (0) */

November 10, 1997 Library Version 1.0/Document Revision 1.1 85

The X Keyboard Extension 11 X Library Controls

XkbSetXlibControls modifies the state of the controls selected by bits to_change; only the
controls selected by bits to_change are modified. If the bit corresponding to a control is
oninbits to changeand also oninvalues for_bits, the control isenabled. If the bit corre-
sponding to a control ison in bits to_change but off in values for_bits, the control isdis-
abled. bits to_change should be an inclusive OR of bits from Table 11.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 86

The X Keyboard Extension 12 Interpreting Key Events

12 Interpreting Key Events

Xkb provides functions to help devel opers interpret key events without having to directly
interpret Xkb data structures. Xkb also modifies the behavior of several core X library
functions.

12.1 Effects of Xkb on the Core X Library

When support for Xkb is built into the X library, the XOpenDisplay function looks for a
compatible version of Xkb on the server. If it finds a compatible version, it initializes the
extension and enables implicit support for Xkb in a number of X library functions. This
makesit possible for clientsto take advantage of nearly all Xkb features without having to
be rewritten or even recompiled, if they are built with shared libraries. Thisimplicit sup-
port isinvisible to most clients, but it can have side effects, so the extension includes ways
to control or disableit.

12.1.1 Effects of Xkb on Event State

Because XOpenDisplay initializes Xkb, some events contain an Xkb description of the
keyboard state instead of that normally used by the core protocol. See section 17.1.1 for
more information about the differences between Xkb keyboard state and that reported by
the core protocol.

12.1.2 Effects of Xkb on MappingNotify Events

When Xkb is missing or disabled, the X library tracks changes to the keyboard mapping
using MappingNotify events. Whenever the keyboard mapping is changed, the server
sends al clients aMappingNotify event to report the change. When aclient receivesa
MappingNotify event, it is supposed to call XRefreshKeyboardMapping to update the
keyboard description used internally by the X library.

The X Keyboard Extension uses XkbMapNot i fy and XkbNewKeyboardNotify events
to track changes to the keyboard mapping. When an Xkb-aware client receives either
event, it should call XkbRefreshKeyboardMapping to update the keyboard description
used internally by the X library. To avoid duplicate events, the X server does not send core
protocol MappingNotify eventsto aclient that has selected for XkbMapNot i fy events.

The implicit support for Xkb selects for XkbMapNot i fy events. This means that clients
that do not explicitly use Xkb but that are using aversion of the X library that hasimplicit
support for Xkb do not receive MappingNotify events over the wire. Clients that were
not written with Xkb in mind do not recognize or properly handle the new Xkb events, so
the implicit support converts them to MappingNotify events that report approximately
the same information, unless the client has explicitly selected for the Xkb version of the
event.

An Xkb-capable X server does not send events from keys that fall outside the legal range
of keycodes expected by that client. Once the server sends a client an XkbNewKeyboard-
Notify event, it reports events from all keys because it assumes that any client that has
receieved an XkbNewKeyboardNot ify event expects key events from the new range of
keycodes. Theimplicit support for Xkb asksfor XkbNewKeyboardNot i fy events, so the
range of keycodes reported to the client might vary without the client’ s knowledge. Most
clientsdon’t really care about the range of legal keycodes, but some clients maintain
information about each key and might have problems with events that come from unex-

November 10, 1997 Library Version 1.0/Document Revision 1.1 87

The X Keyboard Extension 12 Interpreting Key Events

pected keys. Such clients can set the XkbLC IgnoreNewKeyboards library control (see
section 11.3.1) to prevent the implicit support from requesting notification of changesto
the legal range of keycodes.

12.1.3 X Library Functions Affected by Xkb
Thefollowing X library functions are modified by Xkb:

XKeycodeToKeysym
XKeysymToKeycode
XLookupKeysym
XLookupString
XRefreshKeyboardMapping
XRebindKeysym

The implicit support for Xkb replaces anumber of X library functions with versions that
understand and use the X Keyboard Extension. In most cases, the semantics of the new
versions are identical to those of the old, but there are occasional visible differences. This
section lists al of the functions that are affected and the differencesin behavior, if any,
that are visible to clients.

The XKeycodeToKeysym function reports the keysym associated with a particular index
for asingle key. The index specifies a column of symbolsin the core keyboard mapping
(that is, as reported by the core protocol GetKeyboardMapping request). The order of the
symbols in the core mapping does not necessarily correspond to the order of the symbols
used by Xkb; section 17.1.3 describes the differences.

The XKeysymToKeycode function reports a keycode to which a particular keysym is
bound. When Xkb is missing or disabled, this function looks in each column of the core
keyboard mapping in turn and returns the lowest numbered key that matchesin the lowest
numbered group. When XKkb is present, this function uses the Xkb ordering for symbols
instead.

The XLookupKeysym function reports the symbol in a specific column of the key associ-
ated with an event. Whether or not Xkb is present, the column specifies an index into the
core symbol mapping.

The XLookupString function reports the symbol and string associated with akey event,
taking into account the keycode and keyboard state as reported in the event. When Xkbis
disabled or missing, XLookupString uses the rules specified by the core protocol and
reports only 1SO Latin-1 characters. When Xkb is present, XLookupString uses the
explicit keyboard group, key types, and rules specified by Xkb. When Xkb is present,
XLookupString is allowed, but not required, to return strings in character sets other than
SO Latin-1, depending on the current locale. If any key bindings are defined, XLookup-
String does not use any consumed modifiers (see sections 11.1.2 and 15.2) to determine
matching bindings.

The XRefreshKeyboardMapping function updatesthe X library’ sinternal representation of
the keyboard to reflect changes reported viaMappingNotify events. When Xkb is miss-
ing or disabled, this function rel oads the entire modifier map or keyboard mapping. When
Xkbis present, the implicit Xkb support keeps track of the changed components reported
by each xkbMapNotify event and updates only those pieces of the keyboard description
that have changed. If the implicit support has not noted any keyboard mapping changes,
XRefreshKeyboardMapping updates the entire keyboard description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 88

The X Keyboard Extension 12 Interpreting Key Events

12.2

The XRebindKeysym function associates a string with a keysym and a set of modifiers.
Xkb does not directly change this function, but it does affect the way that the state
reported in the event is compared to the state specified to XRebindKeysym. When Xkb is
missing or disabled, XLookupString returns the specified string if the modifiersin the
event exactly match the modifiers from this call. When Xkb is present, any modifiers used
to determine the keysym are consumed and are not used to look up the string.

Xkb Event and Keymap Functions

To find the keysym bound to a particular key at a specified group and shift level, use
XkbKeycodeToKeysym.

KeySym XkbK eycodeToK eysym(dpy, kc, group, level)

Display * dpy; [* connection to X server */
KeyCode kc; [* key of interest */
unsigned int group; /* group of interest */
unsigned int level; [* shift level of interest */

XkbKeycodeToKeysym returns the keysym bound to a particular group and shift level for a
particular key on the core keyboard. If kcisnot alegal keycode for the core keyboard, or if
group or level are out of range for the specified key, XkbKeycodeToKeysym returns NoSym-
bol.

To find the set of modifiers bound to a particular keysym on the core keyboard, use
XkbKeysymToModifiers.

unsigned int XkbK eysymToM odifier s(dpy, ks)
Display * dpy; /* connection to X server */
KeySym ks; /* keysym of interest */

XkbKeysymToModifiers finds the set of modifiers currently bound to the keysym ks on the
core keyboard. The value returned is the mask of modifiers bound to the keysym ks. If no
modifiers are bound to the keysym, XkbKeysymToModifiers returns zero; otherwise, it
returns the inclusive OR of zero or more of the following: ShiftMask, ControlMask,
LockMask, Mod1Mask, Mod2Mask, Mod3Mask, Mod4Mask, and Mod5SMask.

Use XkbLookupKeySym to find the symbol associated with akey for a particular state.
Bool XkbL ookupKeySym(dpy, key, state, mods_rtrn, sym rtrn)

Display * dpy; /* connection to X server */

KeyCode key; * key for which symbols are to be found */

unsigned int state; * state for which symbol should be found */

unsigned int * mods rtrn; /* backfilled with unconsumed modifiers */

KeySym * sym_rtrn; I* backfilled with symbol associated with key + state */

XkbLookupKeySym s the equivalent of the core XLookupKeySym function. For the core
keyboard, given akeycode key and an Xkb state state, XkbLookupKeySym returns the sym-
bol associated with the key in sym rtrn and the list of modifiers that should still be
applied in mods _rtrn. The state parameter is the state from a KeyPress or KeyRelease
event. XkbLookupKeySym returns True if it succeeds.

November 10, 1997 Library Version 1.0/Document Revision 1.1 89

The X Keyboard Extension 12 Interpreting Key Events

Use XkbLookupKeyBinding to find the string bound to a key by XRebindKeySym.
XkbLookupKeyBinding is the equivalent of the core XLookupString function.

int XkbL ookupK eyBinding(dpy, sym, state, buf, nbytes, extra_rtrn)

Display * dpy; [* connection to server */

KeySym sym; /* symbol to be looked up */

unsigned int state; [* state for which string isto be looked up */
char * buf; /* buffer into which returned string is written */
int nbytes; [* size of buffer in bytes*/

int* extra_rtrn; * backfilled with number bytes overflow */

XRebindKeysym binds an ASCI| string to a specified keysym, so that the string and key-
sym are returned when the key is pressed and a specified list of modifiers are also being
held down. XkbLookupKeyBinding returns in buf the string associated with the keysym
sym and modifier state state. buf is NULL terminated unless there’ s an overflow. If the
string returned is larger than nbytes, a count of bytes that does not fit into the buffer is
returned in extra_rtrn. XkbTranslateKeySym returns the number of bytesthat it placed

into buf.
To find the string and symbol associated with a keysym for a given keyboard state, use
XkbTranslateKeySym.
int XkbTrandateK eySym(dpy, sym_inout, mods, buf, nbytes, extra rtrn)
Display * dpy; [* connection to X server */
KeySym * sym_inout; /* symbol to be translated; result of tranglation */
unsigned int mods; /* modifiers to apply to sym_inout */
char * buf; [* buffer into which returned string iswritten */
int nbytes; [* size of buffer in bytes*/
int* extra_rtrn; /* number of bytes overflow*/

XkbTranslateKeySym applies the transformations specified in mods to the symbol speci-
fied by sym inout. It returns in buf the string, if any, associated with the keysym for the
current locale. If the transformations in mods changes the keysym, sym inout is updated
accordingly. If the string returned is larger than nbytes, a count of bytes that does not fit
into the buffer isreturned in extra_rtrn. XkbTranslateKeySym returns the number of bytes
it placed into buf.

To update the keyboard description that isinternal to the X library, use XkbRefreshKey-

boardMapping.
Status XkbRefreshK eyboar dM apping(event)
XkbMapNotifyEvent * event; [* event initiating remapping */

XkbRefreshKeyboardMapping is the Xkb equivalent of the core XRefreshKeyboardMap-
ping function. It requests that the X server send the current key mapping information to
thisclient. A client usually invokes XkbRefreshKeyboardMapping after receiving an
XkbMapNot i fy event. XkbRefreshKeyboardMapping returns Success if it succeeds and
BadMatch if the event is not an Xkb event.

The XkbMapNot ify event can be generated when some client calls XkbSetMap,
XkbChangeMap, XkbGetKeyboardByName, or any of the standard X library functions that
change the keyboard mapping or modifier mapping.

November 10, 1997 Library Version 1.0/Document Revision 1.1 90

The X Keyboard Extension 12 Interpreting Key Events

To tranglate a keycode to akey symbol and modifiers, use XkbTranslateKeyCode.
Booll XkbTransateK eyCode(xkb, key, mods, mods_rtrn, keysym rtrn)

XkbDescPtr xkb; /* keyboard description to use for translation */
KeyCode key; [* keycode to trandate */

unsigned int mods; /* modifiers to apply when translating key */
unsigned int * mods _rtrn; /* backfilled with unconsumed modifiers */
KeySym * keysym rtrn; /* keysym resulting from trandlation */

mods _rtrnis backfilled with the modifiers consumed by the translation process. modsis a bit-
wise inclusive OR of the legal modifier masks: shiftMask, LockMask, ControlMask,
Mod1Mask, Mod2Magsk, Mod3Mask, Mod4Mask, Mod5Mask.The AlwaysConsume -
ShiftAndLock library control (see section 11.1.3), if enabled, causes XkbTranslateKeyCode
to consume shift and lock. XkbTranslateKeyCode returns True if the trandation resulted in
akeysym, and False if it resulted in NoSymbol.

November 10, 1997 Library Version 1.0/Document Revision 1.1 91

The X Keyboard Extension 13 Keyboard Geometry

13

Keyboard Geometry

The Xkb description of akeyboard includes an optional keyboard geometry that describes
the physical appearance of the keyboard. Keyboard geometry describes the shape, loca
tion, and color of all keyboard keys or other visible keyboard components such as indica-
tors. Theinformation contained in a keyboard geometry is sufficient to allow aclient
program to draw an accurate two-dimensional image of the keyboard.

Y ou can retrieve a keyboard geometry from an X server that supports Xkb, or you can
alocate it from scratch and initialize it in a client program. The keyboard geometry need
not have any correspondence with the physical keyboard that is connected to the X server.

Geometry measurements are specified in ™"/ units. The origin (0,0) isin the top left cor-
ner of the keyboard image. A component’ sown origin isalso its upper left corner. In some
cases a component needs to be drawn rotated. For example, aspecial keyboard may have a
section of keys arranged in rows in arectangular area, but the entire rectangle may not be
in alignment with the rest of the keyboard, and instead, it is rotated from horizontal by
30°. Rotation for a geometry object is specified in 1/, © increments about its origin. An
example of akeyboard with rotated sectionsis shown in Figure 13.1.

O, lEOA O
9,
& B <
= 4
\ /

Rotated Sections

Figure 131 Rotated Keyboard Sections

Some geometry components include a priority, which indicates the order in which over-
lapping objects should be drawn. Objects should be drawn in order from highest priority
(0) to lowest (255).

The keyboard geometry’ s top-level description is stored in a XkbGeometryRec structure,
This structure contains three types of information:

1. Listsof items, not used to draw the basic keyboard, but indexed by the geometry
descriptions that comprise the entire keyboard geometry (colors, geometry proper-
ties, key aliases, shapes)

2. A number of singleton items that describe the keyboard as awhole (keyboard
name, width and height, a color for the keyboard as awhole, and a color for key-
board key labels)

3. A list of the keyboard’ s sections and nonkey doodads
The top-level geometry is described in more detail in the following.

The lists of items used by components of the keyboard geometry description is as follows:

November 10, 1997 Library Version 1.0/Document Revision 1.1 92

The X Keyboard Extension 13 Keyboard Geometry

The top-level keyboard geometry description includes alist of up to MaxColors (32)
color names. A color name is a string whose interpretation is not specified by Xkb.
The XkbColorRec structure provides afield for this name as well as a pixel field.
The pixel field is aconvenient place for an application to store a pixel value or color
definition, if it needsto. All other geometry data structures refer to colors using their
indicesin this global list.

The top-level keyboard geometry description includes alist of geometry properties.
A geometry property associates an arbitrary string with an equally arbitrary name.
Geometry properties can be used to provide hints to programs that display images of
keyboards, but they are not interpreted by Xkb. No other geometry structures refer to
geometry properties. As an example of a possible use of properties, consider the
pause/break key on most PC keyboards: the “break” symbol is usually on the front of
the key and is often a different color. A program might set a property to:

LBL_PAUS = “{Pause/top/black,Break/front/red} "

and use the property information to draw the key with afront label aswell asatop
label.

The top-level keyboard geometry description includes alist of key aliases (see Chapter
18). Key dliases allow the keyboard layout designer to assign multiple key namesto a
single key.

Note Key aliases defined in the geometry component of a keyboard mapping override those

defined in the keycodes component of the server database, which are stored in the
XkbNamesRec (Xkb->names). Therefore, consider the key aliases defined by the
geometry before considering key aliases supplied by the keycodes.

« Thetop-level keyboard geometry description includes alist of shapes; other keyboard

components refer to shapes by their index in thislist. A shape consists of an arbitrary
name of type Atom and one or more closed-polygon outlines. All pointsin an outline
are specified relative to the origin of its enclosing shape, that is, whichever shape that
contains thisoutlineinitslist of outlines. One outlineis the primary outline. The pri-
mary outline is by default the first outline, or it can be optionally specified by the pri-
mary field in the XkbShapeRec structure. A keyboard display application can
generate a simpler but still accurate keyboard image by displaying only the primary
outlines for each shape. Nonrectangular keys must include a rectangular approxima-
tion as one of the outlines associated with the shape. The approximation is not nor-
mally displayed but can be used by very simple keyboard display applications to
generate a recognizable but degraded image of the keyboard.

The XkbGeomet ryRec top-level geometry description containsthe following information
that pertains to the keyboard as awhole:

A keyboard symbolic name of type Atom to help usersidentify the keyboard.

The width and height of the keyboard, in ™"/ . For nonrectangular keyboards, the
width and height describe the smallest bounding box that encloses the outline of the
keyboard.

The base color of the keyboard is the predominant color on the keyboard and is used
as the default color for any components whose color is not explicitly specified.

The label color isthe color used to draw the labels on most of the keyboard keys.
Thelabel font isastring that describes the font used to draw labels on most keys; 1abel
fonts are arbitrary strings, because Xkb does not specify the format or name space for
font names.

The keyboard is subdivided into named sections of related keys and doodads. The sections
and doodads on the keyboard are listed in the XkbGeomet ryRec top-level keyboard
geometry description. A section is composed of keysthat are physically together and logi-

November 10, 1997 Library Version 1.0/Document Revision 1.1 93

The X Keyboard Extension 13 Keyboard Geometry

cally related. Figure 13.2 shows a keyboard that is divided into four sections. A doodad
describes some visible aspect of the keyboard that is not akey and is not a section.

| Y

Editing |>|:| OO0 OO0 OO ||
Function I o o |
o o o
Alpha— | 1100 L]
C 10000000 000c0—1) O |([0dd—
Keypad 1 1 o

A

Figure 13.2 Keyboard with Four Sections

13.1 Shapes and Outlines
A shape, used to draw keyboard components and stored in a XkbShapeRec structure, has:

* Anarbitrary name of type Atom.

» Bounds (two x and y coordinates) that describe the corners of arectangle containing
the shape’s top surface outline.

» Alist of one or more outlines (described below).

» QOptional pointersto a primary and an approximation outline (described below). If
either of these pointers is NULL, the default primary/approximation outline is the first
oneinthelist of outlines for the shape.

An outline, stored in aXkbOut1lineRec structure, isalist of one or more points that
describes a single closed-polygon, as follows:

» Alist with asingle point describes arectangle with one corner at the origin of the shape
(0,0) and the opposite corner at the specified point.

» A list of two points describes a rectangle with one corner at the position specified by
the first point and the oppasite corner at the position specified by the second point.

» A list of three or more points describes an arbitrary polygon. If necessary, the polygon
isautomatically closed by connecting the last point in the list with the first.

» A nonzero value for the corner_radius field specifies that the corners of the polygon
should be drawn as circles with the specified radius.

All pointsin an outline are specified relative to the origin of the enclosing shape. Pointsin
an outline may have negative values for the X and Y coordinate.

One outline is the primary outline; a keyboard display application can generate asimple
but still accurate keyboard image by displaying only the primary outlines for each shape.
The default primary outline isthefirst in a shape'slist of outlines. If the primary field of
the XkbShapeRec structure is not NULL, it points to the primary outline. A rectangular
approximation must be included for nonrectangular keys as one of the outlines associated
with the shape; the approximation is not normally displayed but can be used by very sim-
ple keyboard display applications to generate a recognizable but degraded image of the
keyboard.

November 10, 1997 Library Version 1.0/Document Revision 1.1 94

The X Keyboard Extension 13 Keyboard Geometry

13.2 Sections

As previously noted, a keyboard is subdivided into sections of related keys. Each section
hasits own coordinate system — if a section isrotated, the coordinates of any components
within the section are interpreted relative to the edges that were on the top and left before
rotation. The components that make up a section, stored in a XkbSectionRec, include:

An arbitrary name of type Atom.

A priority, to indicate drawing order. O is the highest priority, 255 the lowest.

Origin of the section, relative to the origin of the keyboard.

The width and height and the angle of rotation.

A list of rows. A row isalist of horizontally or vertically adjacent keys. Horizontal
rows parallel the (prerotation) top of the section, and vertical rows parallel the (prerota-
tion) left of the section. All keysin ahorizontal row share acommon top coordinate; all
keysin avertical row share aleft coordinate. Figure 13.3 shows the alpha section from
the keyboard shown in Figure 13.2, divided into rows. Rows and keys are defined

bel ow.

Rowl NNIRYIYVIVMY N NHTR RN
Row 2 [IO I
Row 3 EZXAERIBRIERA B3 BRIRHER] BR X AR B

Row 4 EEEEEEEEEEEEE

Row 5 [EJEET 4

Figure 13.3 Rowsin a Section

Bl 2

An optiona list of doodads; any type of doodad can be enclosed within a section.
Position and angle of rotation are relative to the origin and angle of rotation of the sec-
tions that contain them. Priority for doodadsin a section is relative to the other compo-
nents of the section, not to the keyboard as awhole.

An optional overlay with a name of type Atom and alist of overlay rows (described
below).

» Bounds (two x and y coordinates) that describe the corners of a rectangle containing
the entire section.

13.3 Rows and Keys

A row description (XkbRowRec) consists of the coordinates of its origin relative to its
enclosing section, aflag indicating whether the row is horizontal or vertical, and alist of
keysin therow.

A key description (XkbKeyRec) consists of akey name, a shape, akey color, and a gap.
The key name should correspond to one of the keys named in the keyboard names descrip-
tion, the shape specifies the appearance of the key, and the key color specifies the color of
the key (not the label on the key; the label color is stored in the XkbGeometryRec). Keys
are normally drawn immediately adjacent to one another from left to right (or top to bot-
tom) within arow. The gap field specifies the distance between a key and its predecessor.

November 10, 1997 Library Version 1.0/Document Revision 1.1 95

The X Keyboard Extension 13 Keyboard Geometry

13.4 Doodads

135

Doodads can be global to the keyboard or part of a section. Doodads have symbolic names
of arbitrary length. The only doodad name whose interpretation is specified by Xkbis
“Edges’, which, if present, describes the outline of the entire keyboard.

Each doodad’ s origin is stored in fields named left and top, which are the coordinates of
the doodad’ s origin relative to its enclosing object, whether it be a section or the top-level
keyboard. The priority for doodads that are listed in the top-level geometry isrelative to
the other doodads listed in the top-level geometry and the sections listed in the top-level
geometry. The priority for doodads listed in a section are relative to the other components
of the section. Each doodad is stored in a structure with atype field, which specifies the
type of doodad.

Xkb supports five types of doodads:

« Anindicator doodad describes one of the physical keyboard indicators. Indicator
doodads specify the shape of the indicator, theindicator color whenitislit (on_color)
and the indicator color when it is dark (off_color).

« Anoutline doodad describes some aspect of the keyboard to be drawn as one or more
hollow, closed polygons. Outline doodads specify the shape, color, and angle of rota-
tion about the doodad origin at which they should be drawn.

» A solid doodad describes some aspect of the keyboard to be drawn as one or more
filled polygons. Solid doodads specify the shape, color, and angle of rotation about the
doodad origin at which they should be drawn.

+ A text doodad describes atext label somewhere on the keyboard. Text doodads specify
the label string, the font and color to use when drawing the label, and the angle of rota-
tion of the doodad about its origin.

« A logo doodad is acatch-all, which describes some other visible element of the key-
board. A logo doodad is essentially an outline doodad with an additional symbolic
name that describes the element to be drawn. If akeyboard display program recognizes
the symbolic name, it can draw something appropriate within the bounding region of
the shape specified in the doodad. If the symbolic name does not describe a recogniz-
able image, it should draw an outline using the specified shape, outline, and angle of
rotation. The Xkb extension does not specify the interpretation of logo names.

The structures these doodads are stored in and the values of the type fields are shown in
Table 13.1.

Table 13.1 Doodad Types

Doodad Sructure Type

indicator doodad XkbIndicatorDoodadRec XkblndicatorDoodad
outline doodad XkbShapeDoodadRec XkbOutlineDoodad
solid doodad XkbShapeDoodadRec XkbSolidDoodad
text doodad XkbTextDoodadRec XkbTextDoodad

logo doodad XkbLogoDoodadRec XkbLogoDoodad

Overlay Rows and Overlay Keys

An overlay row (XkbOverlayRowRec) contains a pointer to therow it overlaysand alist
of overlay keys.

Each overlay key definition (XkbOverlayKeyRec) indicates akey that canyield multiple
keycodes and consists of afield named under, which specifies the primary name of the

November 10, 1997 Library Version 1.0/Document Revision 1.1 96

The X Keyboard Extension 13 Keyboard Geometry

key and afield named over, which specifies the name for the key when the overlay key-
code is selected. The key specified in under must be amember of the section that contains
the overlay key definition, while the key specified in over must not be.

13.6 Drawing a Keyboard Representation
To draw arepresentation of the keyboard, draw in the following order:

Draw the top-level keyboard as arectangle, using its width and height.
For each component (section or doodad) of the top-level geometry, in priority order:
If component is a section
For each row, in the order it appearsin the section
Draw keysin the order they appear in the row
Draw doodads within the section in priority order.
Else draw doodad

November 10, 1997 Library Version 1.0/Document Revision 1.1 97

The X Keyboard Extension 13 Keyboard Geometry

13.7 Geometry Data Structures

In the following figures, a solid arrow denotes a pointer to an array of structures or asin-
gleton structure. A dotted arrow denotes an index or a pointer into the array.

|abel_color XkbPropertyRec(s)
base_color (array)
properties M |
XkbColorRec(s) '
colors (array) | A
I
shapes : r;
Clions | ! outlines N ! J_u
doodads E | approx .___’
| _ P
key diases | __ ! primary 1 XkbOutlineRec(s)
ol bounds H (array)
XkbGeometryRec I \
|| XkbShapeRec(s)
I
.' | ! (array) XkbBoundsRec
Jﬂ ¥
I
I
XkbK eyAliasRec(s) X C
(array) | >
| (See Figure 13.5)
L— b i
rows !

W > koS ; doodads (<)
doodads bounds | shape_ndx (array)
bounds

3 X kbRowRec(s) color_ndx
overlays =n (array) XkbKeyRec(s)

XkbSectionRec(s) r (aray)

(array)

[
' (See Figure 13.5)
(See Figure 13.6) XkbBoundsRec
doodads (s)
(array)
overlays (s)
(array) -
XkbBoundsRec

Figure 13.4 Xkb Geometry Data Structures

November 10, 1997 Library Version 1.0/Document Revision 1.1 98

The X Keyboard Extension

13 Keyboard Geometry

doodads array
may contain
any of these
doodad types

|abel_color XkbGeometryRec,
base color XkbColorRec, and
XkbShapeRec
repeated from
properties Figure 16.4
colors
shapes
sections
doodads
key aliases
XkbGeometryRec
color_ndx |-...__
shape ndx | e . ¥
XkbShapeDoodadRec(s) "+ ./ J_u
120 XkbColorRec(s)
g g (array)
’ / / ’
/
color_ndx K
/
XkbTextDoodadRec(s) K
, 4 ’ ’ ’ h \ : I
S KRN 7
shape ndx |-) , outlines
L, ' / , ’
on_color_ndx {*)/ ! approx
’ / 4 ’ ’ -
off_color_ndx |{) primary
XkbindicatorDoodadRec(s) bounds i
/ ! ’
)/ , XkbShapeRec(s)
’ !’ (array)

color_ndx

shape_ndx

XkbL ogoDoodadRec(s)

Figure 13.5 Xkb Geometry Data Structures (Doodads)

November 10, 1997

Library Version 1.0/Document Revision 1.1 99

The X Keyboard Extension 13 Keyboard Geometry

I [
. R L
rows
- XkbSectionRec and
doodads keys X kbRowRec
bounds bounds P ﬁ%ﬁ?ﬂé?m
overlays XkbRowRec(s)
XkbSectionRec(s) (array)
(array)
-
XkbBoundsRec
[
[
section_under ,
[
rows =
bounds NC row_under !
XkbOverlayRec (s) keys - J'u
(array) j
XkbOverlayRowRec (s) XkbOverlayKeyRec(s)
XkbBoundsRec

Figure 13.6 Xkb Geometry Data Structures (Overlays)

typedef struct _ XkbGeometry { /* top-level keyboard geometry structure */
Atom name; /* keyboard name */
unsigned short ~ width_mm; I* keyboard width in ™"/, */
unsigned short height_mm; I* keyboard height in ™™/ */
char * label _font; /* font for key labels*/
XkbColorPtr label_color; /* color for key labels - pointer into colors array */
XkbColorPtr base color; /* color for basic keyboard - pointer into colors array */
unsigned short sz properties; /* size of properties array */
unsigned short sz_colors; [* size of colors array */
unsigned short sz_shapes, [* size of shapes array */
unsigned short sz_sections, [* size of sectionsarray */

unsigned short sz_doodads; [* size of doodads array */

unsigned short sz key aliases; /* size of key aliases array */

unsigned short num_properties;, /* number of propertiesin the properties array */
unsigned short num_colors, /* number of colorsin the colors array */
unsigned short num_shapes, /* number of shapesin the shapes array */
unsigned short num_sections; /* number of sectionsin the sections array */
unsigned short num_doodads;, /* number of doodads in the doodads array */

November 10, 1997 Library Version 1.0/Document Revision 1.1 100

The X Keyboard Extension 13 Keyboard Geometry

unsigned short num_key aliases; /* number of key aiasesin the key */

XkbPropertyPtr properties; [* properties array */
XkbColorPtr colors; [* colorsarray */
XkbShapePtr shapes, [* shapes array */
XkbSectionPtr sections; [* sections array */
XkbDoodadPtr doodads; /* doodads array */

XkbKeyAliasPtr key aliases, /* key diases array */
} XkbGeometryRec * XkbGeometryPtr;

The doodads array is only for doodads not contained in any of the sectionsthat hasits own
doodads. The key aliases contained in the key_aliases array take precedence over any
defined in the keycodes component of the keyboard description.

typedef struct _XkbProperty {
char * name; [* property name */
char * value; [* property value */
} XkbPropertyRec,* XkbPropertyPtr;

typedef struct _XkbColor {

unsigned int pixel; [* color */

char * SpEC; /* color name */
} XkbColorRec,* XkbColorPtr;

typedef struct _ XkbKeyAliasRec {

char real[XkbKeyNameLength]; /* rea name of the key */
char aiag XkbKeyNamelLength]; /* adiasfor the key */
} XkbKeyAliasRec,* XkbKeyAliasPtr;
typedef struct _XkbPoint { [* x,y coordinates */
short X;
short y;

} XkbPointRec, * XkbPointPtr;
typedef struct _ XkbOutline {

unsigned short num_points, /* number of pointsin the outline */
unsigned short sz_points; [* size of the points array */

unsigned short corner_radius, /* draw corners as circles with thisradius */
XkbPointPtr points; [* array of points defining the outline */

} XkbOutlineRec, * XkbOutlinePtr;

typedef struct _XkbBounds {
short x1y1; /* upper left corner of the bounds, in ™"/ */
short X2,y2, /* lower right corner of the bounds, in ™"/, */
} XkbBoundsRec, * XkbBoundsPtr;

typedef struct _XkbShape {
Atom name; [* shape'sname */
unsigned short num_outlines; /* number of outlines for the shape */
unsigned short sz outlines, /* size of the outlines array */

XkbOutlinePtr outlines; * array of outlines for the shape */

XkbOutlinePtr approx; [* pointer into the array to the approximating outline */
XkbOutlinePtr primary; [* pointer into the array to the primary outline */
XkbBoundsRec bounds; /* bounding box for the shape; encompasses all outlines */

} XkbShapeRec, * XkbShapePtr;

November 10, 1997 Library Version 1.0/Document Revision 1.1 101

The X Keyboard Extension 13 Keyboard Geometry

If approx and/or primary isNULL, the default valueis used. The default primary outlineis
the first element in the outlines array, asis the default approximating outline.

typedef struct _XkbKey { /* key inarow */
XkbKeyNameRec name; [* key name */
short gap; I* gap in ™™/, from previous key in row */
unsigned char shape ndx; /* index of shape for key */
unsigned char color_ndx; /* index of color for key body */
} XkbKeyRec, * XkbKeyPtr;
typedef struct _XkbRow { /* row in asection */
short top; /* top coordinate of row origin, relative to section’s origin */
short |eft; I* left coordinate of row origin, relative to section’sorigin */

unsigned short num_keys; /* number of keysin the keys array */
unsigned short sz keys, /* sizeof the keysarray */
int vertical; /* True=>vertica row, False=>horizontal row */
XkbKeyPtr keys,; * array of keysin the row*/
XkbBoundsRec bounds, /* bounding box for the row */
} XkbRowRec, * XkbRowPtr;

top and left arein ™.
typedef struct _XkbOverlayRec {

Atom name; * overlay name */

XkbSectionPtr section_under; /* the section under this overlay */
unsigned short num_rows, /* number of rowsin the rows array */
unsigned short SZ_rows; [* size of therows array */
XkbOverlayRowPtr rows, [* array of rowsin the overlay */
XkbBoundsPtr bounds; * bounding box for the overlay */

} XkbOverlayRec,* XkbOverlayPtr;
typedef struct XkbOverlayRow {

unsigned short row_under; /* index into the row under this overlay row */
unsigned short num_keys, /* number of keysin the keys array */
unsigned short sz_keys, [* size of the keys array */

XkbOverlayKeyPtr keys; [* array of keysin the overlay row */

} XkbOverlayRowRec,* XkbOverlayRowPtr;

row_under isan index into the array of rows in the section under this overlay. The section
under this overlay row isthe one pointed to by section_under in this overlay row’s

XkbOverlayRec.

typedef struct _XkbOverlayKey {
XkbKeyNameRec over; /* name of thisoverlay key */
XkbKeyNameRec under; /* name of the key under this overlay key */

} XkbOverlayK eyRec,* XkbOverlayKeyPtr;
typedef struct _XkbSection {

Atom name; [* section name */
unsigned char priority; [* drawing priority, 0=>highest, 255=>lowest */
short top; /* top coordinate of section origin */
short left; I* eft coordinate of row origin */
unsigned short width; /* section width, in ™"/ */
unsigned short height; /* section height, in ™"/ */

November 10, 1997 Library Version 1.0/Document Revision 1.1 102

The X Keyboard Extension 13 Keyboard Geometry

short angle; * angle of section rotation, counterclockwise */
unsigned short num_rows, /* number of rowsin the rows array */

unsigned short num_doodads; /* number of doodads in the doodads array */
unsigned short num_overlays; /* number of overlaysin the overlays array */
unsigned short SZ_rows, [* size of therows array */

unsigned short sz _doodads; /* size of the doodads array */

unsigned short sz _overlays, [* size of the overlaysarray */

XkbRowPtr rows, * section rows array */

XkbDoodadPtr doodads; [* section doodads array */

XkbBoundsRec bounds; /* bounding box for the section, before rotation*/
XkbOverlayPtr overlays; [* section overlays array */

} XkbSectionRec, * XkbSectionPtr;

top and left are the origin of the section, relative to the origin of the keyboard, in ™"/,
angleisin Yo degrees.

DoodadRec Structures

The doodad arraysin the XkbGeometryRec and the XkbSectionRec may contain any
of the doodad structures and types shown in Table 13.1.

The doodad structures form a union:
typedef union _XkbDoodad {

XkbAnyDoodadRec any;
XkbShapeDoodadRec shape;
XkbTextDoodadRec text;
XkblndicatorDoodadRec indicator;
XkbL ogoDoodadRec logo;

} XkbDoodadRec, * XkbDoodadPtr;

Thetop and left coordinates of each doodad are the coordinates of the origin of the doodad
relative to the keyboard' s origin if the doodad is in the XkbGeometryRec doodad array,
and with respect to the section’s origin if the doodad isin a XxkbSectionRec doodad
array. The color_ndx or on_color_ndx and off_color_ndx fields are color indices into the
XkbGeometryRec’s color array and are the colors to draw the doodads with. Similarly, the
shape_ndx fields are indices into the XkbGeomet ryRec’s shape array.

typedef struct _XkbShapeDoodad {

Atom name; [* doodad name */

unsigned char type; [* XkboOut1ineDoodad or XkbSolidDoodad*/
unsigned char priority; * drawing priority, O=>highest, 255=>lowest */
short top; /* top coordinate, in ™"/ */

short |eft; /* |€ft coordinate, in ™Y */

short angle; [* angle of rotation, clockwise, in 1/10 degrees */
unsigned short color_ndx; * doodad color */

unsigned short shape _ndx; /* doodad shape */
} XkbShapeDoodadRec, * XkbShapeDoodadPtr;

typedef struct _XkbTextDoodad {

Atom name; [* doodad name */

unsigned char type; [* XkbTextDoodad */

unsigned char priority; * drawing priority, O=>highest, 255=>lowest */
short top; /* top coordinate, in ™M/qq*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 103

The X Keyboard Extension 13 Keyboard Geometry

13.8

short |eft; /* €ft coordinate, in ™™/ */

short angle; * angle of rotation, clockwise, in l/10 degrees */
short width; /% width in ™0 %/

short height; /* heightin ™Y */

unsigned short color_ndx; * doodad color */

char * text; [* doodad text */

char * font; * arbitrary font name for doodad text */

} XkbTextDoodadRec, * XkbTextDoodadPtr;
typedef struct _XkblndicatorDoodad {

Atom name; [* doodad name */

unsigned char type; [* XkbIndicatorDoodad */

unsigned char priority; * drawing priority, O=>highest, 255=>lowest */
short top; /* top coordinate, in ™"/qq*/

short |eft; /* 1€ft coordinate, in ™Y */

short angle; [* angle of rotation, clockwise, in 1/10 degrees*/

unsigned short shape_ndx; /* doodad shape */

unsigned short on_color_ndx; /* color for doodad if indicator ison */

unsigned short off_color_ndx; /* color for doodad if indicator is off */
} Xkblndicator DoodadRec, * XkblndicatorDoodadPtr;

typedef struct _XkbL ogoDoodad {

Atom name; [* doodad name */

unsigned char type; [* XkbLogoDoodad */

unsigned char priority; * drawing priority, O=>highest, 255=>lowest */
short top; /* top coordinate, in ™"/qq*/

short left; /* |€ft coordinate, in ™Y */

short angle; [* angle of rotation, clockwise, in 1/10 degrees*/
unsigned short color_ndx; * doodad color */

unsigned short shape_ndx; * doodad shape */

char * logo_name; I* text for logo */

} XkbL ogoDoodadRec, * XkbL ogoDoodadPtr

Getting Keyboard Geometry From the Server

You can load a keyboard geometry as part of the keyboard description returned by Xkb-
GetKeyboard. However, if akeyboard description has been previously loaded, you can
instead obtain the geometry by calling the XkbGetGeometry. In this case, the geometry
returned is the one associated with the keyboard whose device ID is contained in the key-
board description.

To load a keyboard geometry if you already have the keyboard description, use XkbGet-
Geometry.

Status XkbGetGeometry(dpy, xkb)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; /* keyboard description that contains the ID for the keyboard
and into which the geometry should be loaded */

XkbGetGeometry can return Badvalue, BadImplementation, BadName, BadAlloc,
or BadLength errors or Success if it succeeds.

November 10, 1997 Library Version 1.0/Document Revision 1.1 104

The X Keyboard Extension 13 Keyboard Geometry

13.9

It isalso possible to load a keyboard geometry by name. The X server maintains a data-
base of keyboard components (see Chapter 20). To load a keyboard geometry description
from this database by name, use XkbGetNamedGeometry.

Status XkbGetNamedGeometry(dpy, xkb, name)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; I* keyboard description into which the geometry should be loaded */
Atom name; /* name of the geometry to be loaded */

XkbGetNamedGeometry can return BadName if the name cannot be found.

Using Keyboard Geometry

Xkb provides anumber of convenience functions to help use a keyboard geometry. These
include functions to return the bounding box of a shape’' s top surface and to update the
bounding box of a shape row or section.

A shape is made up of anumber of outlines. Each outline is a polygon made up of a num-
ber of points. The bounding box of a shape is arectangle that contains all the outlines of
that shape.

- —]

actual key approximating primary detailed bounding
surface outline outline outline box
| outline array |

Figure 13.7 Key Surface, Shape Outlines, and Bounding Box

To determine the bounding box of the top surface of a shape, use XkbComputeShapeTop.

Bool XkbComputeShapeTop(shape, bounds_rtrn)
XkbShapePtr shape; [* shape to be examined */
XkbBoundsPtr bounds _rtrn /* backfilled with the bounding box for the shape */

XkbComputeShapeTop returns a BoundsRec that contains two x and y coordinates. These
coordinates describe the corners of arectangle that contains the outline that describes the

top surface of the shape. The top surface is defined to be the approximating outline if the

approx field of shape is not NULL. If approx is NULL, the top surface is defined as the | ast
outline in the shape’s array of outlines. XkbComputeShapeTop returns False if shapeis

NULL or if there are no outlines for the shape; otherwise, it returns True.

A ShapeRec contains a BoundsRec that describes the bounds of the shape. If you add or
delete an outline to or from a shape, the bounding box must be updated. To update the
bounding box of a shape, use XkbComputeShapeBounds.

Bool XkbComputeShapeBounds(shape)
XkbShapePtr shape; [* shape to be examined */

XkbComputeShapeBounds updates the BoundsRec contained in the shape by examining
all the outlines of the shape and setting the BoundsRec to the minimum x and minimum

November 10, 1997 Library Version 1.0/Document Revision 1.1 105

The X Keyboard Extension 13 Keyboard Geometry

13.10

y, and maximum x and maximum y values found in those outlines. XkbComputeShape-
Boundsreturns False if shapeisNULL or if there are no outlines for the shape; otherwise,
it returns True.

If you add or delete akey to or from arow, or if you update the shape of one of the keys
in that row, you may need to update the bounding box of that row. To update the bounding
box of arow, use XkbComputeRowBounds.

Bool XkbComputeRowBounds(geom, section, row)

XkbGeometryPtr geom; [* geometry that contains the section */
XkbSectionPtr section; /* section that contains the row */
XkbRowPtr row; /* row to be examined and updated */

XkbComputeRowBounds checks the bounds of all keys in the row and updates the bound-
ing box of the row if necessary. XkbComputeRowBounds returns False if any of the argu-
ments is NULL; otherwise, it returns True.

If you add or delete arow to or from asection, or if you change the geometry of any of the
rowsin that section, you may need to update the bounding box for that section. To update
the bounding box of a section, use XkbComputeSectionBounds.

Bool XkbComputeSectionBounds(geom, section)
XkbGeometryPtr geom; [* geometry that contains the section */
XkbSectionPtr section; [* section to be examined and updated */

XkbComputeSectionBounds examines all the rows of the section and updates the bounding
box of that section so that it contains all rows. XkbComputeSectionBounds returns False
if any of the argumentsis NULL; otherwise, it returns True.

Keysthat can generate multiple keycodes may be associated with multiple names. Such
keys have aprimary name and an alternate name. To find the alternate name by using the
primary name for akey that is part of an overlay, use XkbFindOverlayForKey.

char * XkbFindOverlayFor K ey(geom, section, under)

XkbGeometryPtr geom; /* geometry that contains the section */
XkbSectionPtr section; [* section to be searched for matching keys */
char * under. [* primary name of the key to be considered */

XkbFindOverlayForKey uses the primary name of the key, under, to look up the alternate
name, which it returns.

Adding Elements to a Keyboard Geometry

Xkb provides functions to add a single new element to the top-level keyboard geometry.
In each case the num_ « fields of the corresponding structure isincremented by 1. These
functions do not change sz_» unless thereis no more room in the array. Some of these
functionsfill in the values of the element’ s structure from the arguments. For other func-
tions, you must explicitly write code to fill the structure' s elements.

The top-level geometry description includes alist of geometry properties. A geometry
property associates an arbitrary string with an equally arbitrary name. Programs that dis-
play images of keyboards can use geometry properties as hints, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

November 10, 1997 Library Version 1.0/Document Revision 1.1 106

The X Keyboard Extension 13 Keyboard Geometry

To add one property to an existing keyboard geometry description, use XkbAddGeomPro-

perty.

XkbPropertyPtr XkbAddGeomProperty(geom, name, value)
XkbGeometryPtr geom; /* geometry to be updated */
char * name; /* name of the new property */
char * value; /* value for the new property */

XkbAddGeomProperty adds one property with the specified name and value to the key-
board geometry specified by geom. XkbAddGeomProperty returns NULL if any of the
parametersis empty or if it was not able to allocate space for the property. To allocate
space for an arbitrary number of properties, use the XkbAllocGeomProps function.

To add one key alias to an existing keyboard geometry description, use XkbAddGeomKey-

Alias.
XkbKeyAliasPtr XkbAddGeomK eyAlias(geom, alias, real)
XkbGeometryPtr geom; /* geometry to be updated */
char * alias, /* diasto be added */
char * real; /* real name to be bound to the new alias*/

XkbAddGeomKeyAlias adds one key aias with the value alias to the geometry geom, and
associates it with the key whose real nameis real. XkbAddGeomKeyAlias returns NULL if
any of the parametersisempty or if it was not able to allocate space for the adias. To allo-
cate space for an arbitrary number of aliases, use the XkbAllocGeomKeyAliases function.

To add one color name to an existing keyboard geometry description, use XkbAddGeom-

Color.

XkbColorPtr XkbAddGeomColor (geom, spec, pixel)
XkbGeometryPtr geom; /* geometry to be updated */
char * Spec; /* color to be added */
unsigned int pixel; /* color to be added */

XkbAddGeomColor adds the specified color name and pixel to the specified geometry
geom. The top-level geometry description includes alist of up to MaxColors (32) color
names. A color name is astring whose interpretation is not specified by Xkb and neither is
the pixel value' sinterpretation. All other geometry data structures refer to colors using
their indicesin this global list or pointersto colorsin thislist. XkbAddGeomColor returns
NULL if any of the parametersis empty or if it was not able to allocate space for the color.
To allocate space for an arbitrary number of colors to a geometry, use the XkbAllocGeom-
Colors function.

To add one outline to an existing shape, use XkbAddGeomOuitline.

XkbOutlinePtr XkbAddGeomOutline(shape, sz_points)
XkbShapePtr shape; [* shapeto be updated */
int sz _points; /* number of points to be reserved */

An outline consists of an arbitrary number of points. XkbAddGeomOuitline adds an outline
to the specified shape by reserving sz_points pointsfor it. The new outlineis allocated and
zeroed. XkbAddGeomOuitline returns NULL if any of the parametersis empty or if it was
not able to allocate space. To allocate space for an arbitrary number of outlines to a shape,
use XkbAllocGeomOutlines.

November 10, 1997 Library Version 1.0/Document Revision 1.1 107

The X Keyboard Extension 13 Keyboard Geometry

To add a shape to a keyboard geometry, use XkbAddGeomShape.
XkbShapePtr XkbAddGeomShape(geom, name, sz_outlines)

XkbGeometryPtr geom; /* geometry to be updated */
Atom name; /* name of the new shape */
int sz outlines; /* number of outlinesto be reserved */

A geometry contains an arbitrary number of shapes, each of which is made up of an arbi-
trary number of outlines. XkbAddGeomShape adds a shape to a geometry geom by all ocat-
ing space for sz_outlines outlines for it and giving it the name specified by name. If a
shape with name name already exists in the geometry, a pointer to the existing shapeis
returned. XkbAddGeomShape returns NULL if any of the parametersis empty or if it was
not able to alocate space. To allocate space for an arbitrary number of geometry shapes,
use XkbAllocGeomShapes.

To add one key at the end of an existing row of keys, use XkbAddGeomKey.

XkbKeyPtr XkbAddGeomK ey(row)
XkbRowPtr row; /* row to be updated */

Keys are grouped into rows. XkbAddGeomKey adds one key to the end of the specified
row. The key is allocated and zeroed. XkbAddGeomKey returns NULL if row isempty or if
it was not able to allocate space for the key. To allocate space for an arbitrary number of
keysto arow, use XkbAllocGeomKeys.

To add one section to an existing keyboard geometry, use XkbAddGeomSection.

XkbSectionPtr XkbAddGeomSection(geom, name, sz_rows, sz_doodads, sz_overlays)

XkbGeometryPtr geom; /* geometry to be updated */

Atom name; /* name of the new section */

int SZ_rows; /* number of rows to reserve in the section */

int sz _doodads; /* number of doodads to reserve in the section */
int sz _overlays; /* number of overlaysto reserve in the section */

A keyboard geometry contains an arbitrary number of sections. XkbAddGeomSection adds
one section to an existing keyboard geometry geom. The new section contains space for
the number of rows, doodads, and overlays specified by sz rows, sz doodads, and
sz_overlays. The new section is allocated and zeroed and given the name specified by
name. If a section with name name already exists in the geometry, a pointer to the existing
section isreturned. XkbAddGeomSection returns NULL if any of the parametersisempty or
if it was not able to allocate space for the section. To allocate space for an arbitrary num-
ber of sections to a geometry, use XkbAllocGeomSections.

To add arow to a section, use XkbAddGeomRow.

XkbRowPtr XkbAddGeomRow(section, sz_keys)
XkbSectionPtr section; [* section to be updated */
int sz _keys, /* number of keysto be reserved */

One of the components of a keyboard geometry section is one or more rows of keys.
XkbAddGeomRow adds one row to the specified section. The newly created row contains
space for the number of keys specified in sz_keys. They are allocated and zeroed, but other-
wise uninitialized. XkbAddGeomRow returns NULL if any of the parametersis empty or if
it was not able to allocate space for the row. To allocate space for an arbitrary number of
rows to a section, use the XkbAllocGeomRows function.

November 10, 1997 Library Version 1.0/Document Revision 1.1 108

The X Keyboard Extension 13 Keyboard Geometry

To add one doodad to a section of a keyboard geometry or to the top-level geometry, use

XkbAddGeomDoodad.

XkbDoodadPtr XkbAddGeomDoodad(geom, section, name)
XkbGeometryPtr geom; * geometry to which the doodad is added */
XkbSectionPtr section; [* section, if any, to which the doodad is added */
Atom name; /* name of the new doodad */

A doodad describes some visible aspect of the keyboard that is not akey and is not a sec-
tion. XkbAddGeomDoodad adds a doodad with name specified by name to the geometry
geomif section isNULL or to the section of the geometry specified by section if sectionis
not NULL. XkbAddGeomDoodad returns NULL if any of the parametersis empty or if it
was not able to allocate space for the doodad. If there is already a doodad with the name
name in the doodad array for the geometry (if section is NULL) or the section (if sectionis
non-NULL), a pointer to that doodad is returned. To allocate space for an arbitrary number
of doodads to a section, use the XkbAllocGeomSectionDoodads function. To allocate
space for an arbitrary number of doodads to a keyboard geometry, use the XkbAllocGeom-
Doodads function.

To add one overlay to a section, use XkbAddGeomOverlay.
XkbOverlayPtr XkbAddGeomOverlay(section, name, Sz_rows)

XkbSectionPtr section; [* section to which an overlay will be added */
Atom name; /* name of the overlay */
int SZ rows, /* number of rows to reserve in the overlay */

XkbAddGeomOverlay adds an overlay with the specified name to the specified section.
The new overlay is created with space allocated for sz_rowsrows. If an overlay with name
name aready exists in the section, a pointer to the existing overlay is returned.
XkbAddGeomOverlay returns NULL if any of the parametersis empty or if it was not able
to allocate space for the overlay. To allocate space for an arbitrary number of overlaysto a
section, use the XkbAllocGeomOverlay function.

To add arow to an existing overlay, use XkbAddGeomOverlayRow.

XkbOverlayRowPtr XkbAddGeomOver layRow(overlay, row_under, sz_keys)
XkbOverlayPtr overlay; /* overlay to be updated */
XkbRowPtr row_under; /* row to be overlayed in the section overlay overlays */
int sz_keys; /* number of keysto reservein therow */

XkbAddGeomOverlayRow adds one row to the overlay. The new row contains space for
sz_keys keys. If row_under specifiesarow that doesn’t exist on the underlying section,
XkbAddGeomOverlayRow returns NULL and doesn’t change the overlay. XkbAddGeo-
mOverlayRow returns NULL if any of the parametersis empty or if it was not able to alo-
cate space for the overlay.

To add akey to an existing overlay row, use XkbAddGeomOverlayKey.

XkbOverlayKeyPtr XkbAddGeomOverlayK ey(overlay, row, under)
XkbOverlayPtr overlay; [* overlay to be updated */
XkbRowPtr row, [* row in overlay to be updated */
char * under; [* primary name of the key to be considered */

XkbAddGeomOverlayKey adds one key to the row in the overlay. If thereis no key named
under in the row of the underlying section, XkbAddGeomOverlayKey returns NULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 109

The X Keyboard Extension 13 Keyboard Geometry

13.11 Allocating and Freeing Geometry Components

Xkb provides a number of functions to allocate and free subcomponents of a keyboard
geometry. Use these functions to create or modify keyboard geometries. Note that these
functions merely allocate space for the new element(s), and it isup to you to fill in the val-
ues explicitly in your code. These allocation functions increase sz_« but never touch
num_x (unlessthereisan alocation failure, in which case they reset both sz + and num_«
to zero). These functions return Success if they succeed, Badalloc if they are not able
to allocate space, or Badvalue if a parameter is not as expected.

To allocate space for an arbitrary number of outlines to a shape, use XkbAllocGeomOut-

lines.

Status XkbAllocGeomOutlines(shape, num_needed)
XkbShapePtr shape; * shape for which outlines should be allocated */
int num_needed; /* number of new outlines required */

XkbAllocGeomOutlines all ocates space for num_needed outlines in the specified shape.
The outlines are not initialized.

To free geometry outlines, use XkbFreeGeomOutlines.
void XkbFreeGeomOutlines(shape, first, count, free all)

XkbShapePtr shape; [* shape in which outlines should be freed */
int first; [* first outline to be freed */

int count; /* number of outlinesto be freed */

Bool free all; [* True => dl outlines are freed */

If free_all is True, al outlines are freed regardless of the value of first or count. Other-
wise, count outlines are freed beginning with the one specified by first.

To alocate space for an arbitrary number of keysto arow, use XkbAllocGeomKeys.

Status XkbAllocGeomK eys(row, num_needed)
XkbRowPtr row; /* row to which keys should be allocated */
int num_needed; /* number of new keysrequired */

XkbAllocGeomKeys allocates num_needed keys and adds them to the row. No initidliza-
tion of the keysis done.

To free geometry keys, use XkbFreeGeomKeys.
void XkbFreeGeomK eys(row, first, count, free all)

XkbRowPtr row, /* row in which keys should be freed */
int first; [* first key to be freed */

int count; /* number of keysto be freed */

Bool free_all; /* True => all keysarefreed */

If free_all is True, al keys are freed regardless of the value of first or count. Otherwise,
count keys are freed beginning with the one specified by first.

To allocate geometry properties, use XkbAllocGeomProps.

Status XkbAllocGeomProps(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which properties should be alocated */
int num_needed; /* number of new properties required */

November 10, 1997 Library Version 1.0/Document Revision 1.1 110

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomProps allocates space for num_needed properties and adds them to the
specified geometry geom. No initialization of the propertiesis done. A geometry property
associates an arbitrary string with an equally arbitrary name. Geometry properties can be
used to provide hints to programs that display images of keyboards, but they are not inter-
preted by Xkb. No other geometry structures refer to geometry properties.

To free geometry properties, use XkbFreeGeomProperties.
void XkbFreeGeomProperties(geom, first, count, free all)

XkbGeometryPtr geom; /* geometry in which properties should be freed */
int first; [* first property to be freed */

int count; /* number of propertiesto be freed */

Bool free_all; [* True => all properties are freed */

If free_all is True, all properties are freed regardless of the value of first or count. Other-
wise, count properties are freed beginning with the one specified by first.

To allocate geometry key aliases, use XkbAllocGeomKeyAliases.

Status XkbAllocGeomK eyAliases(geom, num_needed)
XkbGeometryPtr geom; * geometry for which key aliases should be allocated */
int num_needed; /* number of new key aliases required */

XkbAllocGeomKeyAliases allocates space for num_needed key aliases and adds them to
the specified geometry geom. A key aliasisapair of strings that associates an alternate
name for akey with the real name for that key.

To free geometry key aliases, use XkbFreeGeomKeyAliases.
void XkbFreeGeomK eyAliases(geom, first, count, free_all)

XkbGeometryPtr geom; /* geometry in which key aliases should be freed */
int first; [* first key aliasto be freed */

int count; /* number of key aliases to be freed */

Bool free all; [* True => all key aliases are freed */

If free_all is True, al aiasesin the top level of the specified geometry geom are freed
regardless of the value of first or count. Otherwise, count aliases in geom are freed begin-
ning with the one specified by first.

To allocate geometry colors, use XkbAllocGeomColors.

Status XkbAllocGeomColor s(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which colors should be alocated */
int num_needed; /* number of new colors required. */

XkbAllocGeomColors allocates space for num_needed colors and adds them to the speci-
fied geometry geom. A color nameisastring whose interpretation is not specified by Xkb.
All other geometry data structures refer to colors using their indicesin this global list or
pointersto colorsin thislist.

November 10, 1997 Library Version 1.0/Document Revision 1.1 111

The X Keyboard Extension 13 Keyboard Geometry

To free geometry colors, use XkbFreeGeomColors.
void XkbFreeGeomColor s(geom, first, count, free_all)

XkbGeometryPtr geom; * geometry in which colors should be freed */
int first; [* first color to be freed */

int count; /* number of colorsto be freed */

Bool free all; /* True => all colorsare freed */

If free_all isTrue, all colors are freed regardless of the value of first or count. Otherwise,
count colors are freed beginning with the one specified by first.

To alocate points in an outline, use XkbAllocGeomPoints.

Status XkbAllocGeomPoints(outline, num_needed)
XkbOutlinePtr outline; /* outline for which points should be allocated */
int num_needed; /* number of new points required */

XkbAllocGeomPoints allocates space for num_needed points in the specified outline. The
points are not initialized.

To free pointsin a outline, use XkbFreeGeomPoints.
void XkbFreeGeomPoints(outline, first, count, free_all)

XkbOutlinePtr outline; /* outline in which points should be freed */
int first; [* first point to be freed. */

int count; /* number of pointsto be freed */

Bool free all; [* True => dl points are freed */

If free_all is True, al points are freed regardless of the value of first and count. Other-
wise, the number of points specified by count are freed, beginning with the point specified
by first in the specified outline.

To alocate space for an arbitrary number of geometry shapes, use XkbAllocGeomShapes.

Status XkbAllocGeomShapes(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which shapes should be allocated */
int num_needed; /* number of new shapes required */

XkbAllocGeomShapes all ocates space for num_needed shapes in the specified geometry
geom. The shapes are not initialized.

To free geometry shapes, use XkbFreeGeomShapes.
void XkbFreeGeomShapes(geom, first, count, f ree all)

XkbGeometryPtr geom; /* geometry in which shapes should be freed */
int first; [* first shapeto be freed */

int count; /* number of shapesto befreed */

Bool free_all; [* True => all shapes are freed */

If free_all isTrue, all shapesinthe geometry are freed regardless of the values of first and
count. Otherwise, count shapes are freed, beginning with the shape specified by first.

To alocate geometry sections, use XkbAllocGeomSections.

Status XkbAllocGeomSections(geom, num_needed)
XkbGeometryPtr geom; /*geometry for which sections should be allocated */
int num_needed; /* number of new sections required */

November 10, 1997 Library Version 1.0/Document Revision 1.1 112

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSections allocates num_needed sections and adds them to the geometry
geom. No initialization of the sectionsis done.

To free geometry sections, use XkbFreeGeomSections.
void XkbFreeGeomSections(geom, first, count, free all)

XkbGeometryPtr geom; /* geometry in which sections should be freed */
int first; [* first section to be freed. */

int count; /* number of sectionsto be freed */

Bool free all; [* True => al sections are freed */

If free_all is True, al sections are freed regardless of the value of first and count. Other-
wise, the number of sections specified by count are freed, beginning with the section spec-
ified by first in the specified geometry.

To allocate rows in a section, use XkbAllocGeomRows.

Status XkbAllocGeomRows(section, num_needed)
XkbSectionPtr section; * section for which rows should be allocated */
int num_needed; /* number of new rows required */

XkbAllocGeomRows allocates num_needed rows and adds them to the section. No initial-
ization of the rowsis done.

To free rows in a section, use XkbFreeGeomRows.

void XkbFreeGeomRows(section, first, count, free_all)

XkbSectionPtr section; /* section in which rows should be freed */
int first; /* first row to be freed. */

int count; /* number of rowsto be freed */

Bool free all; [* True => al rows are freed */

If free_all isTrue, al rowsare freed regardless of the value of first and count. Otherwise,
the number of rows specified by count are freed, beginning with the row specified by first
in the specified section.

To alocate overlays in a section, use XkbAllocGeomOverlays.

Status XkbAllocGeomOver lays(section, num_needed)
XkbSectionPtr section; [* section for which overlays should be allocated */
int num_needed; /* number of new overlays required */

XkbAllocGeomRows allocates num_needed overlays and adds them to the section. No ini-
tialization of the overlaysis done.

To free rowsin an section, use XkbFreeGeomOverlays.

void XkbFreeGeomOver lays(section, first, count, free_all)

XkbSectionPtr section; [* section in which overlays should be freed */
int first; [* first overlay to be freed. */

int count; /* number of overlaysto be freed */

Bool free_all; [* True => al overlays are freed */

If free_all is True, all overlays are freed regardless of the value of first and count. Other-
wise, the number of overlays specified by count are freed, beginning with the overlay
specified by first in the specified section.

November 10, 1997 Library Version 1.0/Document Revision 1.1 113

The X Keyboard Extension 13 Keyboard Geometry

To allocate rows in a overlay, use XkbAllocGeomOverlayRows.

Status XkbAllocGeomOver layRows(overlay, num_needed)
XkbSectionPtr overlay; * section for which rows should be allocated */
int num_needed; /* number of new rows required */

XkbAllocGeomOverlayRows allocates num_needed rows and adds them to the overlay. No
initialization of the rowsis done.

To free rowsin an overlay, use XkbFreeGeomOver|ayRows.

void XkbFreeGeomOverlayRows(overlay, first, count, free all)
XkbSectionPtr overlay; /* section in which rows should be freed */

int first; /* first row to be freed. */
int count; /* number of rowsto be freed */
Bool free all; [* True => all rows are freed */

If free_all isTrue, al rows are freed regardless of the value of first and count. Otherwise,
the number of rows specified by count are freed, beginning with the row specified by first
in the specified overlay.

To allocate keysin an overlay row, use XkbAllocGeomOverlayKeys.

Status XkbAllocGeomOverlayK eys(row, num_needed)
XkbRowPtr row, * section for which rows should be allocated */
int num_needed; /* number of new rows required */

XkbAllocGeomOverlayKeys allocates num_needed keys and adds them to the row. No ini-
tialization of the keysis done.

To free keysin an overlay row, use XkbFreeGeomOverlayKeys.
void XkbFreeGeomOverlayK eys(row, first, count, free all)

XkbRowPtr row; /* row in which keys should be freed */
int first; [* first key to be freed. */

int count; /* number of keysto befreed */

Bool free_all; /* True => all keysarefreed */

If free_all isTrue, all keysare freed regardless of the value of first and count. Otherwise,
the number of keys specified by count are freed, beginning with the key specified by first
in the specified row.

To alocate doodads that are global to a keyboard geometry, use XkbAllocGeomDoodads.

Status XkbAllocGeomDoodads(geom, num_needed)
XkbGeometryPtr geom; /* geometry for which doodads should be allocated */
int num_needed; /* number of new doodads required */

XkbAllocGeomDoodads allocates num_needed doodads and adds them to the specified
geometry geom. No initialization of the doodads is done.

To alocate doodads that are specific to a section, use XkbAllocGeomSectionDoodads.

Status XkbAllocGeomSectionDoodads(section, num_needed)
XkbSectionPtr section; * section for which doodads should be allocated */
int num_needed; /* number of new doodads required */

November 10, 1997 Library Version 1.0/Document Revision 1.1 114

The X Keyboard Extension 13 Keyboard Geometry

XkbAllocGeomSectionDoodads allocates num_needed doodads and adds them to the spec-
ified section. No initialization of the doodads is done.

To free geometry doodads, use XkbFreeGeomDoodads.

void XkbFreeGeomDoodads(doodads, count, free_all)
XkbDoodadPtr doodads; /* doodads to be freed */
int count; /* number of doodads to be freed */
Bool free_all; /* True => all doodads are freed */

If free_all is True, al doodadsin the array are freed, regardless of the value of count.
Otherwise, count doodads are freed.

To alocate an entire geometry, use XkbAllocGeometry.

Status XkbAllocGeometry(xkb, sizes)
XkbDescPtr xkb; /* keyboard description for which geometry isto be allocated */
XkbGeometrySizesPtr sizes; /* initial sizesfor all geometry components */

XkbAllocGeometry allocates a keyboard geometry and adds it to the keyboard description
specified by xkb. The keyboard description should be obtained via the XkbGetKeyboard or
XkbAllockeyboard functions. The sizes parameter specifies the number of elementsto be

reserved for the subcomponents of the keyboard geometry and can be zero or more. These
subcomponents include the properties, colors, shapes, sections, and doodads.

To free an entire geometry, use XkbFreeGeometry.
void XkbFreeGeometry(geom, which, free all)

XkbGeometryPtr geom; /* geometry to be freed */
unsigned int which; /* mask of geometry components to be freed */
Bool free_all; [* True => the entire geometry isfreed. */

The values of which and free_all determine how much of the specified geometry is freed.
The valid values for which are:

#define XkbGeomPropertiesMask (1<<0)
#define XkbGeomColorsMask (1<<1)
#define XkbGeomShapesMask (1<<2)
#define XkbGeomSectionsMask (1<<3)
#define XkbGeomDoodadsMask (1<<4)
#define XkbGeomAllMask (Ox1f)

If free_all is True, the entire geometry is freed regardless of the value of which. Other-
wise, the portions of the geometry specified by which are freed.

November 10, 1997 Library Version 1.0/Document Revision 1.1 115

The X Keyboard Extension 14 Xkb Keyboard Mapping

14

14.1

Xkb Keyboard Mapping

The Xkb keyboard mapping contains al the information the server and clients need to
interpret key events. This chapter provides an overview of the terminology used to
describe an Xkb keyboard mapping and introduces common utilities for manipulating the
keyboard mapping.

The mapping consists of two components, a server map and a client map. The client map
isthe collection of information a client needs to interpret key events from the keyboard. It
contains a global list of key types and an array of key symbol maps, each of which
describes the symbols bound to a key and the rules to be used to interpret those symbols.
The server map contains the information the server needsto interpret key events. This
includes actions and behaviors for each key, explicit components for akey, and the virtual
modifiers and the per-key virtual modifier mapping.

For detailed information on particular components of the keyboard map, refer to Chapter
15, “Xkb Client Keyboard Mapping” and Chapter 16, “ Xkb Server Keyboard Mapping.”

Notation and Terminology

The graphic characters or control functions that may be accessed by one key are logically
arranged in groups and levels, where group and level are defined asin the 1SO9995 stan-
dard:

Group: A logical state of a keyboard providing access to a collection of graphic char-
acters. Usually these graphic characterslogically belong together and may be
arranged on several levels within agroup.

Level: One of severa states (normally 2 or 3) governing which graphic character is
produced when a graphic key is actuated. In certain cases the level may also
affect function keys.

These definitions, taken from the | SO standard, refer to graphic keys and characters. In the
context of Xkb, Group and Level are not constrained to graphic keys and characters; they
may be used with any key to access any character the key is capable of generating.

Level isoften referred to as“ Shift Level”. Levels are numbered sequentially starting at
one.

Note Shift level isderived from the modifier state, but not necessarily in the same way for
al keys. For example, the Shift modifier selects shift level 2 on most keys, but for
keypad keys the modifier bound to Num_Lock (that is, the NumLock virtual modi-
fier) also selects shift level 2.

November 10, 1997 Library Version 1.0/Document Revision 1.1 116

The X Keyboard Extension 14 Xkb Keyboard Mapping

For example, consider the following key (the gray characters indicate symbols that are
implied or expected but are not actually engraved on the key):

T

% gl'—;:z L1 L2 11 L2 L1 L2

@ 1L2 = Glal|lA

= G2Ll=ee aAj=|E

s GoL2 = [E Gl G2 Glee |
Group —

Physical Key Symbols Core Symbols Xkb Symbols

Figure 14.1 Shift Levelsand Groups

This key has two groups, indicated by the columns, and each group has two shift levels.
For thefirst group (Groupl), the symbol shift level oneisa, and the symbol for shift level
two isA. For the second group, the symbol for shift level oneis e, and the symbol for
shift level two is /.

14.1.1 Core Implementation

The standard interpretation rules for the core X keymap only allow clients to access keys
such asthe one shown in Figure 14.1. That is, clients using the standard interpretation
rules can only access one of four keysymsfor any given KeyPress event — two different
symbolsin two different groups.

In general, the shift modifier, the Lock modifier, and the modifier bound to the
Num_Lock key are used to change between shift level 1 and shift level 2. To switch
between groups, the core implementation uses the modifier bound to the Mode_switch
key. When the Mode switch modifier is set, the keyboard islogically in Group 2. When
the Mode switch modifier isnot set, the keyboard islogically in Group 1.

The core implementation does not clearly specify the behavior of keys. For example, the
locking behavior of the CapsLock and Num_Lock keys depends on the vendor.

14.1.2 Xkb Implementation

Xkb extends the core implementation by providing access to up to four keyboard groups
with up to 63 shift levels per key. In addition, Xkb provides precise specifications regard-
ing the behavior of keys. In Xkb, modifier state and the current group are independent
(with the exception of compatibility mapping, discussed in Chapter 17).

Xkb handles switching between groups viakey actions, independent of any modifier state
information. Key actions are in the server map component and are described in detail in
section 16.1.4.

Xkb handles shift levels by associating a key type with each group on each key. Each key
type defines the shift levels available for the groups on keys of its type and specifies the
modifier combinations necessary to access each level.

1. The coreimplementation restricts the number of symbols per key to 255. With four groups, thisallowsfor up to 63
symbols (or shift levels) per group. Most keys will only have afew shift levels.

November 10, 1997 Library Version 1.0/Document Revision 1.1 117

The X Keyboard Extension 14 Xkb Keyboard Mapping

For example, Xkb alowskey typeswhere the Control modifier can be used to accessthe
shift level two of akey. Key types arein the client map component and are described in
detail in section 15.2.

Xkb provides precise specification of the behavior of akey using key behaviors. Key
behaviors are in the server map component and are described in detail in section 16.2.

14.2 Getting Map Components from the Server

Xkb provides two functions to obtain the keyboard mapping components from the server.
The first function, XkbGetMap, allocates an XkbDescRec structure, retrieves mapping
components from the server, and stores them in the XkbDescRec structureiit just alo-
cated. The second function, XkbGetUpdatedMap, retrieves mapping components from the
server and stores them in an XkbDescRec structure that has previously been allocated.

To alocate an XkbDescRec structure and populate it with the server’ s keyboard client
map and server map, use XkbGetMap. XkbGetMap is similar to XkbGetKeyboard (see sec-
tion 6.2), but is used only for obtaining the address of an XkbDescRec structure that is
populated with keyboard mapping components. It allows finer control over which sub-
structures of the keyboard mapping components are to be populated. XkbGetKeyboard
aways returns fully populated components, while XkbGetMap can be instructed to return
apartialy populated component.

XkbDescPtr XkbGetM ap(display, which, device spec)

Display * display; /* connection to X server */
unsigned int which; /* mask selecting subcomponents to populate */
unsigned int device_spec; /* device_id, or XkbUseCoreKbd */

The which mask is abitwise inclusive OR of the masks defined in Table 14.1. Only those
portions of the keyboard server map and the keyboard client maps that are specified in
which are allocated and popul ated.

In addition to allocating and obtaining the server map and the client map, XkbGetMap also
setsthe device_spec, the min_key code, and max_key code fields of the keyboard descrip-
tion.

XkbGetMap is synchronous; it queries the server for the desired information, waits for a
reply, and then returns. If successful, XkbGetMap returns a pointer to the XkbDescRec
structure it alocated. If unsuccessful, XkbGetMap returns NULL. When unsuccessful, one
of the following protocol errorsis aso generated: BadAlloc (unable to alocate the
XkbDescRec structure), Badvalue (some mask bitsin which are undefined), or BadIm-
plementation (acompatibleversion of the Xkb extension isnot available in the server).
To free the returned data, use XkbFreeClientMap.

Xkb aso provides convenience functions to get partial component definitions from the
server. Thesefunctions are specified in the “ convenience functions” columnin Table 14.1.
Refer to the sections listed in the table for more information on these functions.

Table 14.1 Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section

XkbKeyTypesMask (1<<0) client types XkbGetKeyTypes 152
size types XkbResizeKeyType
num_types XkbCopyKeyType
XkbCopyKeyTypes

November 10, 1997 Library Version 1.0/Document Revision 1.1 118

The X Keyboard Extension 14 Xkb Keyboard Mapping

Table 14.1 Xkb Mapping Component Masks and Convenience Functions

Mask Value Map Fields Convenience Functions Section

XkbKeySymsMask (1<<1) client syms XkbGetKeySyms 15.3

size syms XkbResizeKeySyms
num_syms XkbChangeTypesOfKey

key_sym_map
XkbModi f ierMapMask (1<<2) client modmap XkbGetKeyModifierMap 154
XkbExplicitComponentsMask (1<<3) server explicit XkbGetKeyExplicitComponents 16.3
XkbKeyActionsMask (1<<4) server key acts XkbGetKeyActions 16.1

acts XkbResizeKeyActions

num_acts

size acts
XkbKeyBehaviorsMask (1<<5) server behaviors XkbGetKeyBehaviors 16.2
XkbVirtualModsMask (1<<6) server vmods XkbGetVirtual M ods 16.4
XkbVirtualModMapMask (1<<7) server vmodmap XkbGetVirtuaModMap 164

Xkb defines combinations of these masks for convenience:

#define XkbResizablel nfoM ask (XkbKeyTypesMask)

#define XkbAlIClientlnfoMask (XkbKeyTypesMask | XkbKeySymsMasK |
XkbM odifierMapMask)

#define XkbAllServerlnfoMask (XkbExplicitComponentsMask |

XkbKeyActionsMask| XkbKeyBehaviorsMask |
XkbVirtualModsMask | XkbVirtual M odM apM ask)
#define XkbAlIMapComponentsMask (XkbAlIClientInfoM ask|XkbAll ServerlnfoM ask)

Key types, symbol maps, and actions are all interrelated: changes in one require changes
in the others. The convenience functions make it easier to edit these components and han-
dle the interdependencies.

To update the client or server map information in an existing keyboard description, use
XkbGetUpdatedMap.

Status XkbGetUpdatedM ap(display, which, xkb)

Display * display; /* connection to X server */
unsigned int which; /* mask selecting subcomponents to populate */
XkbDescPtr xkb; /* keyboard description to be updated */

The which parameter is a bitwise inclusive OR of the masksin Table 14.1. If the needed
components of the xkb structure are not already allocated, XkbGetUpdatedMap allocates
them. XkbGetUpdatedMap fetches the requested information for the device specified in
the XkbDescRec passed in the xkb parameter.

XkbGetUpdatedMap is synchronous; it queries the server for the desired information,
waitsfor areply, and then returns. If successful, XkbGetUpdatedMap returns Success. If
unsuccessful, XkbGetUpdatedMap returns one of the following: BadAlloc (unableto
allocate a component in the XkbDescRec structure), Badvalue (some mask bitsin which
are undefined), BadImplementation (acompatible version of the Xkb extension is not
available in the server or the reply from the server wasinvalid).

November 10, 1997 Library Version 1.0/Document Revision 1.1 119

The X Keyboard Extension 14 Xkb Keyboard Mapping

14.3 Changing Map Components in the Server

There are two ways to make changes to map components: either change alocal copy of the
keyboard map and call XkbSetMap to send the modified map to the server, or, to reduce
network traffic, use an XkbMapChangesRec structure and call XkbChangeMap.

Bool XkbSetM ap(dpy, which, xkb)

Display * dpy; /* connection to X server */
unsigned int which; /* mask selecting subcomponents to update */
XkbDescPtr xkb; /* description from which new values are taken */

Use XkbSetMap to send a complete new set of values for entire components (for example,
all symboals, all actions, and so on) to the server. The which parameter specifies the com-
ponents to be sent to the server, and is a bitwise inclusive OR of the masks listed in Table
14.1. The xkb parameter is a pointer to an XkbDescRec structure and contains the infor-
mation to be copied to the server. For each bit set in the which parameter, XkbSetMap
takes the corresponding structure values from the xkb parameter and sendsit to the server
specified by dpy.

If any components specified by which are not present in the xkb parameter, XkbSetMap
returns False. Otherwise, it sends the update request to the server and returns True. Xkb-
SetMap can generate BadAlloc, BadLength, and Badvalue protocol errors.

Key types, symbol maps, and actions are all interrelated; changes in one require changes
in the others. Xkb provides functions to make it easier to edit these components and han-
dle the interdependencies. Table 14.1 lists these hel per functions and provides a pointer to
where they are defined.

14.3.1 The XkbMapChangesRec Structure

Use the XkbMapChangesRec structure to identify and track partial modifications to the
mapping components and to reduce the amount of traffic between the server and clients.

typedef struct _XkbMapChanges {

unsigned short changed; [* identifies valid components in structure */
KeyCode min_key code; /* lowest numbered keycode for device */
KeyCode max_key code; /* highest numbered keycode for device */
unsigned char first_type; /* index of first key type modified */
unsigned char num_types, [* # types modified */

KeyCode first_key sym; [* first key whose key_sym map changed */
unsigned char num_key syms; [* # key_sym map entries changed */
KeyCode first_ key act; [* first key whose key_acts entry changed */
unsigned char num_key acts, [* # key_acts entries changed */

KeyCode first_key behavior; [* first key whose behaviors changed */
unsigned char num_key behaviors, /* # behaviors entries changed */

KeyCode first_key explicit; I* first key whose explicit entry changed */
unsigned char num_key explicit; [* # explicit entries changed */

KeyCode first_ modmap_key; [* first key whose modmap entry changed */
unsigned char num_modmap keys, /* # modmap entries changed */

KeyCode first_ vmodmap_key; /* first key whose vmodmap changed */
unsigned char num_vmodmap_keys; /* #vmodmap entries changed */

unsigned char padl,; [* reserved */

November 10, 1997

Library Version 1.0/Document Revision 1.1 120

The X Keyboard Extension 14 Xkb Keyboard Mapping

unsigned short vmods, /* mask indicating which vmods changed */
} XkbM apChangesRec,* XkbM apChangesPtr;

The changed field identifies the map components that have changed in an XkbDescRec
structure and may contain any of the bitsin Table 14.1, which are also shown in Table
14.2. Every 1 bit in changed also identifies which other fieldsin the XkbMapChangesRec
structure contain valid values, as indicated in Table 14.2. The min_key code and
max_key_code fields are for reference only; they are ignored on any requests sent to the
server and are always updated by the server whenever it returns the datafor an

XkbMapChangesRec.
Table 14.2 XkbMapChangesRec Masks
\alid XkbDescRec Field Containin
Mask XkbMapChangesRec 9
: Changed Data
Fields
XkbKeyTypesMask first_type, map->typelfirst_type] ..
num_types map->typel[first_type + num_types - 1]
XkbKeySymsMask first key sym, map->key sym map[first key sym] ..
num_key syms map->key _sym_map[first_key sym +
num_key syms- 1]
XkbModifierMapMask first_modmap_key, map->modmap[first modmap_key] ..
num_modmap keys map->modmap[first modmap key +
num_modmap_keys-1]
XkbExplicitComponentsMask first_key explicit, server->explicit[first_key explicit] ..
num_key explicit server->explicit[first_key explicit +
num_key explicit - 1]
XkbKeyActionsMask first key act, server->key actd[first key act] ..
num_key acts server->key actg[first_key act +
num_key acts- 1]
XkbKeyBehaviorsMask first key behavior, server->behaviordfirst_key behavior] ..
num_key behaviors server->behaviorg[first_key behavior +
num_key behaviors - 1]
XkbVirtualModsMask vmods server->vmods|*]
XkbVirtualModMapMask first_vmodmap_key, server->vmodmap[first_vmodmap_key]

num_vmodmap_keys ..
server->vmodmap[first vmodmap_key
+ num_vmodmap_keys - 1]

To update only partial components of a keyboard description, modify the appropriate
fieldsin the server and map components of alocal copy of the keyboard description, then
call XkbChangeMap with an XkbMapChangesRec structure indicating which compo-

nents have changed.
Bool XkbChangeM ap(dpy, xkb, changes)
Display * dpy; /* connection to X server */
XkbDescPtr xkb; /* description from which new values are taken */

XkbMapChangesPtr ~ changes; /*identifies component partsto update */

XkbChangeMayp copies any components specified by the changes structure from the key-
board description, xkb, to the X server specified by dpy.

November 10, 1997 Library Version 1.0/Document Revision 1.1 121

The X Keyboard Extension

14 Xkb Keyboard Mapping

14.4

If any components specified by changes are not present in the xkb parameter,
XkbChangeMap returns False. Otherwise, it sends arequest to the server and returns
True.

XkbChangeMap can generate BadAlloc, BadLength, and Badvalue protocol errors.

Tracking Changes to Map Components

The Xkb extension reports XxkbMapNot 1 fy events to clients wanting notification when-
ever amap component of the Xkb description for a device changes. There are many differ-
ent types of Xkb keyboard map changes. Xkb uses an event detail mask to identify each
type of change. The event detail masks are identical to the maskslisted in Table 14.1.

To receive XkbMapNot i fy events under all possible conditions, use XkbSel ectEvents (see
section 4.3) and pass XkbMapNot ifyMask in both bits to_change and values for_bits.

To receive XkbMapNot i fy events only under certain conditions, use XkbSelectEventDe-
tails using XxkbMapNotify as the event_type and specifying the desired map changesin
bits to_change and values for_bits using mask bits from Table 14.1.

The structure for XkbMapNot ify eventsis:

typedef struct {
int type; I* Xkb extension base event code */
unsigned long seridl; I* X server serial number for event */
Bool send_event; [* True => synthetically generated */
Display * display; * server connection where event generated */
Time time; * server time when event generated */
int xkb_type; [* XkbMapNotify */
int device; * Xkb device ID, will not be XkbUseCoreKbd */
unsignedint changed; * identifiesvalid fieldsin rest of event */
unsignedint resized; I* reserved */
int first_type; * index of first key type modified */
int num_types * # types modified */
KeyCode min_key code; /* minimum keycode for device */
KeyCode max_key code; /* maximum keycode for device */
KeyCode first_key sym; [* first key whose key_sym map changed */
KeyCode first_key act; I* first key whose key_acts entry changed */
KeyCode first key behavior; /* first key whose behaviors changed */
KeyCode first key explicit; /* first key whose explicit entry changed */
KeyCode first. modmap key; /* first key whose modmap entry changed */
KeyCode first_vmodmap_key; /* #modmap entries changed */
int num_key syms; [* #key_sym map entries changed */
int num_key_acts, * # key_acts entries changed */
int num_key behaviors, /* # behaviors entries changed */
int num_key explicit; /* # explicit entries changed */
int num_modmap_keys; /* # modmap entries changed */
int num_vmodmap_keys; /* # vmodmap entries changed */
unsignedint vmods; /* mask indicating which vmods changed */

} XkbM apNotifyEvent;

The changed field specifies the map components that have changed and is the bitwise
inclusive OR of the mask bits defined in Table 14.1. The other fieldsin this event are

November 10, 1997

Library Version 1.0/Document Revision 1.1 122

The X Keyboard Extension 14 Xkb Keyboard Mapping

interpreted as the like-named fields in an XkbMapChangesRec (see section 14.3.1). The
XkbMapNot ifyEvent structure also has an additional resized field that is reserved for
future use.

14.5 Allocating and Freeing Client and Server Maps

Calling XkbGetMap (see section 14.2) should be sufficient for most applications to get cli-
ent and server maps. As aresult, most applications do not need to directly allocate client
and server maps.

If you change the number of key types or construct map components without loading the
necessary components from the X server, do not allocate any map components directly
using malloc or Xmalloc. Instead, use the Xkb allocators, XkbAllocClientMap, and XkbAl-
locServerMap.

Similarly, use the Xkb destructors, XkbFreeClientMap, and XkbFreeServerMap instead of
free or Xfree.

14.5.1 Allocating an Empty Client Map
To allocate and initialize an empty client map description record, use XkbAllocClientMap.
Status XkbAllocClientM ap(xkb, which, type_count)

XkbDescPtr xkb; * keyboard description in which to allocate client map */
unsigned int which; /* mask selecting map components to allocate */
unsigned int type_count; /* value of num_ typesfield in map to be allocated */

XkbAllocClientMap allocates and initializes an empty client map in the map field of the
keyboard description specified by xkb. The which parameter specifies the particular com-
ponents of the client map structure to allocate and is a mask composed by a bitwise inclu-
sive OR of one or more of the masks shown in Table 14.3.

Table 14.3 XkbAllocClientMap Masks

Mask Effect

XkbK ey TypesMask The type_count field specifies the number of entriesto pre-
allocate for the types field of the client map. If the
type_count field is less than XkbNumRequiredTypes (see
section 15.2.1), returns Badvalue.

XkbKeySymsMask Themin_key code and max_key code fields of the xkb
arameter are used to allocate the syms and key sym map
ields of the client map. Thefields are allocated to contain

the maximum number of entries necessary for
max_key code- min_key code + 1 keys.

XkbM odifierMapMask Themin_key code and max_key code fields of the xkb
parameter are used to allocate the modmap field of the cli-
ent map. Thefield isalocated to contain the maximum
number of entries necessary for max_key code -
min_key code + 1 keys.

Note Themin_key codeand max_key code fields of the xkb parameter must be legal values
if the XkbKeySymsMask or XkbModifierMapMask masks are set in the which
parameter. If they are not valid, XkbAllocClientMap returns Badvalue.

If the client map of the keyboard description is not NULL, and any fields are already allo-
cated in the client map, XkbAllocClientMap does not overwrite the existing values; it sim-

November 10, 1997 Library Version 1.0/Document Revision 1.1 123

The X Keyboard Extension 14 Xkb Keyboard Mapping

ply ignores that part of the request. The only exception isthe types array. If type count is
greater than the current num_typesfield of the client map, XkbAllocClientMap resizes the
types array and resets the num_types field accordingly.

If XkbAllocClientMap is successful, it returns Success. Otherwise, it can return either
BadMatch, BadAlloc, or BadValue &Tors.

14.5.2 Freeing a Client Map

To free memory used by the client map member of an XkbDescRec structure, use
XkbFreeClientMap.

void XkbFreeClientM ap(xkb, which, free_all)

XkbDescPtr xkb; [* keyboard description containing client map to free */
unsigned int which; /* mask identifying components of map to free */
Bool free_all; [* True => free al client components and map itself */

XkbFreeClientMap frees the components of client map specified by which in the XkbDes-
cRec structure specified by the xkb parameter and sets the corresponding structure com-
ponent values to NULL. The which parameter specifies a combination of the client map
masks shown in Table 14.3.

If free_all is True, which isignored; XkbFreeClientMap frees every non-NULL structure
component in the client map, frees the XkbC1ientMapRec structure referenced by the
map member of the xkb parameter, and sets the map member to NULL.

14.5.3 Allocating an Empty Server Map
To allocate and initialize an empty server map description record, use XkbAllocServer -

Map.

Status XkbAllocServer M ap(xkb, which, count_acts)
XkbDescPtr xkb; * keyboard description in which to allocate server map */
unsigned int which; /* mask selecting map components to allocate */
unsigned int count_acts, /* value of num_actsfield in map to be alocated */

XkbAllocServerMap allocates and initializes an empty server map in the server field of the
keyboard description specified by xkb. The which parameter specifies the particular com-
ponents of the server map structure to allocate, as specified in Table 14.4.

Table 14.4 XkbAllocServerMap Masks

Mask Effect

XkbExplicitComponentsMask Themin_key codeand max_key code fields of the xkb parameter
are used to alocate the explicit field of the server map.

XkbKeyActionsMask Themin_key _code and max_key_code fields of the xkb parameter
are used to allocate the key_actsfield of the server map. The
count_acts parameter is used to allocate the acts field of the
server map.

XkbKeyBehaviorsMask Themin_key codeand max_key_code fields of the xkb parameter
are used to alocate the behaviors field of the server map.

XkbVirtualModMapMask Themin_key _code and max_key_code fields of the xkb parameter
are used to allocate the vmodmap field of the server map.

Note Themin_key code and max_key code fields of the xkb parameter must be legal val-
ues. If they are not valid, XkbAllocServerMap returns Badvalue.

November 10, 1997 Library Version 1.0/Document Revision 1.1 124

The X Keyboard Extension 14 Xkb Keyboard Mapping

If the server map of the keyboard description is not NULL and any fields are already allo-
cated in the server map, XkbAllocServerMap does not overwrite the existing values. The
only exception iswith the acts array. If the count_acts parameter is greater than the cur-
rent num_acts field of the server map, XkbAllocServer Map resizes the acts array and
resets the num_acts field accordingly.

If XkbAllocServerMap is successful, it returns Success. Otherwise, it can return either
BadMatch or BadAlloc errors.

14.5.4 Freeing a Server Map
To free memory used by the server member of an XkbDescRec structure, use

XkbFreeServer Map.

void XkbFreeServer M ap(xkb, which, free_all)
XkbDescPtr xkb; /* keyboard description containing server map to free */
unsigned int which; [* mask identifying components of map to free */
Bool free all; [* True => free all server map components and server itself */

The XkbFreeServer Map function frees the specified components of server map in the
XkbDescRec structure specified by the xkb parameter and sets the corresponding struc-
ture component values to NULL. The which parameter specifies a combination of the
server map masks and is abitwise inclusive OR of the masks listed in Table 14.4. If
free_all is True, which isignored and XkbFreeServer Map frees every non-NULL structure
component in the server map, frees the XkbServerMapRec structure referenced by the
server member of the xkb parameter, and sets the server member to NULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 125

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15 Xkb Client Keyboard Mapping

The Xkb client map for a keyboard is the collection of information a client needs to inter-
pret key eventsfrom the keyboard. It containsaglobal list of key typesand an array of key
symbol maps, each of which describes the symbols bound to akey and the rulesto be used
to interpret those symbols.

Figure 15.1 shows the relationships between elements in the client map:

size types
num_types -
I
types — mods
I
num_syms : map_count
[m XkbKTMapEntryRec(s)
syms N (array)
key_sym._map ! preserve
I
modmap - | name ."
I level_names | -
XkbClientM apRec |
| XkbKeyTypeRec(s) Atom(s)
| (array) (array)
e,
| I
| Rt P .
— > J_u
I
KeyCode -- T - | | KeySym(s)
! > ktindex(o] | Ho-_'] (array)
I
i kt_index[1] |
|
| kt_index[2] |
I
i Kt index[3] |
| group_info |
l width E
|
! offset N !
|
: XkbSymMapRec(s)
| (array)
|
:
S P - L
—
unsigned char
(array)

Figure 15.1 Xkb Client Map

November 10, 1997 Library Version 1.0/Document Revision 1.1 126

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.1

15.2

The XkbClientMapRec Structure

The map field of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb client map, which is of type XkbClientMapRec:

typedef struct { [* Client Map */
unsigned char size types, [* # occupied entriesin types */
unsigned char num_types, [* #entriesin types*/
XkbKeyTypePtr types; * vector of key types used by this keymap */
unsigned short size syms; [* length of the syms array */
unsigned short num_syms, [* #entriesin syms*/
KeySym * syms; /* linear 2d tables of keysyms, 1 per key */
XkbSymMapPtr key sym map; /* 1 per keycode, maps keycode to syms */
unsigned char * modmap; /* 1 per keycode, real mods bound to key */

} XkbClientM apRec, * XkbClientM apPtr;

The following sections describe each of the elements of the XkbC1ientMapRec structure
in more detail.

Key Types

Key types are used to determine the shift level of akey given the current state of the key-
board. The set of all possible key types for the Xkb keyboard description are held in the
typesfield of the client map, whose total sizeis stored in size_types, and whose total num-
ber of valid entriesis stored in num_types. Key types are defined using the following
structures:

typedef struct { I* Key Type*/
XkbM odsRec mods, I* modifiers used to compute shift level */
unsigned char num_levels, /* total # shift levels, do not modify directly */
unsigned char map_count; [* # entriesin map, preserve (if non-NULL) */
XkbKTMapEntryPtr map; * vector of modifiers for each shift level */
XkbM odsPtr preserve; /* mods to preserve for corresponding map entry */
Atom name, I* name of key type*/
Atom * level_names; /* array of names of each shift level */

} XkbKeyTypeRec, * XkbKeyTypePtr;

typedef struct { /* Modifiersfor akey type*/
Bool active; [* True => entry active when determining shift level */
unsigned char level; [* shift level if modifiers match mods */
XkbModsRec mods; /* mods needed for thislevel to be selected */

} XkbKTMapEntryRec,* XkbK TMapEntryPtr;

The modsfield of akey typeisan XkbModsRec (see section 7.2) specifying the modifiers
the key type uses when calculating the shift level, and can be composed of both the core
modifiers and virtual modifiers. To set the modifiers associated with a key type, modify
thereal_mods and vmods fields of the mods XkbModsRec accordingly. The mask field of
the XkbModsRec isreserved for use by Xkb and is calculated from the real _mods and
vmods fields.

The num_levels field holds the total number of shift levelsfor the key type. Xkb uses
num_levels to ensure the array of symbols bound to akey is large enough. Do not modify
num_levels directly to change the number if shift levelsfor akey type. Instead, use XkbRe-
sizeKeyType (see section 15.2.3).

November 10, 1997 Library Version 1.0/Document Revision 1.1 127

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

The map field isavector of XkbKTMapEntryRec structures, with map_count entries, that
specify the modifier combinations for each possible shift level. Each map entry contains
an active field, amods field, and alevel field. The active field determines whether the
modifier combination listed in the mods field should be considered when determining shift
level. If activeis False, thismap entry isignored. If active is True, the level field of the
map entry specifies the shift level to use when the current modifier combination matches
the combination specified in the mods field of the map entry.

Any combination of modifiers not explicitly listed somewhere in the map yields shift level
one. In addition, map entries specifying unbound virtual modifiers are not considered.

Any modifiers specified in mods are normally consumed by XkbTranslateKeyCode (see
section 12.1.3). For those rare occasions a modifier should be considered despite having
been used to look up a symbol, key typesinclude an optional preservefield. If apreserve
member of akey typeisnot NULL, it represents alist of modifiers where each entry corre-
sponds directly to one of the key type' s map. Each entry lists the modifiers that should not
be consumed if the matching map entry is used to determine shift level.

Each shift level has a name and these names are held in the level _names array, whose
length isnum_levels. The typeitself also has a name, which is held in the name field.

For example, consider how the server handles the following possible symbolic description
of apossible key type (note that the format used to specify keyboard mappingsin the
server database is not specified by the Xkb extension, although this format is one possible

example):
Table 15.1 Example Key Type

Symbolic Description Key Type Data Structure

type “ALPHATHREE” { Xkb->map->typeqg[i].name
modifiers = Shift+Lock+Level Three; Xkb->map->typeg[i].mods
map[None]= Level 1; Xkb->map->typeq[i].map[0]
map[Lock]= Levell; Xkb->map->typeqg[i].map[1]
map[Shift]= Level2; Xkb->map->typeq[i].map[2]
map[Level Three]= Level3; Xkb->map->types[i].map[3]
map[Shift+Level Three]= Level 3; Xkb->map->typeq[i].map[4]
preserve[None]= None; Xkb->map->typed[i].perserve[0]
preserve]Lock]= Lock; Xkb->map->typeq[i].preserve[1]
preserve| Shift]= None; Xkb->map->typed[i].preserve 2]
preserve]Level Three]= None; Xkb->map->typeq[i].preserve[3]
preserve] Shift+Level 3]= None; Xkb->map->typed[i].preserve[4]
level_name[Levell]=“Base’; Xkb->map->typeq[i].level_nameg[0]
level _name[Level2]="Caps’; Xkb->map->typeq[i].level_nameg[1]
level name[Level3]="“Level3"; Xkb->map->typeq[i].level_nameq[2]

b

The name of the example key typeis“ALPHATHREE,” and the modifiersit pays atten-
tionto are shift, Lock, and the virtual modifier LevelThree. There are three shift lev-
els. The name of shift level oneis“Base,” the name of shift level two is*Caps,” and the
name of shift level threeis“Level3.”

November 10, 1997 Library Version 1.0/Document Revision 1.1 128

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Given the combination of the map and preserve specifications, there are five map entries.
The first map entry specifiesthat shift level oneisto be used if no modifiers are set. The
second entry specifies the Lock modifier alone also yields shift level one. The third entry
specifiesthe shift modifier aone yields shift level two. The fourth and fifth entries
specify that the virtual LevelThree modifier aone, or in combination with the Shift
modifier, yields shift level three.

Note Shift level three can bereached only if the virtual modifier LevelThree isbound to
areal modifier (see section 16.4). If LevelThree isnot bound to areal modifier, the
map entries associated with it are ignored.

Because the Lock modifier isto be preserved for further event processing, the preserve
list is not NULL and parallels the map list. All preserve entries, except for the one corre-
sponding to the map entry that specifies the Lock modifier, do not list any modifiers. For
the map entry that specifies the Lock modifier, the corresponding preserve list entry lists
the Lock modifier, meaning do not consume the Lock modifier. In this particular case, the
preserved modifier is passed to Xlib trand ation functions and causes them to notice that
the Lock modifier is set; consequently, the Xlib functions apply the appropriate capitali-
zation rulesto the symbol. Because this preserve entry is set only for amodifier that yields
shift level one, the capitalization occurs only for level-one symbols.

15.2.1 The Canonical Key Types

Xkb alows up to XkbMaxKeyTypes (255) key types to be defined, but requires at least
XkbNumRequiredTypes (4) predefined typesto be in akey map. These predefined key
types arereferred to as the canonical key types and describe the types of keys available on
most keyboards. The definitions for the canonical key types are held in the first XkbNum-
RequiredTypes entries of the types field of the client map and are indexed using the fol-
lowing constants:

XkbOneLevel Index
XkbTwoLevel Index
XkbAlphabeticIndex
XkbKeypadIndex

ONE_LEVEL

The ONE_LEVEL key type describes groups that have only one symbol. The default
ONE_LEVEL key type has no map entries and does not pay attention to any modifiers. A
symbolic representation of this key type could look like the following:

type “ONE_LEVEL” {
modifiers = None;
map[None]= Levell;
level_name[Levell]=“Any”;
b
The description of the ONE_LEVEL key typeis stored in the typegXkbOneLevelIn-
dex] entry of the client key map.

TWO_LEVEL

The TWO_LEVEL key type describes groups that consist of two symbols but are neither
alphabetic nor numeric keypad keys. The default TWO_LEVEL typeusesonly the shift

November 10, 1997 Library Version 1.0/Document Revision 1.1 129

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

modifier. It returns shift level two if Shift isset, and level oneif itisnot. A symbolic
representation of this key type could look like the following:

type“TWO_LEVEL” {
modifiers = Shift;
map[Shift]= Level2;
level_name[Level1]= “Base’;
level_name[Level2]=“ Shift”;
b
The description of the TWO_LEVEL key typeis stored in the typesXkbTwoLevel In-
dex] entry of the client key map.

ALPHABETIC

The ALPHABETIC key type describes groups consisting of two symbols: the lowercase
form of a symbol followed by the uppercase form of the same symbol. The default
ALPHABETIC type implements local e-sensitive “ Shift cancels CapsLock” behavior
using both the shift and Lock modifiers as follows:

» If Shift and Lock are both set, the default ALPHABETIC type yields level one.

e If Shift aloneisset, ityieldslevel two.

* If Lock aoneisset, it yields level one, but preserves the Lock modifier so Xlib
notices and applies the appropriate capitalization rules. The Xlib functions are
locale-sensitive and apply different capitalization rules for different locales.

o If neither Shift nor Lock isset, it yields level one.

A symbolic representation of this key type could look like the following:

type “ALPHABETIC” {
modifiers = Shift+Lock;
map[Shift]= Level2;
preserve[Lock]= Lock;
level_name[Levell]=“Base’;
level_name[Level2]="“Caps’;
b
The description of the ALPHABETIC key typeis stored in the types XkbAlphabe -
ticIndex] entry of the client key map.

KEYPAD

The KEYPAD key type describes groups that consist of two symbols, at least one of
which isanumeric keypad symbol. The numeric keypad symbol is assumed to reside at
level two. The default KEY PAD key type implements “ Shift cancels NumLock” behavior
using the Shift modifier and the real modifier bound to the virtual modifier named “Num-
Lock,” known as the NumLock modifier, as follows:

If Shift and NumLock are both set, the default KEY PAD type yieldslevel one.
If Shift aoneisset, it yieldslevel two.

If NumLock aoneis st it yields level two.

If neither Shift nor NumLock is set, it yields level one.

November 10, 1997 Library Version 1.0/Document Revision 1.1 130

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

A symbolic representation of this key type could look like the following:

type “KEYPAD” {
modifiers = Shift+NumLock;
map[None]= Levell;
map[Shift]= Level2;
map[NumL ock]= Level2;
map[Shift+NumLock]= Level1,;
level_name[Level1]= “Base’;
level_name[Level2]="Caps’;
}
The description of the KEY PAD key typeis stored in the types XkbKeypadIndex] entry
of the client key map.

Initializing the Canonical Key Types in a New Client Map

To set the definitions of the canonical key typesin aclient map to their default values, use
XkblInitCanonicalKeyTypes.

Status Xkbl nitCanonicalK ey Types(xkb, which, keypadvVMod)

XkbDescPtr xkb; [* keyboard description containing client map to initialize */
unsignedint which; /* mask of typesto initialize */
int keypadVMod; /* index of NumLock virtual modifier */

Xkbl nitCanonical KeyTypes initializes the first XkbNumRequiredTypes key types of the
keyboard specified by the xkb parameter to their default values. The which parameter
specifieswhat canonical key typestoinitialize and is a bitwise inclusive OR of the follow-
ing masks. XkbOneLevelMask, XkbTwoLevelMask, XkbAlphabeticMask, and
XkbKeypadMask. Only those canonical types specified by the which mask are initialized.

If XkbKeypadMask is set in the which parameter, Xkbl nitCanonical KeyTypes|ooks up the
NumLock named virtual modifier to determine which virtual modifier to use when initial-
izing the KEY PAD key type. If the NumLock virtual modifier does not exist, XkblnitCa-
nonical KeyTypes creates it.

XKkbl nitCanonical KeyTypes normally returns Success. It returns BadAccess if the Xkb
extension has not been properly initialized, and Badaccess if the xkb parameter is not
valid.

15.2.2 Getting Key Types from the Server
To obtain the list of available key typesin the server’ s keyboard mapping, use XkbGet-

KeyTypes.
Status XkbGetK ey Types(dpy;, first, num, xkb)
Display * dpy; [* connection to X server */
unsigned int first; /* index to first type to get, 0 => 1st type */
unsigned int nuny; /* number of key typesto be returned */
XkbDescPtr xkb; /* keyboard description containing client map to update */

Note XkbGetKeyTypesis used to obtain descriptions of the key types themselves, not the
key types bound to individual keys. To obtain the key types bound to an individual
key, refer to the key_sym map field of the client map (see section 15.3.1).

November 10, 1997 Library Version 1.0/Document Revision 1.1 131

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

XkbGetKeyTypes queries the server for the desired types, waits for areply, and returns the
desired types in the xkb->map->types. If successful, it returns Success.

XkbGetKeyTypes returns BadAccess if the Xkb extension has not been properly initial-
ized and Badvalue if the combination of first and num results in numbers out of valid
range.

15.2.3 Changing the Number of Levels in a Key Type
To change the number of levelsin akey type, use XkbResi zeKeyType.
Status XkbResizeK ey Type(xkb, type _ndx, map_count, want_preserve, new_num_Ivls)

XkbDescPtr xkb; * keyboard description containing client map to update */
int type_ndx; /* index in xkb->map->types of type to change */

int map_count; [* total # of map entries needed for the type */

Bool want_preserve; [* True => list of preserved modifiersis necessary */

int new_num_|vis; /* new max # of levelsfor type */

XkbResi zeKeyType changes the type specified by xkb->map->typestype ndx], and reallo-
cates the symbols and actions bound to all keys that use the type, if necessary. XkbRe-
sizeKeyType updates only thelocal copy of the typesin xkb; to update the server’s copy for
the physical device, use XkbSetMap or XkbChangeMap after calling XkbResi zeKeyType.

The map_count parameter specifies the total number of map entries needed for the type,
and can be zero or greater. If map_count is zero, XkbResi zeKeyType frees the existing map
and preserve entries for the type if they exist and sets them to NULL.

The want_preserve parameter specifies whether a preserve list for the key should be cre-
ated. If want_preserveis True, the preserve list with map_count entriesis allocated or
reallocated if it already exists. Otherwise, if want_preserveis False, the preservefieldis
freed if necessary and set to NULL.

The new_num_Ivls parameter specifies the new maximum number of shift levelsfor the
type and is used to calculate and resize the symbols and actions bound to all keysthat use
the type.

If type_ndx does not specify alegal type, new_num_Ivisislessthan 1, or themap_count is
less than zero, XkbResizeKeyType returns Badvalue. If XkbResizeKeyType encounters
any problems with allocation, it returns Badalloc. Otherwise, it returns Success.

15.2.4 Copying Key Types
Use XkbCopyKeyType and XkbCopyKeyTypes to copy one or more XkbKeyTypeRec

structures.

Status XkbCopyK eyType(from, into)
XkbKeyTypePtr from; [* pointer to XkbKeyTypeRec to be copied */
XkbKeyTypePtr into; /* pointer to XkbKeyTypeRec to be changed */

XkbCopyKeyType copies the key type specified by from to the key type specified by into.
Both must point to legal XkbKeyTypeRec structures. Xkb assumes from and into point to
different places. As aresult, overlaps can be fatal. XkbCopyKeyType frees any existing
map, preserve, and level _namesin into prior to copying. If any allocation errors occur
while copying fromto into, XkbCopyKeyType returns BadAl loc. Otherwise, XkbCopy-
KeyType copies fromto into and returns Success.

November 10, 1997 Library Version 1.0/Document Revision 1.1 132

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.3

Status XkbCopyK eyTypes(from, into, num_types)

XkbKeyTypePtr from; [* pointer to array of XkbKeyTypeRecs to copy */
XkbKeyTypePtr into; [* pointer to array of XkbKeyTypeRecs to change */
int num_types, /* number of typesto copy */

XkbCopyKeyTypes copies num_types XkbKeyTypeRec structuresfrom the array specified
by frominto the array specified by into. It isintended for copying between, rather than
within, keyboard descriptions, so it doesn’t check for overlaps. The same rules that apply
to the from and into parameters in XkbCopyKeyType apply to each entry of the from and
into arrays of XkbCopyKeyTypes. If any allocation errors occur while copying fromto into,
XkbCopyKeyTypes returns Badal loc. Otherwise, XkbCopyKeyTypes copies fromto into
and returns Success.

Key Symbol Map

Theentirelist of key symbolsfor the keyboard mapping is held in the symsfield of the cli-
ent map. Whereas the core keyboard mapping is a two-dimensional array of KeySyms
whose rows are indexed by keycode, the symsfield of Xkbisalinear list of KeySyms that
needs to be indexed uniquely for each key. This section describes the key symbol map and
the methods for determining the symbols bound to a key.

Thereason the symsfield isalinear list of KeySyms isto reduce the memory consumption
associated with a keymap; because Xkb alows individual keysto have multiple shift lev-
elsand a different number of groups per key, asingle two-dimensional array of KeySyms
would potentially be very large and sparse. Instead, Xkb provides a small two-dimen-
sional array of KeySyms for each key. To store al of these individual arrays, Xkb concat-
enates each array together in the symsfield of the client map.

In order to determine which KeySyms in the symsfield are associated with each keycode,
the client map contains an array of key symbol mappings, held in the key_sym map field.
Thekey _sym map field isan array of XkbSymMapRec structuresindexed by keycode. The
key sym map array has min_key code unused entries at the start to allow direct indexing
using a keycode. All keycodes falling between the minimum and maximum legal key-
codes, inclusive, have key _sym map arrays, whether or not any key actually yields that
code. The KeySymMapRec structure is defined as follows:

#define XkbNumKbdGroups 4

#define XkbMaxK bdGroup (XkbNumK bdGroups-1)

typedef struct { /* map to keysyms for a single keycode */
unsigned char kt_index| XkbNumKbdGroups]; /* key type index for each group */
unsigned char group_info; [* # of groups and out of range group handling */
unsigned char width; /* max # of shift levelsfor key */
unsigned short offset; [* index to keysym table in syms array */

} XkbSymM apRec, * XkbSymMapPtr;
These fields are described in detail in the following sections.

15.3.1 Per-Key Key Type Indices

The kt_index array of the XkbSymMapRec structure contains the indices of the key types
(see section 15.2) for each possible group of symbols associated with the key. To obtain
the index of akey type or the pointer to akey type, Xkb provides the following macros, to
access the key types.

November 10, 1997 Library Version 1.0/Document Revision 1.1 133

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

Note Thearray of key typesis of fixed width and is large enough to hold key types for the
maximum legal number of groups (XklbNumKbdGroups, currently four); if akey has
fewer than XkbNumKbdGroups groups, the extrakey types are reported but ignored.

int XkbK eyTypel ndex(xkb, keycode, group) /* macro*/
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int group; [* group index */

XkbKeyTypel ndex computes an index into the types vector of the client map in xkb from
the given keycode and group index.

XkbKeyTypePtr XkbK eyType(xkb, keycode, group) /* macro */

XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int group; [* group index */

XkbKeyType returns a pointer to the key type in the types vector of the client map in xkb
corresponding to the given keycode and group index.

15.3.2 Per-Key Group Information

The group_info field of an XkbSymMapRec is an encoded val ue containing the number of
groups of symbols bound to the key as well as the specification of the treatment of
out-of-range groups. It islegal for akey to have zero groups, in which case it also has zero
symbols and all events from that key yield NoSymbol. To obtain the number of groups of
symbols bound to the key, use XkbKeyNumGroups. To change the number of groups
bound to a key, use XkbChangeTypesOfKey (see section 15.3.6). To obtain a mask that
determines the treatment of out-of-range groups, use XkbKeyGrouplnfo and XkbOutOf-
RangeGroupl nfo.

The keyboard controls (see Chapter 10) contain a groups_wrap field specifying the han-
dling of illegal groups on aglobal basis. That is, when the user performs an action causing
the effective group to go out of the legal range, the groups wrap field specifies how to
normalize the effective keyboard group to a group that is legal for the keyboard as a
whole, but thereis no guarantee that the normalized group will be within the range of legal
groups for any individual key. The per-key group _info field specifies how akey treats a
legal effective group if the key does not have atype specified for the group of concern.
For example, the Enter key usually has just one group defined. If the user performs an
action causing the global keyboard group to change to Group2, the group_info field for
the Enter key describes how to handle this situation.

Out-of-range groups for individual keys are mapped to alegal group using the same
options as are used for the overall keyboard group. The particular type of mapping used is
controlled by the bits set in the group_info flag, as shown in Table 15.2. See section 10.7.1
for more details on the normalization methods in this table.

Table 15.2 group_info Range Nor malization

Bits set in group_info Normalization method
XkbRedirectlntoRange XkbRedirectlntoRange
XkbClamplntoRange XkbClamplntoRange
none of the above XkbWraplntoRange

November 10, 1997 Library Version 1.0/Document Revision 1.1 134

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

XKkb provides the following macros to access group information:

int XkbKeyNumGroups(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
XkbKeyNumGroups returns the number of groups of symbols bound to the key corre-
sponding to keycode.
unsigned char XkbK eyGroupl nfo(xkb, keycode) /*macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyGroupl nfo returns the group_info field from the XkbSymMapRec structure associ-
ated with the key corresponding to keycode.

unsigned char XkbOutOfRangeGroupl nfo(grp_inf)/* macro */
unsigned char grp_inf; [* group_info field of XkbSymMapRec */

XkbOutOfRangeGrouplnfo returns only the out-of-range processing information from the
group_info field of an XkbSymMapRec structure.

unsigned char XkbOutOfRangeGroupNumber (grp_inf)/* macro */
unsigned char grp_inf; /* group_info field of XkbSymMapRec */

XkbOutOfRangeGroupNumber returns the out-of-range group number, represented as a
group index, from the group_info field of an XkbSymMapRec structure.

15.3.3 Key Width

The maximum number of shift levelsfor atypeisaso referred to as the width of akey
type. The width field of the key_sym map entry for akey contains the width of the widest
type associated with the key. The width field cannot be explicitly changed; it is updated
automatically whenever the symbols or set of types bound to akey are changed.

15.3.4 Offset in to the Symbol Map

The key width and number of groups associated with akey are used to form a small
two-dimensional array of KeySyms for akey. Thisarray may be different sizesfor differ-
ent keys. Thearray for asingle key isstored asalinear list, in row-major order. The arrays
for al of the keys are stored in the syms field of the client map. Thereis one row for each
group associated with akey and one column for each level. The index corresponding to a
given group and shift level is computed as:

idx = group_index * key width + shift_level

The offset field of the key_sym map entry for akey is used to access the beginning of the
array.

Xkb provides the following macros for accessing the width and offset for individual keys,
as well as macros for accessing the two-dimensional array of symbols bound to the key:

int XkbKeyGroupswWidth(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

November 10, 1997 Library Version 1.0/Document Revision 1.1 135

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

XkbKeyGroupswWidth computes the maximum width associated with the key correspond-

ing to keycode.

int XkbKeyGroupWidth(xkb, keycode, grp) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int arp; [* group of interest */

XkbKeyGroupWdth computes the width of the type associated with the group grp for the
key corresponding to keycode.

int XkbK eySymsOffset(xkb, keycode) /* macro */

XkbDescPtr xkb; /* Xkb description of interest */

KeyCode keycode; /* keycode of interest */
XkbKeySymsOffset returns the offset of the two-dimensional array of keysyms for the key
corresponding to keycode.
int XkbKeyNumSyms(xkb, keycode) /* macro */

XkbDescPtr xKb; * Xkb description of interest */

KeyCode keycode; I* keycode of interest */
XkbKeyNumSyms returns the total number of keysyms for the key corresponding to key-
code.

KeySym * XkbKeySymsPtr (xkb, keycode) /* macro */

XkbDescPtr xKb; I* Xkb description of interest */

KeyCode keycode; I* keycode of interest */

XkbKeySymsPtr returns the pointer to the two-dimensional array of keysymsfor the key
corresponding to keycode.
KeySym XkbKeySymEntry(xkb, keycode, shift, grp)/* macro */

XkbDescPtr xkb; /* Xkb description of interest */

KeyCode keycode; [* keycode of interest */

int shift; * shift level of interest */

int arp; [* group of interest */

XkbKeySymEntry returnsthe keysym corresponding to shift level shift and group grp from
the two-dimensional array of keysyms for the key corresponding to keycode

15.3.5 Getting the Symbol Map for Keys from the Server
To obtain the symbols for a subset of the keysin a keyboard description, use XkbGetKey-

Syms:
Status XkbGetK eySyms(dpy; first, num, xkb)
Display * dpy; [* connectionto X server */
unsigned int first; [* keycode of first key to get */
unsigned int nuny; /* number of keycodes for which syms desired */
XkbDescPtr xkb; /* Xkb description to be updated */

XkbGetKeySyms sends a request to the server to obtain the set of keysyms bound to num
keys starting with the key whose keycode isfirst. It waits for areply and returns the key-
symsin the map.symsfield of xkb. If successful, XkbGetKeySyms returns Success. The
xkb parameter must be a pointer to avalid Xkb keyboard description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 136

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

If the client map in the xkb parameter has not been allocated, XkbGetKeySyms allocates
and initializes it before obtaining the symbols.

If acompatible version of Xkb isnot available in the server or the Xkb extension has not
been properly initialized, XkbGetKeySyms returns Badaccess. If numislessthan 1 or
greater than XkbMaxKeyCount, XkbGetKeySyms returns Badvalue. If any allocation
errors occur, XkbGetKeySyms returns Badalloc.

15.3.6 Changing the Number of Groups and Types Bound to a Key

To change the number of groups and the types bound to a key, use XkbChangeType-
SOfKey.

Status XkbChangeTypesOfK ey(xkb, key, n_groups, groups, new_types_in, p_changes)

XkbDescPtr xkb; /* keyboard description to be changed */

int key; [* keycode for key of interest */

int n_groups, /* new number of groups for key */

unsigned int groups, /* mask indicating groups to change */

int * new_types in; /* indicesfor new groups specified in groups */

XkbMapChangesPtr p_changes, /* notes changes made to xkb */

XkbChangeTypesOfKey reall ocates the symbol s and actions bound to the key, if necessary,
and initializes any new symbols or actions to NoSymbol or NoAction, as appropriate. If
the p_changes parameter is not NULL, XkbChangeTypesOfKey adds the XkbKeySyms -
Mask to the changes field of p_changes and modifiesthefirst_key symand

num_key symsfieldsof p_changesto include the key that was changed. See section 14.3.1
for more information on the XkbMapChangesPtr structure. If successful, XkbChange-
TypesOfKey returns Success.

The n_groups parameter specifies the new number of groups for the key. The groups
parameter is a mask specifying the groups for which new types are supplied and is a bit-
wiseinclusive OR of the following masks. XkbGrouplMask, XkbGroup2Mask,
XkbGroup3Masgk, and XkbGroup4Mask.

The new_types in parameter isan integer array of length n_groups. Each entry represents
the type to use for the associated group and is an index into xkb->map->types. The
new_types in array isindexed by group index; if n_groupsis four and groups only has
GrouplMask and Group3Mask Set, new_types inlookslike this:

new_types in[0] = type for Groupl
new_types in[1] =ignored
new_types in[2] = type for Group3
new_types in[3] = ignored

For convenience, Xkb provides the following constants to use as indices to the groups:
Table 15.3 Group Index Constants

Constant Name Value
XkbGroupllndex 0
XkbGroup2lndex 1
XkbGroup3lndex 2
XkbGroup4lndex 3

November 10, 1997 Library Version 1.0/Document Revision 1.1 137

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

If the Xkb extension has not been properly initialized, XkbChangeTypesOfKey returns
BadAccess. If the xkb parameter it not valid (that is, it iSNULL or it does not contain a
valid client map), XkbChangeTypesOfKey returns BadMatch. If the key isnot avalid key-
code, n_groupsis greater than XkbNumKbdGroups, or the groups mask does not contain
any of the valid group mask bits, XkbChangeTypesOfKey returns Badvalue. If it is neces-
sary to resize the key symbols or key actions arrays and any allocation errors occur,
XkbChangeTypesOfKey returns Badalloc.

15.3.7 Changing the Number of Symbols Bound to a Key

154

To change the number of symbols bound to akey, use XkbResizeKeySyms.
KeySym * XkbResizeK eySyms(xkb, key, needed)

XkbDescRec * xkb; /* keyboard description to be changed */
int key; /* keycode for key to modify */
int needed; /* new number of keysyms required for key */

XkbResizeKeySyms reserves the space needed for needed keysyms and returns a pointer to
the beginning of the new array that holds the keysyms. It adjusts the offset field of the
key sym map entry for the key if necessary and can also change the syms, num_syms, and
size symsfields of xkb->map if it is necessary to reallocate the syms array. XkbResizeKey-
Syms does not modify either the width or number of groups associated with the key.

If needed is greater than the current number of keysyms for the key, XkbResizeKeySyms
initializes all new keysymsin the array to NoSymbol.

Because the number of symbols needed by akey isnormally computed as width * number
of groups, and XkbResi zeKeySyms does not modify either the width or number of groups
for the key, a discrepancy exists upon return from XkbResi zeKeySyms between the space
allocated for the keysyms and the number required. The unused entriesin the list of sym-
bols returned by XkbResi zeKeySyms are not preserved across future callsto any of the map
editing functions, so you must update the key symbol mapping (which updates the width
and number of groups for the key) before calling another alocator function. A call to
XkbChangeTypesOfKey will update the mapping.

If any allocation errors occur while resizing the number of symbols bound to the key,
XkbResi zeKeySyms returns NULL.

Note A change to the number of symbols bound to a key should be accompanied by a
change in the number of actions bound to akey. Refer to section 16.1.16 for more
information on changing the number of actions bound to a key.

The Per-Key Modifier Map

The modmap entry of the client map is an array, indexed by keycode, specifying the real
modifiers bound to akey. Each entry isamask composed of a bitwise inclusive OR of the
legal real modifiers. shiftMask, LockMask, ControlMask, Mod1Mask, Mod2Mask,
Mod3Mask, Mod4Mask, and Mod5Masgk. If abit is set in amodmap entry, the correspond-
ing key is bound to that modifier.

Pressing or releasing the key bound to amodifier changes the modifier set and unset state.
The particular manner in which the modifier set and unset state changes is determined by
the behavior and actions assigned to the key (see Chapter 16).

November 10, 1997 Library Version 1.0/Document Revision 1.1 138

The X Keyboard Extension 15 Xkb Client Keyboard Mapping

15.4.1 Getting the Per-Key Modifier Map from the Server

To update the modifier map for one or more of the keys in a keyboard description, use

XkbGetKeyModifierMap.
Status XkbGetK eyM odifier M ap(dpy, first, num, xkb)
Display * dpy; /* connection to X server */
unsigned int first; /* keycode of first key to get */
unsigned int num; /* number of keysfor which information is desired */
XkbDescPtr xkb; /* keyboard description to update */

XkbGetKeyModifierMap sends a request to the server for the modifier mappings for num
keys starting with the key whose keycode isfirst. It waits for areply and places the results
in the xkb->map->modmap array. If successful, XkbGetKeyModifier returns Success.

If the map component of the xkb parameter has not been allocated, XkbGetKeyModifier-
Map allocates and initializesiit.

If acompatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetKeySyms returns BadAccess. If any allocation errors
occur while obtaining the modifier map, XkbGetKeyModifierMap returns Badalloc.

November 10, 1997 Library Version 1.0/Document Revision 1.1 139

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16 Xkb Server Keyboard Mapping

The server field of the complete Xkb keyboard description (see section 6.1) is a pointer to
the Xkb server map.

Figure 16.1 shows the relationships between elements in the server map:

num_acts
size acts '
7 | - —— ->I [
acts > J'u
[I
| === —p |
behaviors —— J_u ! XkbActions(s)
. L | (array)
— ; XkbBehaviors(s) |
p , (array) |
vmods[16] | |
e b = J_H :
vmodmap — | e[||FT """
|
|
XkbServerMapRec | unsigned short(s)
| (array)
|
:
=
|
|
KeyCode ----- : unsigned char(s)
| (array)
:
|
I_ I - [
—> J_u
unsigned short(s)
(array)

Figure 16.1 Server Map Relationships

The Xkb server map contains the information the server needs to interpret key events and
is of type XkbServerMapRec:

#define XkbNumVirtualM ods 16
typedef struct { [* Server Map */
unsigned short num_acts, [* # of occupied entriesin acts */
unsigned short Size acts, [* # of entriesin acts*/
XkbAction * acts, [* linear 2d tables of key actions, 1 per keycode */
XkbBehavior * behaviors; /* key behaviors,1 per keycode */
unsigned short* key acts; /* index into acts, 1 per keycode */
unsigned char * explicit; /* explicit overrides of core remapping, 1 per key */

unsigned char vmods[XkbNumVirtualMods]; /* real mods bound to virtual mods */

November 10, 1997 Library Version 1.0/Document Revision 1.1 140

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.1

unsigned short* vmodmap; [* virtual mods bound to key, 1 per keycode*/
} XkbServer MapRec, * XkbServerMapPtr;

The num_acts, size_acts, acts, and key_acts fields specify the key actions, defined in sec-
tion 16.1. The behaviorsfield describes the behavior for each key and is defined in section
16.2. The explicit field describes the explicit components for a key and is defined in sec-
tion 16.3. The vmods and the vmodmayp fields describe the virtual modifiers and the
per-key virtual modifier mapping and are defined in section 16.4.

Key Actions

A key action defines the effect key presses and releases have on the internal state of the
server. For example, the expected key action associated with pressing the Shift key isto
set the shift modifier. Thereis zero or one key action associated with each keysym
bound to each key.

Just asthe entire list of key symbols for the keyboard mapping is held in the symsfield of
the client map, the entire list of key actions for the keyboard mapping is held in the acts
array of the server map. Thetotal size of actsis specified by size_acts, and the number of
entriesis specified by num_acts.

The key_acts array, indexed by keycode, describes the actions associated with akey. The
key actsarray hasmin_key code unused entries at the start to allow direct indexing using
akeycode. If akey_actsentry is zero, it means the key does not have any actions associ-
ated with it. If an entry is not zero, the entry represents an index into the actsfield of the
server map, much as the offset field of a KeySymMapRec structure is an index into the
symsfield of the client map.

Thereason the actsfield isalinear list of XkbActionsisto reduce the memory consump-
tion associated with a keymap. Because Xkb allows individua keysto have multiple shift
levels and a different number of groups per key, asingle two-dimensional array of Key-
Syms would potentially be very large and sparse. Instead, Xkb provides a small
two-dimensional array of XkbActionsfor each key. To store all of these individual
arrays, Xkb concatenates each array together in the acts field of the server map.

The key action structures consist only of fields of type char or unsigned char. Thisis done
to optimize data transfer when the server sends bytes over the wire. If the fields are any-
thing but bytes, the server hasto sift through all of the actions and swap any nonbyte
fields. Because they consist of nothing but bytes, it can just copy them out.

Xkb provides the following macros, to simplify accessing information pertaining to key
actions:

Bool XkbKeyHasActions(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyHasActions returns True if the key corresponding to keycode has any actions asso-
ciated with it; otherwise, it returns False.

int XkbKeyNumActions(xkb, keycode) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

November 10, 1997 Library Version 1.0/Document Revision 1.1 141

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

XkbKeyNumActions computes the number of actions associated with the key correspond-
ing to keycode. This should be the same value as the result of XkbKeyNumSyms (see sec-
tion 15.3.3).

XkbKeyActionPtr XkbK eyActionsPtr (xkb, keycode)/* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

XkbKeyActionsPtr returns a pointer to the two-dimensional array of key actions associated
with the key corresponding to keycode. Use XkbKeyActionsPtr only if the key actually has
some actions associated with it, that is, XkbKeyNumActions(xkb, keycode) returns some-
thing greater than zero.

XkbAction XkbK eyAction(xkb, keycode, idx) /* macro */
XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */
int idx; [* index for group and shift level */

XkbKeyAction returns the key action indexed by idx in the two-dimensional array of key
actions associated with the key corresponding to keycode. idx may be computed from the
group and shift level of interest asfollows:

idx = group_index * key_width + shift_level
XkbAction XkbK eyActionEntry(xkb, keycode, shift, grp)/* macro */

XkbDescPtr xkb; /* Xkb description of interest */
KeyCode keycode; /* keycode of interest */

int shift; [* shift level within group */

int arp; /* group index for group of interest */

XkbKeyActionEntry returns the key action corresponding to group grp and shift level Ivi
from the two-dimensional table of key actions associated with the key corresponding to
keycode.

16.1.1 The XkbAction Structure

The description for an action is held in an XkbAction structure, which isaunion of all
possible Xkb action types:

typedef union _XkbAction {

XkbAnyAction any;
XkbModAction mods;
XkbGroupAction group;
XkblSOAction iS0;
XkbPtrAction ptr;
XkbPtrBtnAction btn;
XkbPtrDfltAction dflt;
XkbSwitchScreenAction screen;
XkbCtrlsAction ctrls;
XkbMessageAction msg;
XkbRedirectKeyAction redirect;
XkbDeviceBtnAction devbtn;

XkbDeviceVauatorAction devval;

November 10, 1997

Library Version 1.0/Document Revision 1.1 142

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

unsigned char type;
} XkbAction;

Thetype field is provided for convenience and is the same as the type field in the individ-
ual structures. The following sections describe the individual structures for each actionin
detail.

16.1.2 The XkbAnyAction Structure
The XkbAnyAction structure is a convenience structure that refersto any of the actions:

#define XkbAnyActionDataSize 7
typedef struct _XkbAnyAction {
unsigned char type; [* type of action; determinesinterpretation for data*/

unsigned char data| XkbAnyActionDataSize];
} XkbAnyAction;

The data field represents a structure for an action, and its interpretation depends on the
typefield. The valid values for the type field, and the data structures associated with them
areshown in Table 16.1:

Table 16.1 Action Types

XkbAction .
Type Structure for Data) Section
yp Union Member

XkbSA NoAction XkbSA NoAction meanstheserver any

does not perform an action for the key;

this action does not have an associated

data structure.
XkbSA SetMods XkbModAction mods 16.1.3

XkbSA LatchMods
XkbSA LockMods

XkbSA SetGroup XkbGroupAction group 16.14
XkbSA LatchGroup
XkbSA LockGroup

XkbSA MovePtr XkbPtrAction ptr 16.1.5
XKbSA PtrBtn XkbPtrBtnAction btn 16.1.6
XkbSA LockPtrBtn

XkbSA SetPtrDflt XkbPtrDfltAction aflt 16.1.7
XkbSA ISOLock XkbISOAction iSO 16.1.8
XkbSA SwitchScreen XkbSwitchScreenAction screen 16.1.9
XkbSA SetControls XkbCtrlsAction ctrls 16.1.10
XkbSA LockControls

XkbSA ActionMessage XkbMessgeAction msg 16.1.11
XkbSA RedirectKey XkbRedirectKeyAction redirect 16.1.12
XkbSA DeviceBtn XkbDeviceBtnAction devbtn 16.1.13
XKbSA LockDeviceBtn

XkbSA DeviceValuator XkbDeviceValuatorAction devval 16.1.14

16.1.3 Actions for Changing Modifiers’ State

Actions associated with the XkbModAct ion structure change the state of the modifiers
when keys are pressed and released (see Chapter 7 for a discussion of modifiers):

November 10, 1997 Library Version 1.0/Document Revision 1.1 143

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

typedef struct _XkbModAction {

unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
unsigned char
} XkbModAction;

In the following desc
ated with this action.

type; I* XkbSA {Set |Latch|Lock }Mods */
flags; /* with type, controls the effect on modifiers */
mask; I* same as mask field of amodifier description */

rea_mods; /* sameasreal _mods field of a modifier description */
vmodsl; /* derived from vmods field of a modifier description */
vmods2; /* derived from vmods field of a modifier description */

ription, the term action modifiers means the real modifier bits associ-
Depending on the value of flags (see Table 16.3), these are desig-

nated either in the mask field of the XkbModAction structure itself or the real modifiers
bound to the key for which the action is being used. In the latter case, thisisthe client
map->modmap[keycode] field.

The type field can have any of the values shown in Table 16.2.

Table 16.2 Modifier Action Types

Type

Effect

XkbSA SetMods

XkbSA LatchMods

XkbSA LockMods

A key press adds any action modifiers to the keyboard’s base modi-
fiers.

» A key release clears any action modifiersin the keyboard's base
modifiers, provided no other key affecting the same modifiersis
logically down.

* If no other keys are physically depressed when this key is released,
and XkbSA ClearLocks issetintheflagsfield, the key release
unlocks any action modifiers.

» Key press and key release events have the same effect as for
XkbSA SetMods; if no keys are physically depressed when this
key isreleased, key release events have the following additional
effects:

* Modifiers unlocked due to XkbSA ClearLocks have no further
effect.

* If XkbSA LatchToLock issetintheflagsfield, akey release
locks and then unlatches any remaining action modifiers that are
aready latched.

A Kkey release latches any action modifiers not used by the
XkbSA ClearLocks and XkbSA LatchToLock flags.

* A Kkey press sets the base state of any action modifiers. If
XkbSA LockNoLock isset in the flagsfield, akey press also sets
the locked state of any action modifiers.

» A key release clears any action modifiersin the keyboard's base
modifiers, provided no other key that affects the same modifiersis
down. If XkbSA LockNoUnlock is not set in the flags field, and
any of the action modifiers were locked before the corresponding
key press occurred, a key release unlocks them.

November 10, 1997

Library Version 1.0/Document Revision 1.1 144

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.3.
A general meaning is given in the table, but the exact meaning depends on the action type.

Table 16.3 Modifier Action Flags

Flag Meaning
XkbSA UseModMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of the key. Otherwise, the

action modifiers are set to the modifiers specified by the
mask, real_mods, vmod1, and vmod2 fields.

XkbSA ClearLocks If set and no keys are physically depressed when this key
transition occurs, the server unlocks any action modifiers.

XkbSA LatchToLock If set, and the action type isXkbSA LatchMods, the server
locks the action modifiersif they are already latched.

XkbSA LockNoLock If set, and the action type is XkbSA LockMods, the server
only unlocks the action modifiers.

XkbSA LockNoUnlock If set, and the action is XkbSA LockMods, the server only

locks the action modifiers.

If XkbSA UseModMapMods isnot set in the flagsfield, the mask, real_mods, vmodsl, and
vmods2 fields are used to determine the action modifiers. Otherwise they areignored and
the modifiers bound to the key (client map->modmap|keycode]) are used instead.

The mask, real_mods, vmodsl, and vmods2 fields represent the components of an Xkb
modifier description (see section 7.2). While the mask and real_mods fields correspond
directly to the mask and real_mods fields of an Xkb modifier description, the vmodsl and
vmods2 fields are combined to correspond to the vmods field of an Xkb modifier descrip-
tion. Xkb provides the following macros, to convert between the two formats:

unsigned short XkbM odActionV M ods(act) /* macro */
XkbAction act; /* action from which to extract virtual mods */

XkbModActionVMods returns the vmodsl and vmods2 fields of act converted to the vmods
format of an Xkb modifier description.

void XkbSetM odActionVM ods(act, vmods) /* macro */
XkbAction act; [* action in which to set vmods */
unsigned short vmods, [* virtual modsto set */

XkbSetModActionVMods sets the vmodsl and vmods2 fields of act using the vmods format
of an Xkb modifier description.

Note Despitethe fact that the first parameter of these two macrosis of type XkbAction,
these macros may be used only with Actions of type XkbModAction and XkbISO-
Action.

16.1.4 Actions for Changing Group State

Actions associated with the XkbGroupAction structure change the current group state
when keys are pressed and released (see Chapter 5 for a description of groups and key-

board state):
typedef struct _XkbGroupAction {
unsigned char type; [* XkbsSA {Set |Latch|Lock }Group */
unsigned char flags, [* with type, controls the effect on groups */

November 10, 1997 Library Version 1.0/Document Revision 1.1 145

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

char
} XkbGroupAction;

group XXX; /* represents agroup index or delta*/

The type field can have any of the following values:

Table 16.4 Group Action Types

Type Effect

XkbSA SetGroup

XkbSA LatchGroup .,

XkbSA LockGroup

* If the XkbSA Group2bsolute hitisset inthe flagsfield, key press

events change the base keyboard group to the group specified by the
group_XXX field. Otherwise, key press events change the base key-
board group by adding the group_XXX field to the base keyboard
group. In either case, the resulting effective keyboard group is brought
back into range depending on the value of the groups wrap field of the
controls structure (see section 10.7.1).

If akey with an XkbSA ISOLock action (see section 16.1.8) is
pressed while this key is down, the key release of this key has no
effect. Otherwise, the key release cancels the effects of the key press.
If the XkbSA ClearLocks hitisset in the flags field, and no keys
are physically depressed when thiskey isreleased, the key release also
sets the locked keyboard group to Group1.

Key press and key release events have the same effect as for
XkbSA_SetGroup; if no keysare physically depressed when thiskey
isreleased, key release events have the following additional effects.

If the XkbSA LatchToLock hitisset in the flagsfield and the
latched keyboard group index is nonzero, the key release adds the
delta applied by the corresponding key pressto the locked keyboard
group and subtracts it from the latched keyboard group. The locked
and effective keyboard group are brought back into range according to
the value of the groups wrap field of the controls structure.
Otherwise, the key press adds the key press delta to the latched key-
board group.

If the XkbSA GroupAbsolute isset intheflagsfield, key press
events set the locked keyboard group to the group specified by the
group_XXX field. Otherwise, key press events add the group specified
by the group XXX field to the locked keyboard group. In either case,
the resulting locked and effective keyboard groups are brought back
into range depending on the value of the groups_wrap field of the con-
trols structure.

A key release has no effect.

Theflagsfield iscomposed of the bitwiseinclusive OR of the masks shownin Table 16.5.
A general meaning is given in the table, but the exact meaning depends on the action type.

Table 16.5 Group Action Flags

Flag

Meaning

XkbSA ClearLocks

XkbSA LatchToLock

XkbSA GroupAbsolute

If set and no keys are physically depressed when this key
transition occurs, the server sets the locked keyboard group
to Groupl on akey release.

If set, and the action type is SA_LatchGroup, the server
locks the action group if it is already latched.

If set, the group XXX field represents an absol ute group
number. Otherwise, it represents a group deltato be added to
the current group to determine the new group number.

November 10, 1997 Library Version 1.0/Document Revision 1.1 146

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The group_XXX field represents a signed character. Xkb provides the following macros to
convert between a signed integer value and a signed character:

int XkbSAGroup(act) /* macro*/

XkbAction act; [* action from which to extract group */
XkbSAGroup returns the group XXX field of act converted to asigned int.
void XkbSASetGroup(act, grp) /* macro */

XkbAction act; [* action from which to set group */

int arp; * group index to set in group_ XXX */

XkbSASetGroup sets the group XXX field of act from the group index grp.

Note Despitethe fact that the first parameter of these two macrosis of type XkbAction,
these macros may only be used with Actions of type XkbGroupAction and XkbI -
SOAction.

16.1.5 Actions for Moving the Pointer
Actions associated with the XkbPtrAct ion structure move the pointer when keys are

pressed and released:
typedef struct _XkbPtrAction {

unsigned char type; [* XkbSA MovePtr */

unsigned char flags; [* determines type of pointer motion */
unsigned char high XXX; /* x coordinate, high bits*/

unsigned char low XXX; [* y coordinate, low bits*/

unsigned char high YYY; [* x coordinate, high bits*/

unsigned char low_YYY; /* y coordinate, low bits*/

} XkbPtrAction;

If the MouseKeys control is not enabled (see section 10.5.1), KeyPress and KeyRe-
lease events are treated as though the action is XkbSA NoAction.

If the MouseKeys control is enabled, a server action of type XkbSA MovePtr instructs
the server to generate core pointer Mot ionNot i fy events rather than the usual Key-
Press event, and the corresponding KeyRelease event disables any mouse keys timers
that were created as aresult of handling the XkbSA MovePtr action.

The type field of the XkbPtrAction structureis always XkbSA MovePtr.
Theflagsfield isabitwise inclusive OR of the masks shown in Table 16.6.
Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA NoAcceleration If not set, and the MouseKeysaAccel control isenabled (see
section 10.5.2), the KeyPress initiates a mouse keys timer
for this key; every time the timer expires, the cursor moves.

XkbSA MoveAbsoluteX If set, the X portion of the structure specifies the new pointer
X coordinate. Otherwise, the X portion is added to the cur-
rent pointer X coordinate to determine the new pointer X
coordinate.

November 10, 1997 Library Version 1.0/Document Revision 1.1 147

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.6 Pointer Action Types

Action Type Meaning

XkbSA MoveAbsoluteY If set, the Y portion of the structure specifies the new
pointer Y coordinate. Otherwise, the'Y portion is added
to the current pointer Y coordinate to determine the new
pointer Y coordinate.

Each of the X and Y coordinantes of the XkbPtrAction structure is composed of two
signed 16-bit values, that is, the X coordinate is composed of high XXX and low_XXX,
and similarly for the Y coordinate. Xkb provides the following macros, to convert
between a signed integer and two signed 16-bit values in XxkbPtrAction structures:

int XkbPtr ActionX(act) /* macro */
XkbPtrAction act; /* action from which to extract X */

XkbPtrActionX returns the high XXX and low_XXX fields of act converted to asigned int.

int XkbPtrActionY (act) /* macro */

XkbPtrAction act; /* action from which to extract Y */
XkbPtrActionY returns the high_YYY and low_YYY fields of act converted to asigned int.
void XkbSetPtr ActionX(act, X) /* macro */

XkbPtrAction act; /* action in which to set X */

int X; /* new valueto set */

XkbSetPtr ActionX sets the high XXX and low_XXX fields of act from the signed integer
value x.
void XkbSetPtr ActionY (act, y) /* macro */

XkbPtrAction act; /* action in whichto set Y */

int Y, /* new valueto set */

XkbSetPtrActionX sets the high_YYY and low_YYY fields of act from the signed integer
valuey.

16.1.6 Actions for Simulating Pointer Button Press and Release

Actions associated with the XkbPt rBtnAction structure simulate the press and release
of pointer buttons when keys are pressed and released:

typedef struct _ XkbPtrBtnAction {
unsigned char type; /*XkbSA PtrBtn, XkbSA LockPtrBtn */
unsigned char flags, /* with type, controls the effect on pointer buttons*/
unsigned char ~ count; /* controls number of ButtonPress and ButtonRelease events */
unsigned char ~ button; /* pointer button to simulate */
} XkbPtrBtnAction;

If the MouseKeys (see section 10.5.1) control is not enabled, KeyPress and KeyRe-
lease events are treated as though the action is XkbSA NoAction.

November 10, 1997 Library Version 1.0/Document Revision 1.1 148

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

The type field can have any one of the values shown in Table 16.7.

Table 16.7 Pointer Button Action Types

Type Effect

XkbSA PtrBtn R

XkbSA LockPtrBtn ,

If XkbSA UseDfltButton issetintheflagsfield, the eventisgen-
erated for the pointer button specified by the mk_dflt_btn attribute of
the MouseKeys control (see section 10.5.1). Otherwise, the event is
generated for the button specified by the button field.

If the mouse button specified for this action islogically down, the key
press and corresponding key release are ignored and have no effect.
Otherwise, akey press causes one or more core pointer button events
instead of the usual KeyPress event. If count is zero, akey press
generates asingle ButtonPress event; if count is greater than zero,
a key press generates count pairs of ButtonPress and ButtonRe-
lease events.

If count is zero, akey release generates a core pointer But tonRe -
lease that matches the event generated by the corresponding Key -
Press; if count is nonzero, a key release does not cause a
ButtonRelease event. A key release never generates akey KeyRe -
lease event.

If the button specified by the MouseKeys default button or button is
not locked, akey press causes aButtonPress event instead of a
KeyPress event and locks the button. If the button is already locked
or if XkbSA LockNoUnlock isset intheflagsfield, akey pressis
ignored and has no effect.

If the corresponding key press was ignored, and if

XkbSA LockNoLock isnot set in the flags field, akey release gener-
alesaButtonRelease event instead of aKeyRelease event and
unlocks the specified button. If the corresponding key press locked a
button, the key release isignored and has no effect.

Theflagsfield is composed of the bitwise inclusive OR of the masks shown in Table 16.8.
A general meaning isgiven in the table, but the exact meaning depends on the action type.:

Table 16.8 Pointer Button Action Flags

Flag

Meaning

XkbSA UseDfltButton If set, the action uses the pointer button specified by the

XkbSA LockNoLock

XkbSA LockNoUnlock

mk_dflt_btn attribute of the MouseKeys control (see section
10.5.1). Otherwise, the action uses the pointer button specified by
the button field.

If set, and the action type is XkbSA LockPtrBtn, the server
only unlocks the pointer button.

If set, and the action type isXkbSA LockPtrBtn, the server
only locks the pointer button.

16.1.7 Actions for Changing the Pointer Button Simulated

Actions associated with

the XkbPtrDf1tAction structure change the mk_dflt_btn

attribute of the MouseKeys control (see section 10.5.1):
typedef struct XkbPtrDfltAction {

unsigned char
unsigned char
unsigned char

type; [* XkbSA SetPtrDflt */
flags,; [* controls the pointer button number */
affect; [* XkbSA AffectDfltBtn*/

November 10, 1997 Library Version 1.0/Document Revision 1.1 149

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

char valuexX XX; /* new default button member */
} XkbPtrDfltAction;

If the MouseKeys control is not enabled, KeyPress and KeyRelease events are treated
asthough the action isxkbSA NoAction. Otherwise, this action changes the mk_dflt_btn
attribute of the MouseKeys control.

The type field of the XkbPtrDf 1tAction structure should always be
XkbSA SetPtrDflt.

Theflagsfield is composed of the bitwise inclusive OR of the values shown in Table 16.9
(currently there is only one value defined).

Table 16.9 Pointer Default Flags

Flag Meaning

XkbSA DfltBtnAbsolute If set, the valuefield represents an absolute pointer button.
Otherwise, the value field represents the amount to be added
to the current default button.

The affect field specifies what changes as aresult of this action. The only valid value for
the affect field is XkbSA AffectDf1tBtn.

The valueXXX field is asigned character that represents the new button value for the
mk_dflt_btn attribute of the MouseKeys control (see section 10.5.1). If

XkbSA DfltBtnAbsolute issetin flags, valueXXX specifies the button to be used; oth-
erwise, valueXXX specifies the amount to be added to the current default button. In either
case, illegal button choices are wrapped back around into range. Xkb provides the follow-
ing macros, to convert between the integer and signed character values in XkbPtrDf1 -

tAction structures:
int XkbSAPtrDfltValue(act) /* macro */
XKkbAction act; [* action from which to extract group */
XkbSAPtr DfltValue returns the valueXXX field of act converted to asigned int.
void XkbSA SetPtr DfltValue(act, val) /* macro */
XkbPtrDfltAction act; /* action in which to set valuexXXX */
int val; /* value to set in valuexXXX */

XkbSASetPtr DfltVal ue sets the valuexXXXX field of act from val.

16.1.8 Actions for Locking Modifiers and Group

Actions associated with the XkbISOAct ion structure lock modifiers and the group
according to the 1SO9995 specification.

Operated by itself, the XkbISOAction isjust acapslock. Operated simultaneously with
another modifier key, it transforms the other key into alocking key. For example, press
ISO_Lock, press and release Control_L, release ISO_Lock ends up locking the Control
modifier.

The default behavior isto convert:

{ Set,Latch} Mods to: LockMods
{Set,Latch} Group to: LockGroup
SetPtrBtn to: LockPtrBtn

November 10, 1997 Library Version 1.0/Document Revision 1.1 150

The X Keyboard Extension

16 Xkb Server Keyboard Mapping

SetControls to: LockControls

The affectsfield allows you to turn those effects on or off individually. Set
XkbSA ISONoAffectMods to disablethefirst, XkbSA ISONoAffectGroup to disable
the second, and so forth.

typedef struct _XkblSOAction {

unsigned char
unsigned char
unsigned char
unsigned char
char

unsigned char
unsigned char
unsigned char

} XkblSOAction;

type; [* XkbSA ISOLock */

flags, /* controls changes to group or modifier state */

mask; /* same as mask field of a modifier description */
real_mods;/* same asreal_mods field of a modifier description */
group_XXX;/* group index or deltagroup */

affect; /* specifies whether to affect mods, group, ptrbtn, or controls*/
vmodsl; /* derived from vmods field of a modifier description */
vmods2; /* derived from vmods field of a modifier description */

The type field of the XkbISOAction structure should always be XkbSa ISOLock.

The interpretation of the flags field depends on whether the XkbSA ISODf1tIsGroupis
set in the flags field or not.

If the XkbSA ISODf1tIsGroup issetintheflagsfield, the actionis used to change the
group state. The remaining valid bits of the flags field are composed of abitwise inclusive
OR using the masks shown in Table 16.10.

Table 16.10 1SO Action Flagswhen XkbSA | SODfltIsGroup is Set

Flag

Meaning

XkbSA ISODfltIsGroup If set, the action is used to change the base group state. Must

be set for the remaining bitsin thistable to carry their inter-
pretations.

A key press sets the base group as specified by the
%:ou p_XXXfield and the XxkbSA_GroupaAbsolute bit of

e flags field (see section Note). If no other actions are
transformed by the XkbIsSO Lock action, akey release
locks the group. Otherwise, akey release clears group
set by the key press.

XkbSA GroupAbsolute If set, the group XXX field represents an absol ute group

number. Otherwise, it represents a group deltato be added to
the current group to determine the new group number.

XkbSA ISONoAffectMods If not set, any XkbSA SetMods or XkbSA LatchMods

actionsthat occur simultaneously with the XkbSA ISOLock
action are treated as XkbSA LockMod actions instead.

XkbSA ISONoAffectGroup If notset, any XkbSA SetGroup Or XkbSA LatchGroup

actionsthat occur simultaneously with the XkbSA ISOLock
action are treated as XkbSA LockGroup actionsinstead.

XkbSA ISONoAffectPtr If not set, any XkbSA PtrBtn actions that occur simulta-

neously with the XkbSA TSOLock action are treated as
XkbSA LockPtrBtn actionsinstead.

XkbSA ISONoAffectCtrls If notset, any XkbSA SetControls actions that occur

simultaneously with the XkbSA TSOLock action are treated
asXkbSA LockControls actionsinstead.

November 10, 1997

Library Version 1.0/Document Revision 1.1 151

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

If the XkbSA ISODE 1tIsGroup isnot set in the flags field, the action is used to change
the modifier state and the remaining valid bits of the flags field are composed of a bitwise
inclusive OR using the masks shown in Table 16.11.

Table 16.11 1SO Action Flagswhen XkbSA | SODfltIsGroup isNot Set

Flag Meaning

XkbSA ISODfltIsGroup If not set, action is used to change the base modifier state.
Must not be set for the remaining bits in thistableto carry
their interpretations.

A key press sets the action modifiersin the keyboard's base
modifiers using the mask, real_mods, vmodsl, and
vmods2 fields (see section 16.1.3). If no other actions are
transformed by the xkb1SO Lock action, akey release
locks the action modifiers. Otherwise, akey release
clears the base modifiers set by the key press.

XkbSA UseModMapMods If set, the action modifiers are determined by the modifiers
bound by the modifier mapping of the key. Otherwise, the
action modifiers are set to the modifiers specified by the
mask, real_mods, vmod1, and vmod2 fields.

XkbSA LockNoLock If set, the server only unlocks the action modifiers.
XkbSA LockNoUnlock If set, the server only locks the action modifiers.

XkbSA ISONoAffectMods If not set, any XkbSA SetMods or XkbSA LatchMods
actionsthat occur simultaneously with the XkbSA ISOLock
action are treated as XkbSA LockMod actions instead.

XkbSA ISONoAffectGroup If notset, any XkbSA SetGroup Or XkbSA LatchGroup
actionsthat occur simultaneously with the XkbSA ISOLock
action are treated as XkbSA LockGroup actions instead.

XkbSA ISONoAffectPtr If not set, any XkbSA PtrBtn actions that occur simulta-
neously with the xXkbSA ISOLock action are treated as
XkbSA LockPtrBtn actionsinstead.

XkbSA ISONoAffectCtrls If not set, any XkbSA SetControls actions that occur
simultaneously with the XkbSA ISOLock action are treated
asXkbSA LockControls actionsinstead.

The group_ XXX field represents a signed character. Xkb provides macros to convert
between a signed integer value and a signed character as shown in section Note.

The mask, real_mods, vmodsl, and vmods2 fields represent the components of an Xkb
modifier description (see section 7.2). While the mask and real_mods fields correspond
directly to the mask and real_mods fields of an Xkb modifier descnptl on, the vmodsl and
vmods2 fields are combined to correspond to the vmods field of an Xkb modifier descrip-
tion. Xkb provides macros to convert between the two formats as shown in section 16.1.3.

The affect field is composed of a bitwise inclusive OR using the masks shown in Table
16.11.

Table 16.12 1SO Action Affect Field Values

Affect Meaning

XkbSA ISODNoAffectMods If XkbSA ISONoAffectMods isnotset, any SA SetMods
or SA LatchMods actions occurring simultaneously with
the XkbISOAction aretreated as SA LockMods instead.

November 10, 1997 Library Version 1.0/Document Revision 1.1 152

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.12 1SO Action Affect Field Values

Affect Meaning

XkbSA ISONoAffectGroup If XkbSA ISONoAffectGroup isnot set, any
SA SetGroup Or SA LatchGroup actions occurring
simultaneously with the XkbISOAction aretreated as
SA LockGroup instead.

XkbSA ISONoAffectPtr If XkbSA ISONoAffectPtrisnot set, any SA PtrBtn
actions occurring simultaneously with the XkbISOAction
aretreated as SA LockPtrBtn instead.

XkbSA ISONoAffectCtrls If XkbSA ISONoAffectCtrls isnot set, any
SA SetControls actions occurring simultaneously with
the XkbISOAction aretreated as SA LockControls
instead.

16.1.9 Actions for Changing the Active Screen

Actions associated with the XkbSwitchScreen action structure change the active screen
on amultiscreen display:

Note Thisactionisoptional. Servers are free to ignore the action or any of itsflagsif they
do not support the requested behavior. If the action isignored, it behaveslike
XkbSA NoAction. Otherwise, key press and key release events do not generate an

event.
typedef struct _XkbSwitchScreenAction {
unsigned char type; [* XkbSA SwitchScreen*/
unsigned char flags; /* controls screen switching */
char screenXXX; /* screen number or delta*/

} XkbSwitchScreenAction;

The type field of the XkbSwitchScreenAct ion structure should always be
XkbSA SwitchScreen.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table

16.13.
Table 16.13 Switch Screen Action Flags
Flag Meaning
XkbSA SwitchAbsolute If set, the screenXXX field represents the index of the

new screen. Otherwise, it represents an offset from the
current screen to the new screen.

XkbSA SwitchApplication If not set, the action should switch to another screen on
the same server. Otherwise, it should switch to another X
server or application that shares the same physical dis-

play.

The screenXXX field is a signed character value that represents either the relative or abso-
lute screen index, depending on the state of the XkbSA SwitchAbsolute bitintheflags
field. Xkb provides the following macros to convert between the integer and signed char-
acter value for screen numbersin XkbSwitchScreenAction structures:

int XkbSA Screen(act) /* macro */
XkbSwitchScreenAction act; /* action from which to extract screen */

XkbSAScreen returns the screenXXX field of act converted to asigned int.

November 10, 1997 Library Version 1.0/Document Revision 1.1 153

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

void XkbSA SetScreen(act, 9) /* macro */
XkbSwitchScreenAction act; /* action in which to set screenXXX */
int S /* value to set in screenXXX */

XkbSASetScreen sets the screenXXX field of act from s.

16.1.10Actions for Changing Boolean Controls State

Actions associated with the XkbCtrlsAction structure change the state of the boolean
controls (see section 10.1):

typedef struct _XkbCtrlsAction {

unsigned char type; [* XkbSA SetControls, XkbSA LockControls */

unsigned char flags; * with type, controls enabling and disabling of controls */
unsigned char ctrls3; /* ctrlsO through ctrls3 represent the boolean controls */
unsigned char ctrls2; /* ctrlsO through ctrls3 represent the boolean controls */
unsigned char ctrlsl; /* ctrlsO through ctrls3 represent the boolean controls */
unsigned char ctrlsO; /* ctrlsO through ctrls3 represent the boolean controls */

} XkbCtrlsAction;
The type field can have any one of the values shown in Table 16.14.
Table 16.14 Controls Action Types

Type Effect

XkbSA_SetControls « A key press enables any boolean controls specified in the ctrls
fields that were not already enabled at the time of the key press.
* A key release disables any controls enabled by the key press.
» Thisaction can cause XkbControlsNotify events (see sec-
tion 10.1).

If the XkbSA LockNoLock bit isnot set in the flags field, a
key press enables any controls specified in the ctris fields that
were not aready enabled at the time of the key press.

If the XkbSA LockNoUnlock bitisnot setintheflagsfield, a
key release disables any controls specified in the ctris fields
that were not aready disabled at the time of the key press.
 Thisaction can cause XkbControlsNotify events (see sec-

XkbSA LockControls

tion 10.1).
The flags field is composed of the bitwise inclusive OR of the masks shown in Table
16.15.
Table 16.15 Control Action Flags
Flag Meaning
XkbSA LockNoLock If set, and the action type is XkbSA LockControls, the
server only disables controls.
XkbSA LockNoUnlock If set, and the action type is XkbSA LockControls, the

server only enables controls.

The XkbSA SetControls action implements akey that enables a boolean control when
pressed and disables it when released. The XkbSA LockControls action isused to
implement a key that toggles the state of a boolean control each timeit is pressed and
released. The XkbSA LockNoLock and XkbSA LockNoUnlock flags allow modifying
the toggling behavior to only unlock or only lock the boolean control.

November 10, 1997 Library Version 1.0/Document Revision 1.1 154

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The ctrlsO, ctrlsl, ctrls2, and ctrls3 fields represent the boolean controlsin the
enabled_ctrisfield of the controls structure (see section 10.1). Xkb provides the following
macros, to convert between the two formats:

unsigned int XkbActionCtrls(act) [* macro */
XkbCtrlsAction act; /* action from which to extract controls */

XkbActionCtrls returns the ctris fields of act converted to an unsigned int.

void XkbSAActionSetCtris(act, ctrls) /* macro */
XkbCtrlsAction act; [* action in which to set ctrlsO-ctrls3 */
unsigned int ctrls; [* value to set in ctrlsO-ctris3 */

XkbSAActionSetCtrls sets the ctrls0 through ctrls3 fields of act from ctrls.

16.1.11Actions for Generating Messages

Actions associated with the XkbMessageAct ion structure generate XkbAct ionMes -
sage events:

#define XkbActionMessagelL ength 6
typedef struct _XkbMessageAction {

unsigned char type; [* XkbSA ActionMessage */
unsigned char flags; * controls event generation via key presses and releases */
unsigned char message] X kbA ctionM essagel_engthl; /* message */

} XkbM essageAction;

The type field of the XkbMessageAction structure should always be
XkbSA ActionMessage.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table

16.16.
Table 16.16 Message Action Flags
Flag Meaning
XkbSA MessageOnPress If set, key press events generate an XkbAct ionMes -

sage event that reports the keycode, event type, and
contents of the message field.

XkbSA MessageOnRelease If set, key release events generate an XkbActionMes-
sage event that reports the keycode, event type, and
contents of the message field.

XkbSA MessageGenKeyEvent If set, key press and key release events generate Key -
Press and KeyRelease events, regardless of whether
they generate XkbAct ionMessage events.

The message field is an array of XkbActionMessageLength unsigned characters and
may be set to anything the keymap designer wishes.

Detecting Key Action Messages

To receive XkbAct ionMessage events by calling either XkbSel ectEvents or XkbSel ect-
EventDetails (see section 4.3).

To receive XkbAct ionMessage events under all possible conditions, use XkbSelect-
Events and pass XkbAct ionMessageMask in both bits to_change and values for_hits.

November 10, 1997 Library Version 1.0/Document Revision 1.1 155

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The XkbActionMessage event has no event details. However, you can call XkbSel ect-
EventDetails using XkbActionMessage as the event_type and specifying XkbAl1lAc-
tionMessageMask in bits to_change and values for_bits. This has the same effect asa
call to XkbSelectEvents.

The structure for the XkbAct ionMessage event is defined as follows:
typedef struct _XkbActionMessage {

int type; /* Xkb extension base event code */

unsigned long serid; * X server serial number for event */

Bool send_event; [* True => synthetically generated */

Display * display; [* server connection where event generated */
Time time; [* server time when event generated */

int xkb_type; [* XkbActionMessage */

int device; /* Xkb device ID, will not be XkbUseCoreKbd */
KeyCode keycode; /* keycode of key triggering event */

Bool press, [* True => key press, False =>release */

Bool key event follows; /* True => KeyPress/KeyRelease follows */

char message] X kbA ctionM essagelength+1]; /* message text */

} XkbActionM essageEvent;

The keycode is the keycode of the key that was pressed or released. The press field speci-
fies whether the event was the result of akey press or key release.

The key_event_follows specifies whether a KeyPress (if pressis True) or KeyRelease
(if pressisFalse) event isaso sent to the client. Aswith all other Xkb events, XkbAc-
tionMessageEvents are delivered to al clients requesting them, regardless of the cur-
rent keyboard focus. However, the KeyPress or KeyRelease event that conditionally
follows an XkbActionMessageEvent is sent only to the client selected by the current
keyboard focus. key_event_followsis True only for the client that is actually sent the fol-
lowing KeyPress or KeyRelease event.

The message field is set to the message specified in the action and is guaranteed to be
NULL-terminated; the Xkb extension forces a NULL into message[XkbAct ionMessage -
Length].

16.1.12Actions for Generating a Different Keycode

Actions associated with the XkbRedirectKeyAction structure generate KeyPress and
KeyRelease events containing a keycode different from the key that was pressed or

released:
typedef struct_XkbRedirectKeyAction {
unsigned char type; [* XkbSA RedirectKey */

unsigned char new_Kkey; * keycodeto be put in event */

unsigned char mods_mask; /* mask of real mods to be reset */

unsigned char mods, /* mask of real mods to take values from */

unsigned char vmods _maskO;/* first half of mask of virtual mods to be reset */

unsigned char vmods_mask1;/* other half of mask of virtual mods to be reset */

unsigned char vmods0; [* first half of mask of virtual mods to take values from */

unsigned char vmodsl; * other half of mask of virtual mods to take values from */
} XkbRedirectKeyAction;

November 10, 1997 Library Version 1.0/Document Revision 1.1 156

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The type field for the XkbRedirectKeyAction structure should always be
XkbSA RedirectKey.

Key presses cause a KeyPress event for the key specified by the new_key field instead of
the actual key. The state reported in this event reports the current effective modifiers
changed as follows: any real modifiers selected by the mods mask field are set to corre-
sponding values from the mods field. Any real modifiers bound to the virtual modifiers
specified by the vmods_mask0 and vmods_maskl fields are either set or cleared, depend-
ing on the corresponding values in the vmods0 and vmodsl fields. If the real and virtua
modifier definitions specify conflicting values for a single modifier, the real modifier def-
inition has priority.

Key releases cause a KeyRelease event for the key specified by the new_key field
instead of the actual key. The state for this event consists of the effective keyboard modi-
fiers at the time of the release, changed as described previoudly.

The XkbSA RedirectKey action normally redirects to another key on the same device
asthe key that caused the event, unless that device does not belong to the input extension
KeyClass, in which case this action causes an event on the core keyboard device. (The
input extension categorizes devices by breaking them into classes. Keyboards, and other
input devices with keys, are classified as KeyClass devices by the input extension.)

The vmods_mask0 and vmods_mask1 fields actually represent one vmods_mask value, as
described in Chapter 7. Xkb prowdesthefoIIOWl ng macros, to convert between the two

formats:
unsigned int XkbSARedirectVM odsM ask (act) /* macro */
XkbRedirectKeyAction act; /* action from which to extract vmods */

XkbSARedirectVModsMask returns the vmods_mask0 and vmods_mask1 fields of act con-
verted to an unsigned int.

void XkbSARedirectSetVM odsM ask (act, vm) /* macro */

XkbRedirectKeyAction act; /* action in which to set vmods */
unsigned int vm; /* new value for virtual modifier mask */
XkbSARedirectSetVModsMask sets the vmods_mask0 and vmods_maskl fields of act from

vm.

Similarly, the vmods0 and vmodsl fields actually represent one vmods value, as described
in Chapter 7. To convert between the two formats, Xkb provides the following conve-
nience macros:

unsigned int XkbSARedirectVM ods(act) /* macro */
XkbRedirectKeyAction act; /* action from which to extract vmods */

XkbSARedirectVModsMask returns the vmods0 and vmodsl fields of act converted to
an unsigned int.

void XkbSARedirectSetVM ods(act, vim) /* macro */
XkbRedirectKeyAction act; /* action in which to set vmods */
unsigned int \ /* new value for virtual modifiers*/

XkbSARedirectSetVModsMask sets the vmods0O and vmodsl of act from v.

November 10, 1997 Library Version 1.0/Document Revision 1.1 157

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.1.13Actions for Generating DeviceButtonPress and DeviceButtonRelease

Actions associated with XkbDeviceBtnAction structures generate DeviceButton-
Press and DeviceButtonRelease eventsinstead of normal KeyPress and KeyRe-

lease events:
typedef struct _XkbDeviceBtnAction {
unsigned char type; [* XkbSA DeviceBtn, XkbSA LockDeviceBtn */

unsigned char flags, * with type, specifies locking or unlocking */
unsigned char count; /* controls number of DeviceButtonPress and Release events */
unsigned char button; /* index of button on device */
unsigned char device; /* deviceID of an X input extension device */
} XkbDeviceBtnAction;

The type field can have any one of the values shown in Table 16.17.
Table 16.17 Device Button Action Types

Type Effect
XkbSA DeviceBtn .

If the button specified by this action islogicaly down, the key
press and corresponding release are ignored and have no effect.
If the device or button specified by this action areillegal, this
action behaves like XkbSA NoAction.

» Otherwise, key presses cause one or more input extension
device events instead of the usual key press event. If the count
field is zero, akey press generates asingle DeviceButton-
Press event. If count is greater than zero, akey press event
generates count pairs of DeviceButtonPress and Device-
ButtonRelease events.

* If count is zero, a key release generates an input extension

DeviceButtonRelease event that matches the event gener-

ated by the corresponding key press. If count is nonzero, akey

release does not cause aDeviceButtonRelease event. Key
releases never cause KeyRelease events.

XkbSa_LockDeviceBtn . |f the device or button specified by this action areillegal, this

action behaves like XkbSA NoAction.

» Otherwise, if the specified button is not locked and the
XkbSA LockNoLock bit isnot set in the flags field, akey
press generates an input extension DeviceButtonPress
event instead of a KeyPress event and locks the button. If the
button isalready locked or if XkbSA LockNoLock bitissetin
the flags field, the key pressisignored and has no effect.

* If the corresponding key press was ignored, and if the
XkbSA LockNoUnlock bit isnot set in the flags field, akey
release generates an input extension DeviceButtonRe-
lease event instead of aKeyRelease event and unlocks the
button. If the corresponding key press locked a button, the key
release isignored and has no effect.

The flags field is composed of the bitwise inclusive OR of the masks shown in Table

16.18.
Table 16.18 Device Button Action Flags
Flag Meaning
XkbSA LockNoLock If set, and the action type is XkbSA LockDeviceBtn, the

server only unlocks the button.

November 10, 1997 Library Version 1.0/Document Revision 1.1 158

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.18 Device Button Action Flags

Flag Meaning
XkbSA LockNoUnlock If set, and the action type is XkbSA LockDeviceBtn, the
server only locks the button.

16.1.14Actions for Simulating Events from Device Valuators

A valuator manipulates arange of values for some entity, like amouse axis, aslider or a
dial. Actions associated with XkbDeviceValuatorAction structures are used to simu-
late events from one or two input extension device valuators.

typedef struct _XkbDeviceValuatorAction {
unsigned char type; [*XkbSA DeviceValuator */
unsigned char device; [* device ID */
unsigned char vl what; /* determines how valuator isto behave for valuator 1 */
unsigned char vl ndx; /* specifiesareal valuator */
unsigned char vl value; /* thevaluefor valuator 1 */
unsigned char ~ v2 what; /* determines how valuator isto behave for valuator 2 */
unsigned char v2 ndx; /* specifiesareal valuator */
unsigned char v2 value; /* thevauefor valuator 1 */
} XkbDeviceValuator Action;

If deviceisillegal or if neither v1_ndx nor v2_ndx specifies alegal valuator, this action
behaves like XkbSA NoAction.

The low four bits of vl what and v2_what specify the corresponding scale value (denoted
val<n>Scalein Table 16.17), if needed. The high four bits of v1_what and v2_what specify
the operation to perform to set the values. The high four bits of v1_what and v2_what can
have the values shown in Table 16.17; the use of val<n>Scale isshown in that table

also.

Table 16.19 Device Valuator v<n>_what High Bits Values
Value of high bits Effect
XkbSA IgnoreVal No action
XkbSA SetValMin v<n>_valueis set to its minimum legal value.
XkbSA SetValCenter v<n>_valueis centered (to (max-min)/2).
XkbSA SetValMax v<n>_valueis set to its maximum legal value.

XkbSA SetValRelative v<n> value* (2Ya<"™S4€) isagded to v<n>_value.
XkbSA_SetValAbsolute v<n> valueissetto (2Va<">Scale)

Illegal valuesfor XkbSA SetValRelative or XkbSA SetValAbsolute areclamped into
range. Note that all of these possibilities are legal for absolute valuators. For relative valuators,
only XkbSA SetValRelative ispermitted. Part of the input extension description of adevice
isthe range of legal values for al absolute valuators, whence the maximum and minimum legal
values shownin Table 16.17.

The following two masks are provided as a convenience to select either portion of
vl what or v2_what:

#define XkbSA _ValOpMask (0x70)
#define XkbSA_Val ScaleMask (0xQ7)

November 10, 1997 Library Version 1.0/Document Revision 1.1 159

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

vl ndx and v2_ndx specify valuators that actually exists. For example, most mice have
two valuators (x and y axes) so the only legal values for amouse would be 0 and 1. For a
dial box with eight dials, any value in the range 0..7 would be correct.

16.1.150btaining Key Actions for Keys from the Server

To update the actions (the key_acts array) for a subset of the keysin a keyboard descrip-
tion, use XkbGetKeyActions.

Status XkbGetK eyActions(dpy, first, num, xkb)

Display * dpy; /* connection to X server */

unsigned int first; * keycode of first key of interest */

unsigned int nuny; /* number of keysdesired */

XkbDescPtr xkb; * pointer to keyboard description where result is stored */

XkbGetKeyActions sends a request to the server to obtain the actions for num keys on the
keyboard starting with key first. It waits for areply and returns the actionsin the
server->key actsfield of xkb. If successful, XkbGetKeyActions returns Success. The xkb
parameter must be a pointer to avalid Xkb keyboard description.

If the server map in the xkb parameter has not been allocated, XkbGetKeyActions allocates
and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyActions returns Badaccess. If numislessthan 1 or
greater than XkbMaxKeyCount, XkbGetKeyActions returns Badvalue. If any allocation
errors occur, XkbGetKeyActions returns Badalloc.

16.1.16Changing the Number of Actions Bound to a Key
To change the number of actions bound to a key, use XkbResizeKeyAction.
XkbAction * XkbResizeK eyActions(xkb, key, needed)

XkbDescRec * xkb; [* keyboard description to change */
int key; [* keycode of key to change */
int needed; /* new number of actions required */

The xkb parameter points to the keyboard description containing the key whose number of
actionsisto be changed. The key parameter is the keycode of the key to change, and
needed specifies the new number of actions required for the key.

XkbResizeKeyActions reserves the space needed for the actions and returns a pointer to the
beginning of the new array that holds the actions. It can change the acts, num_acts, and
size actsfields of xkb->server if it is necessary to reallocate the acts array.

If needed is greater than the current number of keysymsfor the key, XkbResizeKeyActions
initializes all new actionsin the array to NoAction.

Because the number of actions needed by akey is normally computed as width * number
of groups, and XkbResi zeKeyActions does not modify either the width or number of groups
for the key, a discrepancy exists on return from XkbResizeKeyActions between the space
allocated for the actions and the number required. The unused entriesin the list of actions
returned by XkbResizeKeyActions are not preserved across future calls to any of the map
editing functions, so you must update the key actions (which updates the width and num-

November 10, 1997 Library Version 1.0/Document Revision 1.1 160

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.2

ber of groups for the key) before calling another allocator function. A call to XkbChange-
TypesOfKey updates these.

If any allocation errors occur while resizing the number of actions bound to the key,
XkbResizeKeyActions returns NULL.

Note A changeto the number of actions bound to akey should be accompanied by a change
in the number of symbols bound to akey. Refer to section 15.3.7 for more information
on changing the number of symbols bound to a key.

Key Behavior

Key behavior refers to the demeanor of a key. For example, the expected behavior of the
CapsLock key isthat it logically locks when pressed, and then logically unlocks when
pressed again.

16.2.1 Radio Groups

Keys that belong to the same radio group have the XkbKB RadioGroup typein the type
field and the radio group index specified in the data field in the XkbBehavior structure.
If the radio group has a name in the XkbNamesRec structure, the radio group index is the
index into the radio_group array in the XkbNamesRec structure. A radio group key when
pressed stays logically down until another key in the radio group is pressed, when the first
key becomes logically up and the new key becomes logically down. Setting the

XkbKB RGAllowNone bitin the behavior for all of the keys of the radio group means that
pressing the logically down member of the radio group causesit to logically release, in
which case none of the keys of the radio group would be logically down. If

XkbKB RGAllowNone iSnot set, thereis no way to release the logically down member of
the group.

The low five bits of the data field of the XkbBehavior structure are the group number,
the high three bits are flags. The only flag currently defined is:

#define XkbRG_AllowNone 0x80

16.2.2 The XkbBehavior Structure

The behaviorsfield of the server map is an array of XkbBehavior structures, indexed by
keycode, and contains the behavior for each key. The XkbBehavior structure is defined
asfollows:

typedef struct _XkbBehavior {
unsigned char type; I* behavior type + optional XkbKB Permanent bit */
unsigned char data;

} XkbBehavior;

The type field specifies the Xkb behavior, and the value of the data field depends on the
type. Xkb supports the key behaviors shown in Table 16.20.

Table 16.20 Key Behaviors

Type Effect
XkbKB Default Press and release events are processed normally. The data field is unused.

November 10, 1997 Library Version 1.0/Document Revision 1.1 161

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

Table 16.20 Key Behaviors

Type Effect

XkbKB Lock If akey islogically up (that is, the corresponding bit of the core key map
iscleared) when it is pressed, the key pressis processed normally and the
corresponding release isignored. If the key islogically down when
pressed, the key pressisignored but the corresponding release is pro-
cessed normally. The data field is unused.

XkbKB RadioGroup If another member of the radio group islogically down (all members of
the radio group have the same index, specified in data) when akey is
pressed, the server synthesizes a key release for the member that islogi-
cally down and then processes the new key press event normally.

If the key itself islogically down when pressed, the key press event is
ignored, but the processing of the corresponding key rel ease depends on
the value of the Xkb RGA1llowNone bitinflags. If itis set, the key
releaseis processed normally; otherwise, the key release is also ignored.

All other key release events are ignored.

XkbKB Overlayl If the Overlay1 control isenabled (see section 10.4), data isinterpreted
as akeycode, and events from this key are reported asif they came from
data’s keycode. Otherwise, press and rel ease events are processed nor-
mally.

XkbKB Overlay?2 If the Overlay2 control isenabled (see section 10.4), data isinterpreted
as akeycode, and events from this key are reported asif they came from
data’s keycode. Otherwise, press and rel ease events are processed nor-
mally.

Xkb aso provides the mask, XkbKB Permanent to specify whether the key behavior
type should be simulated by Xkb or whether the key behavior describes an unalterable
physical, electrical, or software aspect of the keyboard. If the XkbKB Permanent bit is
not set in the type field, Xkb simulates the behavior in software. Otherwise, Xkb relies
upon the keyboard to implement the behavior.

16.2.3 Obtaining Key Behaviors for Keys from the Server

To obtain the behaviors (the behaviors array) for a subset of the keysin a keyboard
description from the server, use XkbGetKeyBehaviors:

Status XkbGetK eyBehavior s(dpy, first, num, xkb)

Display * dpy; /* connection to server */

unsigned int first; /* keycode of first key to get */

unsigned int num; /* number of keys for which behaviors are desired */
XkbDescPtr xkb; /* Xkb description to contain the result */

XkbGetKeyBehaviors sends arequest to the server to obtain the behaviorsfor numkeyson
the keyboard starting with the key whose keycode isfirst. It waits for areply and returns
the behaviorsin the server->behaviors field of xkb. If successful, XkbGetKeyBehaviors
returns Success.

If the server map in the xkb parameter has not been allocated, XkbGetKeyBehaviors allo-
cates and initializes it before obtaining the actions.

If the server does not have acompatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyBehaviors returns Badaccess. If numislessthan 1 or
greater than XkbMaxKeyCount, XkbGetKeyBehaviors returns Badvalue. If any alloca-
tion errors occur, XkbGetKeyBehaviors returns Badalloc.

November 10, 1997 Library Version 1.0/Document Revision 1.1 162

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.3 Explicit Components—Avoiding Automatic Remapping by the Server

Whenever a client remaps the keyboard using core protocol requests, Xkb examines the
map to determine likely default values for the components that cannot be specified using
the core protocol (see section 17.1.2 for more information on how Xkb chooses the default
values).

Thisautomatic remapping might replace definitions explicitly requested by an application,
so the Xkb keyboard description defines an explicit components mask for each key. Any
aspects of the automatic remapping listed in the explicit components mask for akey are
not changed by the automatic keyboard mapping.

The explicit components masks are held in the explicit field of the server map, whichisan
array indexed by keycode. Each entry inthisarray isamask that isabitwise inclusive OR
of the values shown in Table 16.21.

Table 16.21 Explicit Component Masks

Bitin Explicit Mask Value Protects Against

ExplicitKeyTypel (1<<0) Automatic determination of the key type associated with
Groupl.

ExplicitKeyType?2 (1<<1) Automatic determination of the key type associated with
Group2.

ExplicitKeyType3 (1<<2) Automatic determination of the key type associated with
Group3.

ExplicitKeyType4 (1<<3) Automatic determination of the key type associated with
Group4 .

ExplicitInterpret (1<<4) Application of any of thefieldsof asymbol interpretation
to the key in question.

ExplicitAutoRepeat (1<<5) Automatic determination of auto-repeat statusfor the key,
as specified in asymbol interpretation.

ExplicitBehavior (1<<6) Automatic assignment of the XkbKB Lock behavior tothe
key, if the XkbSI LockingKey flagissetin asymbol
interpretation.

ExplicitVModMap (1<<7) Automatic determination of the virtual modifier map for
the key based on the actions assigned to the key and the
symbol interpretations that match the key.

16.3.1 Obtaining Explicit Components for Keys from the Server

To obtain the explicit components (the explicit array) for asubset of the keysin akeyboard
description, use XkbGetKeyExplicitComponents.

Status XkbGetK eyExplicitComponents(dpy, first, num, xkb)

Display * dpy; [* connection to server */

unsigned int first; [* keycode of first key to fetch */

unsigned int nuny; /* number of keysfor which to get explicit info */
XkbDescPtr xkb; /* Xkb description in which to put results */

XkbGetKeyExplicitComponents sends a request to the server to obtain the explicit compo-
nents for num keys on the keyboard starting with key first. It waits for areply and returns
the explicit components in the server->explicit array of xkb. If successful, XkbGetKeyEx-
plicitComponents returns Success. The xkb parameter must be a pointer to avalid Xkb
keyboard description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 163

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

16.4

If the server map in the xkb parameter has not been alocated, XkbGetKeyExplicitCompo-
nents allocates and initializes it before obtaining the actions.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyExplicitComponents returns BadMatch. If numislessthan
1 or greater than XkbMaxKeyCount, XkbGetKeyExplicitComponents returns Badvalue.
If any allocation errors occur, XkbGetKeyExplicitComponents returns BadAlloc.

Virtual Modifier Mapping

The vmods member of the server map is afixed-length array containing XkbNumVir-
tualMods entries. Each entry corresponds to a virtual modifier and provides the binding
of the virtual modifier to the real modifier bits. Each entry in the vmods array is a bitwise
inclusive OR of the legal modifier masks:

ShiftMask
LockMask
ControlMask
Mod1lMask
Mod2Mask
Mod3Mask
Mod4Mask
Mod5Mask

The vmodmap member of the server map is similar to the modmap array of the client map
(see section 15.4), but is used to define the virtual modifier mapping for each key. Likethe
modmap member, it isindexed by keycode, and each entry is a mask representing the vir-
tual modifiers bound to the corresponding key:

» Each of the bits in avmodmap entry represents an index into the vmods member. That
is, bit 0 of avmodmap entry refersto index O of the vmods array, bit 1 referstoindex 1,
and so on.

« If ahitissetinthe vmodmap entry for akey, that key is bound to the corresponding vir-
tual modifier in the vmods array.

The vmodmap and vmods members of the server map are the “master” virtual modifier
definitions. Xkb automatically propagates any changes to these fields to al other fields
that use virtual modifier mappings.

November 10, 1997 Library Version 1.0/Document Revision 1.1 164

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

The overall relationship of fields dealing with virtual modifiersin an Xkb keyboard
description are shown in Figure 16.2.

KeyCode
:
> i
vmods 0 I :
Definereal dS[1] N J_H'
vmo
modifiers bound :’ dZ[[Z} > |
i vmo
trﬂ(‘,’éﬁ‘,‘g'r | unsigned short i
! (oneper key) |
| Defines virtual modifiers
| vmodg[15] for each key. |
|
| vmodmap — |
server ! |
| XkbServerMapRec |
| I
I
names ittt >
I
| vmods[0]
XkbDescRec | vmods[1]
vmodg[2]
vmods[15]
XkbNamesRec

Figure 16.2 Virtual Modifier Relationships

16.4.1 Obtaining Virtual Modifier Bindings from the Server

To obtain asubset of the virtual modifier bindings (the vmods array) in akeyboard descrip-
tion, use XkbGetVirtualMods:

Status XkbGetVirtualM ods(dpy, which, xkb)

Display * dpy; [* connection to server */
unsigned int which; /* mask indicating virtual modifier bindingsto get */
XkbDescPtr xkb; /* Xkb description where results will be placed */

XkbGet\VirtualMods sends arequest to the server to obtain the vmods entries for the virtual
modifiers specified in the mask, which, and waitsfor areply. See section 7.1 for a descrip-
tion of how to determine the virtual modifier mask. For each bit set in which, XkbGetVir-
tualMods updates the corresponding virtual modifier definition in the server->vmods
array of xkb. The xkb parameter must be a pointer to avalid Xkb keyboard description. If
successful, XkbGetVirtualMods returns Success.

If the server map has not been allocated in the xkb parameter, XkbGet\VirtualMods allo-
cates and initializes it before obtaining the virtual modifier bindings.

November 10, 1997 Library Version 1.0/Document Revision 1.1 165

The X Keyboard Extension 16 Xkb Server Keyboard Mapping

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetVirtualMods returns BadMatch. Any errorsin allocation
cause XkbGetVirtualMods to return Badalloc.

16.4.2 Obtaining Per-Key Virtual Modifier Mappings from the Server

To obtain the virtual modifier map (the vmodmap array) for a subset of the keysin a key-
board description, use XkbGetKey\VirtualModMayp:

Status XkbGetK eyVirtualM odM ap(dpy, first, num, xkb)

Display * dpy; [* connection to server */

unsigned int first; [* keycode of first key to fetch */

unsigned int nuny; [* # keys for which virtual mod maps are desired */
XkbDescPtr xkb; /* Xkb description where results will be placed */

XkbGetKeyVirutalModmap sends a request to the server to obtain the virtual modifier
mappings for num keys on the keyboard starting with key first. It waits for areply and
returns the virtual modifier mappings in the server->vmodmap array of xkb. If successful,
XkbGetKeyVirtualModMap returns Success. The xkb parameter must be a pointer to a
valid Xkb keyboard description

If the server map in the xkb parameter has not been allocated, XkbGetKeyVirtualModMap
allocates and initializes it before obtaining the virtual modifier mappings.

If the server does not have a compatible version of Xkb, or the Xkb extension has not been
properly initialized, XkbGetKeyVirtualModMap returns BadMatch. If numislessthan 1
or greater than XkbMaxKeyCount, XkbGetKeyMVirtualModMap returns Badvalue. If any
allocation errors occur, XkbGetKeyVirtualModMap returns Badalloc.

November 10, 1997 Library Version 1.0/Document Revision 1.1 166

The X Keyboard Extension 17 The Xkb Compatibility Map

17 The Xkb Compatibility Map

Asshown in Figure 17.1, the X server isnormally dealing with more than one client, each
of which may be receiving events from the keyboard, and each of which may issue
requests to modify the keyboard in some manner. Each client may be either Xkb-unaware,
Xkb-capable, or Xkb-aware. The server itself may be either Xkb-aware or Xkb-unaware.
If the server is Xkb-unaware, Xkb state and keyboard mappings are not involved in any
manner, and Xkb-aware clients may not issue Xkb requests to the server. If the server is
Xkb-aware, the server must be able to deliver events and accept requests in which the key-
board state and mapping are compatible with the mode in which the client is operating.
Consequently, for some situations, conversions must be made between Xkb state / key-
board mappings and core protocol state / keyboard mappings, and vice versa.

Xkb-aware
Keycode - Server i
Keyboard > Maintains Xkb State and Mapping,
core kb mapping, but not core kb state . Core protocol

A Xkb| Xkb protocol
z\ config
mapping
Coy maggi ng XKD Xkb
kb
mapping

Xkb _
/ config ‘\co‘nflg
state state¢

y
Xkb-unaware XKkb-capable Xkb-aware
Client Client Client
Core kb Xlib Xkb-aware Xlib Xkb-aware Xlib
Xkb-unaware App Xkb-unaware App Xkb-aware App

Figure 17.1 Server Interaction with Types of Clients

In addition to these situations involving a single server, there are cases where a client that
deals with multiple servers may need to configure keyboards on different serversto be
similar and the different servers may not all be Xkb-aware. Finally, a client may be deal-
ing with descriptions of keyboards (files, and so on) that are based on core protocol and
therefore may need to be able to map these descriptions to Xkb descriptions.

An Xkb-aware server maintains keyboard state and mapping as an Xkb keyboard state and
an Xkb keyboard mapping plus a compatibility map used to convert from Xkb compo-
nents to core components and vice versa. In addition, the server also maintains a core key-
board mapping that approximates the Xkb keyboard mapping. The core keyboard
mapping may be updated piecemeal, on a per-key basis. When the server receives a core
protocol ChangeKeyboardMapping oOr SetModifierMapping request, it updatesits
core keyboard mapping, then uses the compatibility map to update its Xkb keyboard map-

November 10, 1997 Library Version 1.0/Document Revision 1.1 167

The X Keyboard Extension

17 The Xkb Compatibility Map

ping. When the server receives an XkbSetMap request, it updates those portions of its
Xkb keyboard mapping specified by the request, then usesits compatibility map to update
the corresponding parts of its core keyboard map. Consequently, the server’s Xkb key-
board map and aso its core keyboard map may contain components that were set directly
and others that were computed. Figure 17.2 illustrates these relationships.

Note The core keyboard map is contained only in the server, not in any client-side data
structures.

Core Pointer Button State

ServerlnternalModifiers
IgnoreLocksModifiers
IgnoreGroupL ock

Base Modifiersand Group —
Locked Modifiersand Group —+——® Modifiers
Latched Modifiers and Group —

Xkb State

Effective

|

and Group

LookupState -
Grab State 7|

— Compatibility Lookup State
J—> Compatibility Grab State

Compatibility State

Compatibility Map
Explicit Override Controls

Xkb Keyboard Map

-

Core Keyboard Map

Figure 17.2 Server Derivation of State and Keyboard M apping Components

There are three kinds of compatibility transformations made by the server:
1. Xkb Stateto Core State

Keyboard state information reported to aclient in the state field of various core events
may be trandated from the Xkb keyboard state maintained by the server, which
includes a group number, to core protocol state, which does not.

In addition, whenever the Xkb state is retrieved, the compat_state,
compat_grab_mods, and compat_|lookup_mods fields of the XkbStateRec returned
indicate the result of applying the compatibility map to the current Xkb state in the

server.

2. CoreKeyboard Mapping to Xkb Keyboard Mapping

After core protocol requests received by the server to change the keyboard mapping

(ChangeKeyboardMapping and SetModifierMapping) have been applied to the
server’s core keyboard map, the results must be transformed to achieve an equivalent
change of the Xkb keyboard mapping maintained by the server.

3. Xkb Keyboard Mapping to Core Keyboard M apping

After Xkb protocol requests received by the server to change the keyboard mapping
(XkbsetMap) have been applied to the server’ s Xkb keyboard map, the results are

November 10, 1997

Library Version 1.0/Document Revision 1.1

168

The X Keyboard Extension 17 The Xkb Compatibility Map

transformed to achieve an approximately equivalent change to the core keyboard map-
ping maintained by the server.

This chapter discusses how a client may modify the compatibility map so that subsequent
transformations have a particular result.

17.1 The XkbCompatMap Structure

All configurable aspects of mapping Xkb state and configuration to and from core proto-
col state and configuration are defined by a compatibility map, contained in an XkbCom-
patMap structure; plus a set of explicit override controls used to prevent particular
components of type 2 (core-to-Xkb keyboard mapping) transformations from automati-
cally occurring. These explicit override controls are maintained in aseparate data structure
discussed in section 16.3.

The compat member of an Xkb keyboard description (XkbDescRec) points to the
XkbCompatMap structure:

typedef struct XkbCompatMapRec {
XkbSyminterpretPtr sym_interpret; /* symbol based key semantics*/

XkbM odsRec groups] XkbNumKbdGroups]; [* group => modifier map */
unsigned short num_si; [* # structures used in sym_interpret */
unsigned short size si; [* # structures allocated in sym _interpret */

} XkbCompatM apRec, * XkbCompatM apPtr;

compat ﬁ

sym_interpret *
groups|0] Group.
groups[1] compatibility 0
maps
XkbDescRec groups|2]
groups[3]
num_si num_ si -1
size s
XkbCompatM apRec szesi-1

XkbSyminterpretRec(s)

Figure 17.3 Xkb Compatibility Data Structures

The subsections that follow discuss how the compatibility map and explicit override con-
trols are used in each of the three cases where compatibility transformations are made.

17.1.1 Xkb State to Core Protocol State Transformation

Asshown in Figure 17.3, there are four group compatibility maps (contained in groups
[0..3]) in the XkbCompatMapRec structure, one per possible Xkb group. Each group com-
patibility map isamodifier definition (see section 7.2 for a description of modifier defini-

November 10, 1997 Library Version 1.0/Document Revision 1.1 169

The X Keyboard Extension 17 The Xkb Compatibility Map

tions). The mask component of the definition specifies which real modifiers should be set
in the core protocol state field when the corresponding group is active. Because only one
group is active at any one time, only one of the four possible transformationsis ever
applied at any one point intime. If the device described by the XkbDescRec does not sup-
port four groups, the extra groups fields are present, but undefined.

Normally, the Xkb-aware server reports keyboard state in the state member of events such
as aKeyPress event and ButtonPress event, encoded as follows:

bits meaning

15 0

13-14 Group index
8-12 Pointer Buttons
0-7 Modifiers

For Xkb-unaware clients, only core protocol keyboard information may be reported.
Because core protocol does not define the group index, the group index is mapped to mod-
ifier bits as specified by the groups]group index] field of the compatibility map (the bits
set in the compatibility map are ORed into bits 0-7 of the state), and bits 13-14 are
reported in the event as zero.

17.1.2 Core Keyboard Mapping to Xkb Keyboard Mapping Transformation

When a core protocol keyboard mapping request is received by the server, the server’s
core keyboard map is updated, and then the Xkb map maintained by the server is updated.
Because a client may have explicitly configured some of the Xkb keyboard mapping in the
server, this automatic regeneration of the Xkb keyboard mapping from the core protocol
keyboard mapping should not modify any components of the Xkb keyboard mapping that
were explicitly set by aclient. The client must set explicit override controlsto prevent this
from happening (see section 16.3). The core-to-Xkb mapping is done as follows:

1. Map the symbols from the keys in the core keyboard map to groups and symbols on
keysin the Xkb keyboard map. The core keyboard mapping is of fixed width, so each
key in the core mapping has the same number of symbols associated with it. The Xkb
mapping allows a different number of symbols to be associated with each key; those
symbols may be divided into a different number of groups (1-4) for each key. For each
key, this process therefore involves partitioning the fixed number of symbolsfrom the
core mapping into a set of variable-length groups with a variable number of symbols
in each group. For example, if the core protocol map is of width five, the partition for
one key might result in one group with two symbols and another with three symbols.
A different key might result in two groups with two symbols plus a third group with
one symbol. The core protocol map requires at least two symbolsin each of the first
two groups.

la. For each changed key, determine the number of groups represented in the new core
keyboard map. Thisresultsin atentative group count for each key in the Xkb map.

1b. For each changed key, determine the number of symbolsin each of the groups
found in step 1a. Thereisone explicit override control associated with each of the
four possible groups for each Xkb key, ExplicitKeyTypel through
ExplicitKeyTyped4. If no explicit override control isset for agroup, the number
of symbols used for that group from the core map istwo. If the explicit override
control is set for a group on the key, the number of symbols used for that Xkb

November 10, 1997 Library Version 1.0/Document Revision 1.1 170

The X Keyboard Extension 17 The Xkb Compatibility Map

1c.

1d.

le.

group from the core map is the width of the Xkb group with one exception:
because of the core protocol requirement for at least two symbolsin each of groups
one and two, the number of symbols used for groups one and two is the maximum
of 2 or the width of the Xkb group.

For each changed key, assign the symbolsin the core map to the appropriate group
on thekey. If the total number of symbols required by the Xkb map for a particular
key needs more symbols than the core protocol map contains, the additional sym-
bols are taken to be NoSymbol keysyms appended to the end of the core set. If the
core map contains more symbols than are needed by the Xkb map, trailing sym-
bolsin the core map are discarded. In the absence of an explicit override for group
one or two, symbols are assigned in order by group; the first symbolsin the core
map are assigned to group one, in order, followed by group two, and so on. For
example, if the core map contained eight symbols per key, and a particular Xkb
map contained 2 symbols for G1 and G2 and three for G3, the symbols would be
assigned as (G isgroup, L isshift level):

GlL1G1L2G2L1 G2L2 G3L1 G3L2 G3L3

If an explicit override control is set for group one or two, the symbols are taken
from the core set in a somewhat different order. The first four symbols from the
core set are assigned to G1L 1, G1L2, G2L1, G2L 2, respectively. If group one
requires more symbols, they are taken next, and then any additional symbols
needed by group two. Group three and four symbols are taken in complete
sequence after group two. For example, a key with four groups and three symbols
in each group would take symbols from the core set in the following order:

GlL1G1L2G2L1 G2L2 G1L3 G2L3 G3L1 G3L2 G3L3 GAL1 GAL2 G4L3

As previously noted, the core protocol map requires at lease two symbolsin
groups one and two. Because of this, if an explicit override control for an Xkb key
is set and group one and / or group two is of width one, it is not possible to gener-
ate the symbols taken from the core protocol set and assigned to position G1L2
and/ or G2L 2.

For each group on each changed key, assign akey type appropriate for the symbols
in the group.

For each changed key, remove any empty or redundant groups.

At this point, the groups and their associated symbols have been assigned to the corre-
sponding key definitionsin the Xkb map.

2. Apply symbol interpretations to modify key operation. This phase is completely
skipped if the ExplicitInterpret overridecontrol bitisset inthe explicit controls
mask for the Xkb key (see section 16.3).

2a. For each symbol on each changed key, attempt to match the symbol and modifiers

from the Xkb map to a symbol interpretation describing how to generate the sym-
bol.

2b. When amatch isfound in step 2a, apply the symbol interpretation to change the

semantics associated with the symbol in the Xkb key map. If no match is found,
apply adefault interpretation.

November 10, 1997 Library Version 1.0/Document Revision 1.1 171

The X Keyboard Extension 17 The Xkb Compatibility Map

The symbol interpretations used in step 2 are configurable and may be specified using
XkbSymInterpretRec structures referenced by the sym interpret field of an XkbCom-
patMapRec (see Figure 17.3).

Symbol Interpretations — the XkbSyminterpretRec Structure

Symbol interpretations are used to guide the X server when it modifiesthe Xkb keymapin
step 2. Aninitial set of symbol interpretationsis loaded by the server when it starts. A cli-
ent may add new ones using XkbSetCompatMap (see section 17.4).

Symbol interpretations result in key semantics being set. When a symbol interpretation is
applied, the following components of server key event processing may be modified for the
particular key involved:

Virtual modifier map

Auto repeat

Key behavior (may be set to XkbKB Lock)
Key action (see section 16.1)

The XkbSymInterpretRec structure specifies a symbol interpretation:

typedef struct {
KeySym sym; * keysym of interest or NULL */
unsigned char flags, [* XkbSI AutoRepeat, XkbSI LockingKey */
unsigned char match; I* specifies how modsisinterpreted */
unsigned char mods; I* modifier bits, correspond to eight real modifiers*/
unsigned char virtual_mod; /* 1 modifier to add to key virtual mod map */
XkbAnyAction act; * action to bind to symbol position on key */

} XkbSymlnterpretRec,* XkbSyminterpretPtr;

If symisnot NULL, it limits the symbol interpretation to keys on which that particular key-
sym is selected by the modifiers matching the criteria specified by mods and match. If sym
ISNULL, the interpretation may be applied to any symbol selected on a key when the mod-
ifiers match the criteria specified by mods and match.

match must be one of the values shown in Table 17.1 and specifies how the real modifiers
specified in mods are to be interpreted.

Table 17.1 Symbol Interpretation Match Criteria

Match Criteria Value Effect

XkbSI NoneOf (0) None of the bits that are on in mods can be set, but
other bits can be.

XkbSI AnyOfOrNone (1) Zero or more of the bits that are on in mods can be set,
aswell as others.

XkbSI AnyOf 2 One or more of the bits that are on in mods can be set, as
well as any others.

XkbSI AllOf ©)) All of the bits that are on in mods must be set, but oth-
ers may be set as well.

XkbSI Exactly (4) All of the bits that are on in mods must be set, and no

other bits may be set.

In addition to the above hits, match may contain the XkbST LevelOneOnly bit, inwhich
case the modifier match criteria specified by mods and match appliesonly if symisin level

November 10, 1997 Library Version 1.0/Document Revision 1.1 172

The X Keyboard Extension 17 The Xkb Compatibility Map

one of its group; otherwise, mods and match are ignored and the symbol matches a condi-
tion where no modifiers are set.

#define XkbSI_LevelOneOnly (0x80) /* use mods + match only if symislevel 1*/
If no matching symbol interpretation is found, the server uses a default interpretation

where:
sym= 0
flags = XkbSI AutoRepeat
match = XkbSI AnyOfOrNone
mods = 0
virtual mod= - XkbNoModifier
act = SA NoAction

When amatching symbol interpretation is found in step 2a, the interpretation is applied to
modify the Xkb map as follows.

The act field specifies a single action to be bound to the symbol position; any key event
that selects the symbol causes the action to be taken. Valid actions are defined in section
16.1.

If the Xkb keyboard map for the key does not have its ExplicitVModMap control set, the
XkbSI LevelOneOnly bit and symbol position are examined. If the

XkbSI LevelOneOnly bitisnot set in match or the symbol isin position G1L 1, the
virtual_mod field is examined. If virtual_mod is not XkbNoModifier, virtual_mod specifies
asingle virtual modifier to be added to the virtual modifier map for the key. virtual_mod is
specified as an index in the range [0..15].

If the matching symbol isin position G1L 1 of the key, two bitsin the flags field poten-
tially specify additional behavior modifications:

#define XkbSl_AutoRepeat (1<<0) /* key repeatsif symisin position G1L1 */
#define XkbSI_LockingKey (1<<1) /* set KB Lock behavior if symisinpsn G1L1 */

If the Xkb keyboard map for the key does not have its ExplicitAutoRepeat control
Set, its auto repeat behavior is set based on the value of the XkbSI AutoRepeat hit. If
the XkbSI AutoRepeat bit isset, the auto-repeat behavior of the key isturned on; other-
wise, it isturned off.

If the Xkb keyboard map for the key does not have its ExplicitBehavior control set,
its locking behavior is set based on the value of the XkbSI LockingKey bit. If

XkbSI LockingKey isSset, the key behaviorisset to KB Lock; otherwise, it isturned off
(see section 16.3).

17.1.3 Xkb Keyboard Mapping to Core Keyboard Mapping Transformations

Whenever the server processes Xkb reguests to change the keyboard mapping, it discards
the affected portion of its core keyboard mapping and regenerates it based on the new Xkb

mapping.

When the Xkb mapping for akey is transformed to a core protocol mapping, the symbols
for the core map are taken in the following order from the Xkb map:

GlL1G1L2 G2L1 G2L2 G1L3-n G2L.3-n G3L1-n G4L1-n

November 10, 1997 Library Version 1.0/Document Revision 1.1 173

The X Keyboard Extension 17 The Xkb Compatibility Map

17.2

If group oneis of width onein the Xkb map, G1L2 istaken to be NoSymbol; similarly, if
group two is of width one in the Xkb map, G2L 2 is taken to be NoSymbol.

If the Xkb key map for a particular key has fewer groups than the core keyboard, the sym-
bols for group one are repeated to fill in the missing core components. For example, an
Xkb key with a single width-three group would be mapped to a core mapping counting
three groups as:

GlL1G1L2G1L1 G1L2 G1L3 G1L3 G1L1 G1L2 G1L3

When a core keyboard map entry is generated from an Xkb keyboard map entry, a modi-
fier mapping is generated as well. The modifier mapping contains al of the modifiers
affected by any of the actions associated with the key combined with all of the real modi-
fiers associated with any of the virtual modifiers bound to the key. In addition, if any of
the actions associated with the key affect any component of the keyboard group, all of the
modifiersin the mask field of all of the group compatibility maps are added to the modi-
fier mapping as well. While an XkbSA ISOLock action can theoretically affect any mod-
ifier, if the Xkb mapping for akey specifies an XkbSA ISOLock action, only the
modifiers or group that are set by default are added to the modifier mapping.

Getting Compatibility Map Components From the Server

Use XkbGetCompatMap to fetch any combination of the current compatibility map com-
ponents from the server. When another client modifies the compatibility map, you are
notified if you have selected for XkbCompatMapNot i fy events (see section 17.5). Xkb-
GetCompatMap is particularly useful when you receive an event of thistype, asit alows
you to update your program’ s version of the compatibility map to match the modified ver-
sion now in the server. If your program is dealing with multiple servers and needs to con-
figurethem al in asimilar manner, the updated compatibility map may be used to
reconfigure other servers.

Note To make acomplete matching configuration you must also update the explicit override
components of the server state.

Status XkbGetCompatM ap(display, which, xkb)

Display * display; /* connection to server */
unsigned int which; /* mask of compatibility map componentsto fetch */
XkbDescRec * xkb; /* keyboard description where results placed */

XkbGetCompatMap fetches the components of the compatibility map specified in which
from the server specified by display and places them in the compat structure of the key-
board description xkb. Valid values for which are an inclusive OR of the values shownin
Table 17.2.

Table 17.2 Compatibility Map Component Masks

Mask Value Affecting

XkbSymInterpMask (1<<0) Symboal interpretations
XkbGroupCompatMask (1<<1) Group maps
XkbAllCompatMask (0x3) All compatibility map components

If no compatibility map structure is allocated in xkb upon entry, XkbGetCompatMap allo-
cates one. If one already exists, its contents are overwritten with the returned results.

November 10, 1997 Library Version 1.0/Document Revision 1.1 174

The X Keyboard Extension 17 The Xkb Compatibility Map

17.3

XkbGetCompatMap fetches compatibility map information for the device specified by the
device_spec field of xkb. Unless you have specifically modified thisfield, it is the default
keyboard device. XkbGetCompatMap returns Success if successful, Badalloc if itis
unabl e to obtain necessary storage for either the return values or work space, BadMatch if
the dpy field of the xkb argument is non-NULL and does not match the display argument,
and BadLength under certain conditions caused by server or Xkb implementation errors.

Using the Compatibility Map

Xkb provides several functions that make it easier to apply the compatibility map to con-
figure aclient-side Xkb keyboard mapping, given acore protocol representation of part or
all of akeyboard mapping. Obtain a core protocol representation of a keyboard mapping
from an actual server (by using XGetKeyboardMapping, for example), adatafile, or some
other source.

To update alocal Xkb keyboard map to reflect the mapping expressed by a core format
mapping by calling the function XkbUpdateMapFromCore.

Bool XkbUpdateM apFromCore(xkb, first_key, num_keys, map_width, core_keysyms, changes)

XkbDescPtr xkb; [* keyboard description to update */

KeyCode first_key; /* keycode of first key description to update */
int num_keys, /* number of key descriptionsto update */

int map_width; /* width of core protocol keymap */

KeySym * core_keysyms; /* symbolsin core protocol keymap */
XkbChangesPtr changes; /* backfilled with changes made to Xkb */

XkbUpdateMapFromCore interprets input argument information representing a keyboard
map in core format to update the Xkb keyboard description passed in xkb. Only a portion
of the Xkb map is updated — the portion corresponding to keys with keycodes in the
range first_key through first_key + num_keys- 1. If XkbUpdateMapFromCore is being called
in response to aMappingNotify event, first_key and num_keys are reported in the Map-
pingNotify event. core_keysyms contains the keysyms corresponding to the keycode
range being updated, in core keyboard description order. map_width is the number of key-
syms per key in core_keysyms. Thus, the first map_width entriesin core_keysyms are for
the key with keycode first_key, the next map_width entriesare for key first_key + 1, and so
on.

In addition to modifying the Xkb keyboard mapping in xkb, XkbUpdateMapFromCore
backfills the changes structure whose address is passed in changes to indicate the modifi-
cations that were made. Y ou may then use changes in subsequent calls such as XkbSet-
Map, to propagate the local modifications to a server.

November 10, 1997 Library Version 1.0/Document Revision 1.1 175

The X Keyboard Extension 17 The Xkb Compatibility Map

When dealing with core keyboard mappings or descriptions, it is sometimes necessary to
determine the Xkb key types appropriate for the symbols bound to akey in a core key-
board mapping. Use XkbKeyTypeskor CoreSymbols for this purpose:

int XkbK eyTypesFor CoreSymbols(map_width, core_syms, protected, types inout,
xkb_syms rtrn)

XkbDescPtr xkb; * keyboard description in which to place symbols*/

int map_width; /* width of core protocol keymap in xkb_syms rtrn*/

KeySym* core _syns; * core protocol format array of KeySyms */

unsigned int protected; * explicit key types*/

int* types inout; /* backfilled with the canonical types bound to groups one and
two for the key */

KeySym* xkb syms rtrn; /* backfilled with symbols bound to the key in the Xkb
mapping */

XkbKeyTypesFor CoreSymbol s expands the symbolsin core_syms and typesin types _inout
according to the rules specified in section 12 of the core protocol, then chooses canonical
key types (canonical key types are defined in section 15.2.1) for groups 1 and 2 using the
rules specified by the Xkb protocol and places them in xkb_syms rtrn, which will be
NoN-NULL.

A core keymap is atwo-dimensional array of keysyms. It has map_width columns and
max_key_code rows. XkbKeyTypesFor CoreSymbols takes a single row from a core key-
map, determines the number of groups associated with it, the type of each group, and the
symbols bound to each group. The return value is the number of groups, types inout has
the types for each group, and xkb_syms _rtrn has the symbolsin Xkb order (that is, groups
are contiguous, regardless of size).

protected contains the explicitly protected key types. Thereisone explicit override con-
trol associated with each of the four possible groups for each Xkb key,
ExplicitKeyTypel through ExplicitKeyType4; protected isan inclusive OR of
these controls. map_width is the width of the core keymap and is not dependent on any
Xkb definitions. types _inout isan array of four type indices. On input, types _inout con-
tains the indices of any types already assigned to the key, in case they are explicitly pro-
tected from change.

Upon return, types_inout contains any automatically selected (that is, canonical) types
plus any protected types. Canonical types are assigned to all four groupsif there are
enough symbolsto do so. The four entriesin types_inout correspond to the four groupsfor
the key in question.

If the groups mapping does not change, but the symbols assigned to an Xkb keyboard
compatibility map do change, the semantics of the key may be modified. To apply the new
compatibility mapping to an individual key to get its semantics updated, use XkbApply-

CompatMapToKey.
Bool XkbApplyCompatM apToK ey(xkb, key, changes)
XkbDescPtr xkb; /* keyboard description to be updated */
KeyCode key; /* key to be updated */
XkbChangesPtr changes; /* notes changes to the Xkb keyboard description */

XkbApplyCompatMapToKey essentially performsthe operation described in section 17.1.2
to a specific key. This updates the behavior, actions, repeat status, and virtual modifier
bindings of the key.

November 10, 1997 Library Version 1.0/Document Revision 1.1 176

The X Keyboard Extension 17 The Xkb Compatibility Map

17.4 Changing the Server’'s Compatibility Map

To modify the server’s compatibility map, first modify alocal copy of the Xkb compati-
bility map, then call XkbSetCompatMap. Y ou may allocate a new compatibility map for
this purpose using XkbAllocCompatMap (see section 17.6). Y ou may also use a compati-
bility map from another server, although you need to adjust the device_spec field in the
XkbDescRec accordingly. Note that symbol interpretations in a compatibility map
(sym_interpret, the vector of XkbSymInterpretRec structures) are also allocated using
this same function.

Bool XkbSetCompatM ap(display, which, xkb, update_actions)

Display * display; [* connection to server */

unsigned int which; /* mask of compat map components to set */
XkbDescPtr xkb; /* source for compat map components */

Bool update_actions; /* True => apply to server’'s keyboard map */

XkbSetCompatMayp copies compatibility map information from the keyboard description
in xkb to the server specified in display’ s compatibility map for the device specified by the
device_spec field of xkb. Unless you have specifically modified thisfield, it is the default
keyboard device. which specifies the compatibility map components to be set, and isan
inclusive OR of the bits shown in Table 17.2.

After updating its compatibility map for the specified device, if update_actionsis True,
the server appliesthe new compatibility map to its entire keyboard for the device to gener-
ate anew set of key semantics, compatibility state, and a new core keyboard map. If
update _actionsis False, the new compatibility map is not used to generate any modifica-
tions to the current device semantics, state, or core keyboard map. One reason for not
applying the compatibility map immediately would be if one server was being configured
to match another on a piecemeal basis; the map should not be applied until everything is
updated. To force an update at alater time, use XkbSetCompatMayp specifying which as
zero and update_actions as True.

XkbSetCompatMap returns True if successful and False if unsuccessful. The server may
report problems it encounters when processing the request subsequently via protocol
errors.

To add asymbol interpretation to the list of symbol interpretations in an XkbCompatRec,
use XkbAddSyminter pret.

XkbSyminterpretPtr XkbAddSymlnter pret(xkb, si, updateMap, changes)

XkbDescPtr xkb; I* keyboard description to be updated */
XkbSyminterpretPtr si; I* symbol interpretation to be added */

Bool updateMap; /* True=>apply compatibility map to keys*/
XkbChangesPtr changes, [* changes are put here */

XkbAddSyminterpret adds si to the list of symbol interpretationsin xkb. If updateMap is
True, it (re)applies the compatibility map to all of the keys on the keyboard. If changesis
non-NULL, it reports the parts of the keyboard that were affected (unless updateMap is
True, not much changes). XkbAddSyminter pret returns a pointer to the actual new symbol
interpretation in the list or NULL if it failed.

November 10, 1997 Library Version 1.0/Document Revision 1.1 177

The X Keyboard Extension 17 The Xkb Compatibility Map

17.5 Tracking Changes to the Compatibility Map

The server automatically generates MappingNotify events when the keyboard mapping
changes. If you wish to be notified of changes to the compatibility map, you should select
for XkbCompatMapNotify events. If you select for XkbMapNotify events, you no
longer receive the automatically generated MappingNotify events. If you subsequently
deselect XkbMapNot ifyEvent delivery, you again receive MappingNotify events.

To receive XkbCompatMapNot ify events under all possible conditions, use XkbSelect-
Events (see section 4.3) and pass XkbCompatMapNot i fyMask in both bits to_change
and values for_bits.

To receive XkbCompatMapNot i fy events only under certain conditions, use XkbSel ect-
EventDetails using XkbCompatMapNotify asthe event_type and specifying the desired
map changes in bits to_change and values for_bits using mask bits from Table 17.2.

Note that you are notified of changes you make yourself, aswell as changes made by other
clients.

The structure for the XkbCompatMapNotifyEvent is:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long seridl; I* X server serial number for event */
Bool send_event; [* True => synthetically generated */
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; [* XkbCompatMapNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed_groups;/* number of group maps changed */
int first_si; /* index to 1st changed symbol interpretation */
int num_si; /* number of changed symbol interpretations */
int num_total_si; /* total number of valid symbol interpretations */

} XkbCompatM apNotifyEvent;

changed_groupsisthe number of group compatibility maps that have changed. If you are
maintaining a corresponding copy of the compatibility map, or get afresh copy from the
server using XkbGetCompatMap, changed_groups references

groups 0..changed_groups-1] in the XkbCompatMapRec structure.

first_s istheindex of the first changed symbol interpretation, num_si isthe number of
changed symbol interpretations, and num total _si isthe total number of valid symbol
interpretations. If you are maintaining a corresponding copy of the compatibility map, or
get afresh copy from the server using XkbGetCompatMap, first_si, num si, and

num _total _si are appropriate for use with the compat.sym_interpret vector in this struc-
ture.

November 10, 1997 Library Version 1.0/Document Revision 1.1 178

The X Keyboard Extension 17 The Xkb Compatibility Map

17.6 Allocating and Freeing the Compatibility Map

If you are modifying the compatibility map, you need to allocate a new compatibility map
if you do not already have one available. To do so, use XkbAllocCompatMap.

Status XkbAllocCompatM ap(xkb, which, num_si)

XkbDescPtr xkb; /* keyboard description in which to allocate compat map */
unsigned int which; /* mask of compatibility map componentsto allocate */
unsignedint num_si; /* number of symbol interpretations to alocate */

xkb specifies the keyboard description for which compatibility maps are to be allocated.
The compatibility map is the compat field in this structure.

which specifies the compatibility map components to be allocated (see XkbGetCompat-
Map, in section 17.2). which is an inclusive OR of the bits shown in Table 17.2.

num_si specifies the total number of entriesto allocate in the symbol interpretation vector
(xkb.compat.sym_interpret).

Note that symbol interpretations in a compatibility map (the sym_interpret vector of Xkb-
SymInterpretRec structures) are also allocated using this same function. To ensure that
there is sufficient space in the symbol interpretation vector for entries to be added, use
XkbAllocCompatMap specifying which as XxkbSymInterpretMask and the number of
free symbol interpretations needed in num _si.

XkbAllocCompatMap returns Success if successful, BadMatch if xkb iSNULL, or Bad-
Alloc if errors are encountered when attempting to allocate storage.

To free an entire compatibility map or selected portions of one, use XkbFreeCompatMap.
void XkbFreeCompatM ap(xkb, which, free_map)

XkbDescPtr xkb; /* Xkb description in which to free compatibility map */
unsigned int which; /* mask of compatibility map componentsto free*/
Bool free_map; /* True => free XkbCompatMap structure itself */

which specifies the compatibility map componentsto be freed (see XkbGetCompatMap, in
section 17.2). which is an inclusive OR of the bits shown in Table 17.2

free_map indicates whether the XkbCompatMap structure itself should be freed. If
free_ map is True, which isignored, al non-NULL compatibility map components are
freed, and the compat field in the XkbDescRec referenced by xkb is set to NULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 179

The X Keyboard Extension 18 Symbolic Names

18

18.1

Symbolic Names

The core protocol does not provide any information to clients other than that actually used
to interpret events. This makesit difficult to write an application that presents the key-
board to a user in an easy-to-understand way. Such applications have to examine the ven-
dor string and keycodes to determine the type of keyboard connected to the server and
then examine keysyms and modifier mappings to determine the effects of most modifiers
(the shift, Lock and Control modifiers are defined by the core protocol but no seman-
ticsareimplied for any other modifiers).

To make it easier for applications to present a keyboard to the user, Xkb supports sym-
bolic names for most components of the keyboard extension. Most of these symbolic
names are grouped into the names component of the keyboard description.

The XkbNamesRec Structure

The names component of the keyboard description is defined as follows:

#define XkbKeyNamel ength 4

#define XkbKeyNumVirtual M ods 16

#define XkbKeyNumlndicators 32

#define XkbKeyNumKbdGroups 4

#define XkbMaxRadioGroups 32

typedef struct {
char name[XkbKeyNameL ength]; /* symbolic key names */

} XkbKeyNameRec,* XkbKeyNamePtr;

typedef struct {
char real[XkbKeyNamelLength]; /* this key name must be in the keys array */
char aiag XkbKeyNamelLength]; /* symbolic key name as aliasfor the key */

} XkbKeyAliasRec,* XkbKeyAliasPtr;
typedef struct XkbNamesRec {

Atom keycodes; /* identifies range and meaning of keycodes */

Atom geometry; /* identifies physical location, size, and shape of keys*/
Atom symbols; /* identifies the symbols logically bound to the keys*/
Atom types; /* identifies the set of key types*/

Atom compat; /* identifies actions for keys using core protocol */
Atom vmods] XkbNumVirtualMods]; /* symbolic namesfor virtual modifiers*/
Atom indicators{ XkbNumlndicators]; /* symbolic names for indicators */

Atom groups] XkbNumKbdGroups]; /* symbolic namesfor keyboard groups*/
XkbKeyNamePtr keys; I* symbolic key name array */

XkbKeyAliasPtr key aliases; /* real/alias symbolic name pairs array */

Atom * radio_groups, /* radio group name array */

Atom phys symbols; /* identifies the symbols engraved on the keyboard */

unsigned char num_keys, I* number of keysin the keys array */
unsigned char ~ num_key_dliases;/* number of keysin the key aliasesarray */
unsigned short num_rg; /* number of radio groups */

} XkbNamesRec,* XkbNamesPr;/*

The keycodes name identifies the range and meaning of the keycodes returned by the key-
board in question. The geometry name, on the other hand, identifies the physical location,

November 10, 1997 Library Version 1.0/Document Revision 1.1 180

The X Keyboard Extension 18 Symbolic Names

size and shape of the various keys on the keyboard. As an example to distinguish between
these two names, consider function keys on PC-compatible keyboards. Function keys are
sometimes above the main keyboard and sometimes to the left of the main keyboard, but
the same keycode is used for the key that islogically F1 regardless of physical position.
Thus, all PC-compatible keyboards share a similar keycodes name but may have different
geometry names.

Note The keycodes nameisintended to be avery general description of the keycodes
returned by a keyboard; a single keycodes name might cover keyboards with differing
numbers of keys provided all keys have the same semantics when present. For exam-
ple, 101 and 102 key PC keyboards might use the same name. In these cases, applica-
tions can use the keyboard geometry name to determine which subset of the named
keycodesisin use.

The symbols name identifies the symbolslogically bound to the keys. The symbols name
isahuman or application-readable description of the intended locale or usage of the key-

board with these symbols. The phys symbols name, on the other hand, identifies the sym-
bols actually engraved on the keyboard. Given this, the symbols name and phys_symbols

names might be different. For example, the description for akeyboard that has English US
engravings, but that is using Swiss German symbols might have a phys symbols name of

“en_US’ and a symbols name of “de CH.”

The types name provides some information about the set of key types (see section 15.2)
that can be associated with the keyboard. In addition, each key type can have a name, and
each shift level of atype can have aname. Although these names are stored in the map
description with each of the types, they are accessed using the same methods as the other
symbolic names.

The compat name provides some information about the rules used to bind actions to keys
that are changed using core protocol requests.

Xkb provides symbolic names for each of the 4 keyboard groups, 16 virtual modifiers, 32
keyboard indicators, and 4 keyboard groups. These names are held in the vmods, indica-
tors, and groups fixed-length arrays.

Each key has afour-byte symbolic name. All of the symbolic key names are held in the
keys array, and num_keys reports the number of entriesthat are in the keys array. For each
key, the key name links keys with similar functions or in similar positions on keyboards
that report different keycodes. For example, the F1 key may emit keycode 23 on one key-
board and keycode 86 on another. By naming this key “FK01” on both keyboards, the
keyboard layout designer can reuse parts of keyboard descriptions for different keyboards.

Key aliases allow the keyboard layout designer to assign multiple key namesto asingle
key. Thisalowsthe keyboard layout designer to refer to keys using either their position or
their “function.” For example, akeyboard layout designer may wish to refer to the left
arrow key on a PC keyboard using the 1SO9995-5 positional specification of A31 or using
the functional specification of LEFT. The key_aliases field holds a variable-length array
of real and alias key name pairs, and the total number of entriesin the key_aliasesarray is
held in num_key aliases. For each real and alias key name pair, thereal field refersto the
anamein the keys array, and the alias field refers to the alias for that key. Using the pre-
vious example, the keyboard designer may use the name A31 in the keys array, but also
definethe name LEFT asan aliasfor A31 inthe key_aliases array.

November 10, 1997 Library Version 1.0/Document Revision 1.1 181

The X Keyboard Extension

18 Symbolic Names

18.2

Note Key aliases defined in the geometry component of a keyboard mapping (see Chapter
13) override those defined in the keycodes component of the server database, which
are stored in the XkbNamesRec (xkb->names). Therefore, consider the key aliases
defined by the geometry before considering key aliases supplied by the XkbNames -

Rec.

A radio group is a set of keyswhose behavior simulates a set of radio buttons. Once a key
inaradio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key islogically released. Consequently,
at most one key in aradio group can belogically depressed at one time.

Each radio group in the keyboard description can have a name. These names are held in
the variable-length array radio_groups, and num rg tells how many elements are in the

radio_groups array.

Symbolic Names Masks

Xkb provides several functions that work with symbolic names. Each of these functions
uses amask to specify individual fields of the structures described above. These masks
and their relationships to the fields in a keyboard description are shown in Table 18.1.

Table 18.1 Symbolic Names Masks

Mask Bit Value Reypoard
Component

XkbKeycodesNameM ask (1<<0) Xkb->names keycodes
XkbGeometryNameM ask (1<<d) Xkb->names geometry
XkbSymbolsNameM ask (1<<2) Xkb->names symbols
XkbPhysSymbolsNameM ask (1<<3) Xkb->names phys symbols
XkbTypesNameM ask (1<<4) Xkb->names type
XkbCompatNameM ask (1<<5) Xkb->names compat
XkbKeyTypeNamesM ask (1<<6) Xkb->map type[*].name
XkbKTLevelNamesM ask (1<<7) Xkb->map type[*].Ivl_nameg[*]
XkblndicatorNamesM ask (1<<8) Xkb->names indicatorg[*]
XkbKeyNamesMask (1<<9) Xkb->names keyg*], num_keys
XkbKeyAliasesMask (1<<10) Xkb->names key diaseq[*], num_key aliases
XkbVirtualModNamesM ask (1<<11) Xkb->names vmodg*]
XkbGroupNamesM ask (1<<12) Xkb->names groupy*]
XkbRGNamesM ask (1<<13) Xkb->names radio_groups[*], num_rg
XkbComponentNamesM ask (0x3f) Xkb->names keycodes,

geometry,

symboals,

physical symbols,

types, and

compatibility map
XkbAllNamesMask (Ox3fff) Xkb->names all name components

November 10, 1997

Library Version 1.0/Document Revision 1.1 182

The X Keyboard Extension 18 Symbolic Names

18.3

18.4

Getting Symbolic Names From the Server
To obtain symbolic names from the server, use XkbGetNames.

Status XkbGetNames(dpy, which, Xkb)
Display * dpy; /* connection to the X server */
unsignedint which; /* mask of names or map components to be updated */
XkbDescPtr xkb /* keyboard description to be updated */

XkbGetNames retrieves symbolic names for the components of the keyboard extension
from the X server. The which parameter specifies the name components to be updated in
the xkb parameter, and is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

If the names field of the keyboard description xkb is NULL, XkbGetNames allocates and
initializes the names component of the keyboard description before obtaining the values
specified by which. If the namesfield of xkb is not NULL, XkbGetNames obtains the values
specified by which and copies them into the keyboard description Xkb.

If the map component of the xkb parameter is NULL, XkbGetNames does not retrieve type
or shift level names, even if XkbKeyTypeNamesMask or XkbKTLevelNamesMask are
set in which.

XkbGetNames can return Success, or BadAlloc, BadLength, BadMatch, and BadIm-
plementation errors.

To free symbolic names, use XkbFreeNames (see section 18.6)

Changing Symbolic Names on the Server

To change the symbolic namesin the server, first modify alocal copy of the keyboard
description and then use either XkbSetNames, or, to save network traffic, use a XkbNa-
meChangesRecstructure and call XkbChangeNames to download the changes to the
server. XkbSetNames and XkbChangeNames can generate Badalloc, BadAtom,
BadLength, BadMatch, and BadImplementation €rrors.

Bool XkbSetNames(dpy, which, first_type, num_types, xkb)
Display * dpy; [* connection to the X server */
unsigned int which; /* mask of names or map components to be changed */
unsignedint first type; /* first type whose nameisto be changed */
unsigned int num _types, /* number of types for which names are to be changed */
XkbDescPtr xkb; * keyboard description from which names are to be taken */

Use XkbSetNames to change many names at the same time. For each bit set in which, Xkb-
SetNames takes the corresponding value (or valuesin the case of arrays) from the key-
board description xkb and sendsiit to the server.

Thefirst_type and num_types arguments are used only if XkbKeyTypeNamesMask or
XkbKTLevelNamesMask is set in which and specify a subset of the types for which the
corresponding names are to be changed. If either or both of these mask bits are set but the
specified types areillegal, XkbSatNames returns False and does not update any of the
names specified in which. The specified types areillegal if xkb does not include a map
component or if first_type and num_types specify typesthat are not defined in the key-
board description.

November 10, 1997 Library Version 1.0/Document Revision 1.1 183

The X Keyboard Extension 18 Symbolic Names

The XkbNameChangesRec Structure

The XkbNameChangesRec allows applications to identify small modifications to the
symbolic names and effectively reduces the amount of traffic sent to the server:

typedef struct _XkbNameChanges {

unsignedint changed; /* name components that have changed */

unsigned char first_type; [* first key type with a new name */

unsigned char num_types, /* number of types with new names*/

unsigned char first_|vl; [* first key type with new level names */

unsigned char num_lvls; /* number of key types with new level names*/

unsigned char num_aliases; /* if key aliases changed, total number of key aliases */
unsigned char hum_rg; * if radio groups changed, total number of radio groups */
unsigned char first_key; [* first key with a new name*/

unsigned char num_keys; /* number of keys with new names */

unsigned short changed vmods; /* mask of virtual modifiers for which names have changed */
unsigned long changed_indicators;/* mask of indicators for which names were changed */
unsigned char changed_groups; /* mask of groups for which names were changed */

} XkbNameChangesRec, * XkbNameChangesPtr

The changed field specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The rest of thefieldsin
the structure specify the ranges that have changed for the various kinds of symbolic
names, as shown in Table 18.2.

Table 18.2 XkbNameChanges Fields

Mask Fields Component Field
XkbKeyTypeNamesMask first_type, Xkb->map type[*].name
num_types
XKbKTLevelNamesMask first_Ivl, Xkb->map type[*].Ivl_nameg[*]
num_lvls
XkbKeyAliasesMask num_aliases Xkb->names key aliaseq*]
XkbRGNamesMask num_rg Xkb->names radio_groups[*]
XkbKeyNamesM ask first_key, Xkb->names keyg*]
num_keys

XkbVirtualModNamesMask changed vmods Xkb->names vmodg[*]
XkbIndicatorNamesMask changed indicators Xkb->names indicatorg[*]
XkbGroupNamesM ask changed groups Xkb->names groupy*]

XkbChangeNames provides a more flexible method for changing symbolic names than
XkbSetNames and requires the use of an XkbNameChangesRec structure.

Bool XkbChangeNames(dpy, xkb, changes)
Display * dpy; [* connection to the X server */
XkbDescPtr xkb; I* keyboard description from which names are to be taken */
XkbNameChangesPtr changes, /* names map components to be updated on the server */

XkbChangeNames copies any names specified by changes from the keyboard description,
xkb, to the X server specified by dpy. XkbChangeNames aborts and returns False if any
illegal type names or type shift level names are specified by changes.

November 10, 1997 Library Version 1.0/Document Revision 1.1 184

The X Keyboard Extension 18 Symbolic Names

18.5 Tracking Name Changes

Whenever a symbolic name changes in the server’ s keyboard description, the server sends
aXkbNamesNotify event to all interested clients. To receive name notify events, use
XkbSelectEvents (see section 4.3) with XkbNamesNot i fyMask in both the

bits to_change and values for_bits parameters.

To receive events for only specific names, use XkbSelectEventDetails. Set the event_type
parameter to XkbNamesNot ify, and set both the bits to_change and values for_bits
detail parameter to a mask composed of a bitwise OR of masksin Table 18.1.

The structure for the XkbNamesNot i fy event is defined as follows:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long serial; /* X server serial number for event */
Bool send_event; [* True => synthetically generated */
Display * display; [* server connection where event generated */
Time time; /* server time when event generated */
int xkb_type; [* XkbNamesNotify */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int changed; /* mask of name components that have changed */
int first_type; [* first key type with a new name */
int num_types, /* number of types with new names*/
int first_Ivl; I* first key type with new level names */
int num_lvls; /* number of key typeswith new level names */
int num_aliases, [* if key aliases changed, total number of key aliases */
int num_radio_groups;/* if radio groups changed, total number of radio groups */

unsigned int changed vmods; /* mask of virtual modifiers for which names have changed */
unsigned int changed groups; /* mask of groups for which names were changed */
unsigned int changed_indicators;/* mask of indicators for which names were changed */
int first_key; [* first key with a new name */
int num_keys, /* number of keys with new names */

} XkbNamesNatifyEvent;

The changed field specifies the name components that have changed and is the bitwise
inclusive OR of the valid names mask bits defined in Table 18.1. The other fields in this
event are interpreted as the like-named fields in an XkbNameChangesRec, as previously
defined.

When your application receives a XkbNamesNot i fy event, you can note the changed
names in a changes structure using XkbNoteNameChanges.

void XkbNoteNameChanges(old, new, wanted)

XkbNameChangesPtr old; [* XkbNameChanges structure to be updated */
XkbNamesNotifyEvent * new; * event from which changes are to be copied */
unsigned int wanted; /* typesof names for which changes are to be noted */

The wanted parameter is the bitwise inclusive OR of the valid names mask bits shown in
Table 18.1. XkbNoteNameChanges copies any changes that are reported in new and speci-
fied in wanted into the changes record specified by old.

November 10, 1997 Library Version 1.0/Document Revision 1.1 185

The X Keyboard Extension 18 Symbolic Names

18.6

To update the local copy of the keyboard description with the actual values, pass to Xkb-
GetNameChanges the results of one or more calls to XkbNoteNameChanges.

Status XkbGetNameChanges(dpy, xkb, changes)
Display * dpy; /* connection to the X server */
XkbDescPtr xkb; * keyboard description to which names are copied */
XkbNameChangesPtr changes; /* names components to be obtained from the server */

XkbGetNameChanges examines the changes parameter, retrieves the necessary informa-
tion from the server, and places the results into the xkb keyboard description.

XkbGetNamesChanges can generate Badalloc, BadImplementation, and BadMatch
errors.

Allocating and Freeing Symbolic Names

Most applications do not need to directly allocate symbolic names structures. Do not allo-
cate a names structure directly using malloc or Xmalloc if your application changes the
number of key aliases or radio groups or constructs a symbolic names structure without
loading the necessary components from the X server. Instead use XkbAllocNames.

Status XkbAllocNames(xkb, which, num_rg, num_key aliases)
XkbDescPtr xkb; * keyboard description for which names are to be allocated */
unsigned int which; /* mask of namesto be allocated */
int num rg; /* total number of radio group names needed */
int num_key aliases;/* total number of key aliases needed */

XkbAllocNames can return Badalloc, BadMatch, and Badvalue errors. The which
parameter isthe bitwise inclusive OR of the valid names mask bits defined in Table 18.1.

Do not free symbolic names structures directly using free or XFree. Use XkbFreeNames
instead.

void XkbFreeNames(xkb, which, free_map)

XkbDescPtr xkb; * keyboard description for which names are to be freed */
unsigned int which; /* mask of names componentsto be freed */
Bool free_map; /* True => XkbNamesRec structure itself should be freed */

The which parameter is the bitwise inclusive OR of the valid names mask bits defined in
Table 18.1.

November 10, 1997 Library Version 1.0/Document Revision 1.1 186

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

19

Replacing a Keyboard “On the Fly”

Some operating system and X server implementations allow “hot plugging” of input
devices. When using these implementations, input devices can be unplugged and new
ones plugged in without restarting the software that is using those devices. Thereis no
provision in the standard X server for notification of client programsif input devices are
unplugged and/or new ones plugged in. In the case of the X keyboard, this could result in
the X server having a keymap that does not match the new keyboard.

If the X server implementation supports the X input device extension, a client program
may also change the X keyboard programmatically. The XChangeKeyboardDevice input
extension request allows aclient to designate an input extension keyboard device asthe X
keyboard, in which case the old X keyboard device becomes inaccessible except viathe
input device extension. In this case, core protocol XMappingNotify and input extension
XChangeDeviceNotify events are generated to notify all clients that a new keyboard
with a new keymap has been designated.

When aclient opens a connection to the X server, the server reports the minimum and
maximum keycodes. The server keeps track of the minimum and maximum keycodes | ast
reported to each client. When delivering eventsto a particular client, the server filters out
any events that fall outside of the valid range for the client.

Xkb provides an XkbNewKeyboardNot ify event that reports a change in keyboard
geometry and/or the range of supported keycodes. The server can generate an
XkbNewKeyboardNotify event when it detects a new keyboard or in response to an
XkbGetKeyboardByName request that |oads a new keyboard description. Selecting for
XkbNewKeyboardNotify events alows Xkb-aware clients to be notified whenever a
keyboard change occurs that may affect the keymap.

When a client requests XkbNewKeyboardNot i fy events, the server compares the range

of keycodes for the current keyboard to the range of keycodes that are valid for the client.

If they are not the same, the server immediately sends the client an XkbNewKeyboardNo-
tify event. Evenif the “new” keyboard is not new to the server, it is new to this particu-
lar client.

When the server sends an XkbNewKeyboardNot ify event to aclient to inform it of a
new keycode range, it resets the stored range of legal keycodes for the client to the key-
code range reported in the event; it does not reset this range for the client if it does not sent
an XkbNewKeyboardNotify event to a client. Because Xkb-unaware clients and
Xkb-aware clients that do not request XxkbNewKeyboardNotify events are never sent
these events, the server’ s notion of the legal keycode range never changes, and these cli-
ents never receive events from keysthat fall outside of their notion of the legal keycode
range.

Clients that have not selected to receive XkbNewKeyboardNot i fy events do, however,
receive the XkbNewKeyboardNot i fy event when akeyboard change occurs. Clients that
have not selected to receive this event also receive numerous other events detailing the
individual changes that occur when a keyboard change occurs.

Clients wishing to track changesin min_key code and max_key code must watch for both
XkbNewKeyboardNotify and XkbMapNot i fy events, because a simple mapping
change causes an XkbMapNot i fy event and may change the range of valid keycodes, but
does not cause an XkbNewKeyboardNot i fy event. If aclient does not select for

November 10, 1997 Library Version 1.0/Document Revision 1.1 187

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

XkbNewKeyboardNotify events, the server restricts the range of keycodes reported to
the client.

In addition to filtering out-of-range key events, Xkb:

e Adjusts core protocol MappingNotify eventsto refer only to keys that match the
stored legal range.

» Reports keyboard mappings for keys that match the stored legal range to clients that
issue a core protocol GetKeyboardMapping request.

» Reports modifier mappings only for keys that match the stored legal range to clients
that issue a core protocol GetModi f ierMapping request.

» Redtrictsthe core protocol ChangeKeyboardMapping and SetModifierMap-
ping requeststo keys that fall inside the stored legal range.

In short, Xkb does everything possible to hide from Xkb-unaware clients the fact that the
range of legal keycodes has changed, because such clients cannot be expected to deal with
them. Xkb events and requests are not modified in this manner; all Xkb events report the

full range of legal keycodes. No requested Xkb events are discarded, and no Xkb requests
have their keycode range clamped.

The structure for the XkbNewKeyboardNotify event is defined as follows:
typedef struct _ XkbNewKeyboardNotify {

int type; I* Xkb extension base event code */
unsigned long serial; * X server serial number for event*/
Bool send_event; [* True => synthetically generated */
Display * display; I* server connection where event generated */
Time time; * server time when event generated */
int xkb_type; [* XkbNewKeyboardNotify */

int device; * device ID of new keyboard */

int old_device; * device ID of old keyboard */

int min_key code; /* min keycode of new keyboard */

int max_key code; /* max keycode of new keyboard */

int old_min_key code; /* min keycode of old keyboard */

int old_max_key code; /* max keycode of old keyboard */
unsigned int changed; * changed aspects - see masks below */
char req_major; /* major request that caused change */
char req_minor; /* minor request that caused change */

} XkbNewK eyboar dNotifyEvent;

To receive name notify events, use XkbSelectEvents (see section 4.3) with XkbNewKey -
boardNotifyMask in both the bits to_change and values_for_bits parameters. To
receive events for only specific names, use XkbSelectEventDetails. Set the event_type
parameter to XkbNewKeyboardNotify, and set both the bits to_change and

values for_bits detail parameter to a mask composed of a bitwise OR of masksin Table

19.1.

Table 19.1 XkbNewKeyboardNotifyEvent Details
XkbNewKe;_/boardNotl fy Value Circumstances
Event Details
XKbNKN KeycodesMask (1L<<0) Notification of keycode range changes wanted
XKkbNKN GeometryMask (1L<<1) Notification of geometry changes wanted
XkbNKN DeviceIDMask (1L<<2) Notification of device ID changes wanted

November 10, 1997 Library Version 1.0/Document Revision 1.1 188

The X Keyboard Extension 19 Replacing a Keyboard “On the Fly”

Table 19.1 XkbNewKeyboardNotifyEvent Details

XkbNewKeyboardNotl fy Value Circumstances
Event Details
XKkbNKN AllChangesMask (0x7) Includes all of the above masks

Thereq_major and req_minor fields indicate what type of keyboard change has occurred.

If req_major and req_minor are zero, the device change was not caused by a software
request to the server — a spontaneous change has occurred, such as hot-plugging a new
device. In this case, device isthe device identifier for the new, current X keyboard device,
but no implementation-independent guarantee can be made about old_device. old_device
may be identical to device (an implementor is permitted to reuse the device specifier when
the device changes); or it may be different. Note that req_major and req_minor being zero
do not necessarily mean that the physical keyboard device has changed; rather, they only
imply a spontaneous change outside of software control (some systems have keyboards
that can change personality at the press of akey).

If the keyboard change is the result of an X Input Extension ChangeKeyboardDevice
request, req_major containstheinput extension major opcode, and req_minor containsthe
input extension request number for X _ChangeKeyboardDevice. Inthiscase, device and
old_device are different, with device being the identifier for the new, current X keyboard
device, and old_device being the identifier for the former device.

If the keyboard change is the result of an XkbGetKeyboardByName function call, which
generates an X_kbGetKbdByName request, req_major contains the Xkb extension base
event code (see section 2.4), and req_minor contains the event code for the Xkb extension
request X kbGetKbdByName. device containsthe device identifier for the new device, but
nothing definitive can be said for old_device; it may be identical to device, or it may be
different, depending on the implementation.

November 10, 1997 Library Version 1.0/Document Revision 1.1 189

The X Keyboard Extension 20 Server Database of Keyboard Components

20

Server Database of Keyboard Components

The X server maintains a database of keyboard components, identified by component
type. The database contains all the information necessary to build a complete keyboard
description for a particular device, aswell asto assemble partial descriptions. Table 20.1
identifies the component types and the type of information they contain.

Table 20.1 Server Database Keyboard Components

Component

Type Component Primary Contents May also contain

Keymap Compl ete keyboard description
Normally assembled using a complete
component from each of the other types

Keycodes Symbolic name for each key Aliases for some keys
Minimum and maximum legal keycodes Symbolic names for indicators

Description of indicators physicaly
present

Types Key types Real modifier bindings and symboalic
names for some virtual modifiers

Compatibility Rulesused to assign actionsto keysyms Maps for some indicators
Rea modifier bindings and symboalic
names for some virtual modifiers

Symbols Symbol mapping for keyboard keys Explicit actions and behaviors for some
Modifier mapping keys
Symbolic names for groups Real modifier bindings and symbolic
names for some virtual modifiers
Geometry Layout of the keyboard Aliases for some keys; overrides key-

codes component aliases

Symbolic names for some indicators
Description of indicators physically
present

While akeymap is a database entry for a complete keyboard description, and therefore
logically different from the individual component database entries, the rules for process-
ing keymap entries are identical to those for the individual components. In the discussion
that follows, the term component is used to refer to either individual components or a key-

map.

There may be multiple entries for each of the component types. An entry may be either
complete or partial. Partial entries describe only a piece of the corresponding keyboard
component and are designed to be combined with other entries of the sametypeto form a
complete entry.

For example, a partial symbols map might describe the differences between a common
ASCII keyboard and some national layout. Such a partial map is not useful on its own
because it does not include those symbols that are the same on both the ASCII and
national layouts (such as function keys). On the other hand, this partial map can be used to
configure any ASCII keyboard to use a national layout.

When a keyboard description is built, the components are processed in the order in which
they appear in Table 20.1; later definitions override earlier ones.

November 10, 1997 Library Version 1.0/Document Revision 1.1 190

The X Keyboard Extension 20 Server Database of Keyboard Components

20.1

20.2

Component Names

Component names have the form “ class(member)” where class describes a subset of the
available components for a particular type and the optional member identifies a specific
component from that subset. For example, the name “ atlantis(acme)” for a symbols com-
ponent might specify the symbols used for the atlantis national keyboard layout by the
vendor “acme.” Each class has an optional default member — references that specify a
class but not a member refer to the default member of the class, if one exists. Xkb places
no constraints on the interpretation of the class and member names used in component
names.

The class and member names are both specified using characters from the Latin-1 charac-
ter set. Xkb implementations must accept all alphanumeric characters, minus (‘-') and
underscore (*_') in class or member names, and must not accept parentheses, plus, vertical
bar, percent sign, asterisk, question mark, or white space. The use of other charactersis
implementation-dependent.

Listing the Known Keyboard Components

Y ou may ask the server for alist of components for one or more component types. The
request takes the form of a set of patterns, one pattern for each of the component types,
including a pattern for the complete keyboard description. To obtain thislist, use XkbList-
Components.

XkbComponentListPtr XkbL istComponents(dpy, device spec, ptrns, max_inout)

Display * dpy; /* connection to X server */

unsigned int device_spec; [* device ID, or XkbUseCoreKbd */
XkbComponentNamesPtr ptrns; /* namelist for components of interest */
int* max_inout; /* max # returned names, # left over */

XkbListComponents queries the server for alist of component names matching the pat-
terns specified in ptrns. It waits for areply and returns the matching component namesin
an XkbComponentListRec structure. When you are done using the structure, you should
free it using XkbFreeComponentList. device spec indicates a particular device in which
the caller isinterested. A server isallowed (but not required) to restrict its reply to por-
tions of the database that are relevant for that particular device.

ptrnsisapointer to an XkbComponentNamesRec, described below. Each of thefieldsin
ptrns contains a pattern naming the components of interest. Each of the patternsis com-
posed of characters from the ISO Latinl encoding, but can contain only parentheses, the
wildcard characters‘ ?” and * *’, and characters permitted in a component class or member
name (see section 20.1). A pattern may be NULL, in which case no components for that
type is returned. Pattern matches with component names are case sensitive. The ‘2’ wild-
card matches any single character, except aleft or right parenthesis; the * ** wildcard
matches any number of characters, except aleft or right parenthesis. If an implementation
allows additional charactersin a component class or member name other than those
required by the Xkb extension (see section 20.1), the result of comparing one of the addi-
tional charactersto either of the wildcard characters is implementati on-dependent.

If apattern containsillegal characters, theillegal characters are ignored. The matching
processis carried out asif the illegal characters were omitted from the pattern.

max_inout is used to throttle the amount of data passed to and from the server. On input, it
specifies the maximum number of names to be returned (the total number of namesin all

November 10, 1997 Library Version 1.0/Document Revision 1.1 191

The X Keyboard Extension 20 Server Database of Keyboard Components

20.3

component categories). Upon return from XkbListComponents, max_inout contains the
number of names that matched the request but were not returned because of the limit.

The component name patterns used to describe the request are passed to XkbListCompo-
nents using an XkbComponentNamesRec structure. This structure has no special alloca-
tion constraints or interrelationships with other structures; allocate and free this structure
using standard malloc and free calls or their equivalent:

typedef struct _XkbComponentNames {

char * keymap; /* keymap names */

char * keycodes; [* keycode names */

char * types, [* type names */

char * compat; [* compatibility map names*/
char * symboals; /* symbol names */

char * geometry; [* geometry names */

} XkbComponentNamesRec, * XkbComponentNamesPtr;
XkbListComponents returns a pointer to an XkbComponentListRec:
typedef struct _XkbComponentList {

int num_keymaps; /* number of entriesin keymap */
int num_keycodes; /* number of entriesin keycodes */
int num_types, /* number of entriesin types*/
int num_compat; /* number of entriesin compat */
int num_symbols; /* number of entriesin symbols*/
int num_geometry; /* number of entriesin geometry;
XkbComponentNamePtr keymap; /* keymap names */
XkbComponentNamePtr keycodes; [* keycode names */
XkbComponentNamePtr types; [* type names */
XkbComponentNamePtr ~ compat; /* compatibility map names */
XkbComponentNamePtr symbols; /* symbol names*/
XkbComponentNamePtr geometry; /* geometry names */

} XkbComponentListRec, * XkbComponentListPtr;

typedef struct _XkbComponentName {
unsigned short flags; [* hints regarding component name */
char * name; /* name of component */

} XkbComponentNameRec, * XkbComponentNamePtr;

Note that the structure used to specify patterns on input is an XkbComponentNamesRec,
and that used to hold the individual component names upon return is an XklbComponent -
NameRec (no trailing ‘s’ in Name).

When you are done using the structure returned by XkbListComponents, freeit using
XkbFreeComponentList.

void XkbFreeComponentList(list)
XkbComponentListPtr list; [* pointer to XkbComponentListRec to free*/
Component Hints

A set of flagsis associated with each component; these flags provide additional hints
about the component’ s use. These hints are designated by bit masksin the flags field of
the XkbComponentNameRec structures contained in the XkbComponentListRec

November 10, 1997 Library Version 1.0/Document Revision 1.1 192

The X Keyboard Extension 20 Server Database of Keyboard Components

20.4

returned from XkbListComponents. The least significant byte of the flags field has the
same meaning for all types of keyboard components; the interpretation of the most signif-
icant byte is dependent on the type of component. The flags bits are defined in Table 20.2.
The symbols hintsin Table 20.2 apply only to partial symbols components (those with
XkbLC Partial also set); full symbols components are assumed to specify all of the

pi eces.

The alphanumeric, modifier, keypad or function keys symbols hints should describe the
primary intent of the component designer and should not be ssimply an exhaustive list of
the kinds of keys that are affected. For example, national keyboard layouts affect prima-
rily aphanumeric keys, but many affect afew modifier keys as well; such mappings
should set only the XkbLC AlphanumericKeys hint. In general, symbols components
should set only one of the four flags (XkbLC AlternateGroup may be combined with
any of the other flags).

Table 20.2 XkbComponentNameRec Flags Bits

Component Component Hints

Type (flags) Meaning Value
All Components XkbLC_Hidden Do not present to user (1L<<0)
XkbLC Default Default member of class (1L<<1)
XkbLC Partial Partial component (1L<<2)
Keymap none
Keycodes none
Types none
Compatibility none
Symbols XkbLC AlphanumericKeys Bindingsprimarily for alphanumeric (1L<<8)
keyboard section
XkbLC ModifierKeys Bindings primarily for modifier keys (1L<<9)
XkbLC KeypadKeys lIfindi ngs primarily for numeric keypad (1L<<10)
eys
XkbLC FunctionKeys Bindings primarily for function keys (1L<<11)
XkbLC AlternateGroup Bindingsfor an aternate group (1L<<12)
Geometry none

Building a Keyboard Description Using the Server Database

A client may request that the server fetch one or more components from its database and
use those components to build a new server keyboard description. The new keyboard
description may be built from scratch, or it may be built starting with the current keyboard
description for a particular device. Once the keyboard description is built, al or part of it
may be returned to the client. The parts returned to the client need not include all of the
parts used to build the description. At the time it requests the server to build a new key-
board description, a client may also request that the server use the new description inter-
nally to replace the current keyboard description for a specific device, in which case the
behavior of the device changes accordingly.

November 10, 1997 Library Version 1.0/Document Revision 1.1 193

The X Keyboard Extension 20 Server Database of Keyboard Components

To build anew keyboard description from a set of named components, and to optionally
have the server use the resulting description to replace an active one, use XkbGetKey-

boardByName.

XkbDescPtr XkbGetK eyboar dByName(dpy, device _spec, hames, want, need, load)
Display * dpy; /* connection to X server */
unsigned int device_spec; /* device ID, or XkbUseCoreKbd */
XkbComponentNamesPtr names; /* names of componentsto fetch */
unsigned int want; [* desired structures in returned record */
unsigned int need; /* mandatory structuresin returned record */
Bool load; [* True => load into device_spec */

names contains a set of expressions describing the keyboard components the server should
useto build the new keyboard description. want and need are bit fields describing the parts
of the resulting keyboard description that should be present in the returned XkbDescRec.

The individual fields in names are component expressions composed of keyboard compo-
nent names (no wildcarding as may be used in XkbListComponents), the special compo-
nent name symbol ‘%’ , and the special operator characters‘+' and‘ |’. A component
expression is parsed |€eft to right, as follows:

» The special component name “ computed” may be used in keycodes component
expressions and refers to a component consisting of a set of keycodes computed auto-
matically by the server as needed.

» The special component name “canonical” may be used in types component
expressions and refersto apartial component defining the four standard key types:
ALPHABETIC, ONE_LEVEL, TWO LEVEL, and KEYPAD.

» The special component name ‘%’ refers to the keyboard description for the device spec-
ified in device_spec or the keymap names component. |f a keymap names component
is specified that does not begin with ‘+' or ‘| and does not contain * %’, then ‘%’ refers
to the description generated by the keymap names component. Otherwise, it refersto
the keyboard description for device _spec.

e The‘+ operator specifies that the following component should override the currently
assembled description; any definitions that are present in both components are taken
from the second.

« The* |’ operator specifies that the next specified component should augment the cur-
rently assembled description; any definitions that are present in both components are
taken from the first.

* |If the component expression begins with an operator, aleading * %’ isimplied.

 If any unknown or illegal characters appear anywhere in the expression, the entire
expression isinvalid and isignored.

For example, if names->symbols contained the expression “+de”, it specifies that the
default member of the “de” class of symbols should be applied to the current keyboard
mapping, overriding any existing definitions (it could also be written “+de(default)”).

Hereisasdlightly more involved example: the expression
“acme(ascii)+de(basic)|is09995-3" constructs a German (de) mapping for the ASCII key-
board supplied by the “acme” vendor. The new definition begins with the symbols for the
ASCII keyboard for Acme (acme(ascii)), overrides them with definitions for the basic
German keyboard (de(basic)), and then applies the definitions from the default 1s09995-3
keyboard (1s09995-3) to any undefined keys or groups of keys (part three of the is09995
standard defines a common set of bindings for the secondary group, but allows national
layouts to override those definitions where necessary).

November 10, 1997 Library Version 1.0/Document Revision 1.1 194

The X Keyboard Extension 20 Server Database of Keyboard Components

Note Theinterpretation of the above expression components (acme, ascii, de, basic,
1509995-3) is not defined by Xkb; only the operations and their ordering are.

Note that the presence of a keymap names component that does not contain ‘%’ (either
explicit or implied by virtue of an expression starting with an operator) indicates a
description that is independent of the keyboard description for the device specified in
device_spec. The sameistrue of requestsin which the keymap names component is empty
and all five other names components contain expressions void of referencesto ‘%’.
Requests of thisform allow you to deal with keyboard definitions independent of any
actual device.

The server parses all non-NULL fieldsin names and uses them to build a keyboard descrip-
tion. However, before parsing the expressions in names, the server ORs the bitsin want
and need together and examines the result in relationship to the expressions in names.
Table 20.3 identifies the components that are required for each of the possible bitsin want
or need. If arequired component has not been specified in the names structure (the corre-
sponding field is NULL), the server substitutes the expression “%”, resulting in the compo-
nent values being taken from device_spec. In addition, if load is True, the server modifies
names if necessary (again using a“s” entry) to ensure al of the following fields are
non-NULL: types, keycodes, symbols, and compat.

Table 20.3 Want and Need Mask Bitsand Required Names Components

want or need mask bit Required names Components value
XkbGBN_ TypesMask Types (1L<<0)
XkbGBN_CompatM apM ask Compat (1L<<1)

XkbGBN_ClientSymbolsMask Types + Symbols + Keycodes (1L<<2)
XkbGBN_ServerSymbolsMask Types + Symbols + Keycodes (1L<<3)

XkbGBN_SymbolsMask Symbols (1L<<1)
XkbGBN_IndicatorM apM ask Compat (1L<<4)
XkbGBN_KeyNamesMask Keycodes (1L<<5)
XkbGBN_GeometryMask Geometry (1L<<6)
XkbGBN_OtherNamesM ask Types + Symbols + Keycodes + (1L<<7)
Compat + Geometry
XkbGBN_AllComponentsM ask (Oxff)

need specifies a set of keyboard components that the server must be able to resolvein
order for XkbGetKeyboardByName to succeed; if any of the components specified in need
cannot be successfully resolved, XkbGetKeyboardByName fails.

want specifies a set of keyboard components that the server should attempt to resolve, but
that are not mandatory. If the server is unable to resolve any of these components, XkbGet-
KeyboardByName still succeeds. Bits specified in want that are also specified in need have
no effect in the context of want.

If load is True, the server updates its keyboard description for device_spec to match the

result of the keyboard description just built. If load is False, the server’s description for
device device_spec is not updated. In all cases, the parts specified by want and need from
the just-built keyboard description are returned.

The names structure in an XkbDescRec keyboard description record (see Chapter 18)
contains one field for each of the five component types used to build a keyboard descrip-

November 10, 1997 Library Version 1.0/Document Revision 1.1 195

The X Keyboard Extension

20 Server Database of Keyboard Components

tion. When a keyboard description is built from a set of database components, the corre-
sponding fields in this names structure are set to match the expressions used to build the

component.

The entire process of building a new keyboard description from the server database of

components and returning all or part of it is diagrammed in Figure 20.1:

Augment namesto
supply component
names required by
want and need but not
supplied in request

Initial Request:

False

load

*True

device_spec é

names P

want A

need

N
load _ \

Augment names to
supply required com-
ponent names not sup-

plied in request

S——

/ New Keyboard

— > | Description

Build keyboard
description from
expressionsin
names

False

load

* True

Replace device_spec
active keyboard
description with newly
built description

Keyboard
Component
Database

(Temporary)

Keyboard Description
for device _spec

Build keyboard
description for client
by extracting struc-
tures specified in want

and need

———p | Keyboard

Description
returned to
Client

Figure 20.1 Building a New Keyboard Description from the Server Database

The information returned to the client in the XkbDescRec is essentially the result of a
series of calls to extract information from afictitious device whose description matches

November 10, 1997

Library Version 1.0/Document Revision 1.1

The X Keyboard Extension 20 Server Database of Keyboard Components

the one just built. The calls corresponding to each of the mask bits are summarized in
Table 20.4, together with the XkbDescRec components that are filled in.

Table 20.4 XkbDescRec Components Returned for Values of Want & Needs

Request (want+ need) Fillsin Xkb components Equivalent Function Call
XkbGBN_TypesMask map.types XkbGetUpdatedM ap(dpy, XkbTypesMask, Xkb)
XkbGBN_ServerSymbolsMask server XkbGetUpdatedM ap(dpy, XkbAllClientinfoMask, Xkb)
XkbGBN_ClientSymbolsMask map, including map.types XkbGetUpdatedM ap(dpy, XkbAllServerinfoMask, Xkb)
XkbGBN_ IndicatorMaps indicators XkbGetlndicatorMap(dpy, XkbAllIndicators, Xkb)
XkbGBN_CompatMapMask compat XkbGetCompatMap(dpy, XkbAllCompatMask, Xkb)
XkbGBN_GeometryMask geom XkbGetGeometry(dpy, Xkb)
XkbGBN_KeyNamesMask nameskeys XkbGetNames(dpy, XkbKeyNamesMask |

names.key_aliases XkbK eyAliasesMask, Xkb)
XkbGBN_OtherNamesM ask names.keycodes XkbGetNames(dpy, XkbAlINamesMask &

names.geometry ~(XkbKeyNamesMask | XkbK eyAliasesMask),

names.symbols Xkb)

names.types

map.types[*].Ivl_nameg[*]

names.compat

names.vmods

names.indicators

names.groups

names.radio_groups
names.phys_symbols

There is no way to determine which components specified in want (but not in need) were
actually fetched, other than breaking the call into successive calls to XkbGetKeyboard-
ByName and specifying individual components.

XkbGetKeyboardByName always sets min_key code and max_key code in the returned
XkbDescRec structure.

XkbGetKeyboardByName is synchronous; it sends the request to the server to build a new
keyboard description and waits for the reply. If successful, the return value is non-NULL.
XkbGetKeyboardByName generates a BadMatch protocol error if errors are encountered
when building the keyboard description.

If you simply want to obtain information about the current keyboard device, rather than
generating a new keyboard description from elements in the server database, use XkbGet-

Keyboard (see section 6.2).

XkbDescPtr XkbGetK eyboar d(dpy, which, device_spec)
Display * dpy; /* connection to X server */
unsignedint which; /* mask of components of XkbDescRec of interest */
unsignedint device spec; /* device ID */

XkbGetKeyboard is used to read the current description for one or more components of a
keyboard device. It calls XkbGetKeyboardByName as follows:

XkbGetKeyboardByName(dpy, device_spec, NULL, which, which, False).

November 10, 1997 Library Version 1.0/Document Revision 1.1 197

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

21

Attaching Xkb Actions to X Input Extension Devices

The X input extension allows an X server to support multiple keyboards, as well as other
input devices, in addition to the core X keyboard and pointer. The input extension catego-
rizes devices by grouping them into classes. Keyboards and other input devices with keys
are classified as KeyClass devices by the input extension. Other types of devices sup-
ported by the input extension include, but are not limited to: mice, tablets, touchscreens,
barcode readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.
Xkb provides additional control over all X input extension devices, whether they are Key-
Class devices or not, as well as the core keyboard and pointer.

If an X server implements support for both the input extension and Xkb, the server imple-
mentor determines whether interaction between Xkb and the input extension is allowed.
Implementors are free to restrict the effects of Xkb to only the core X keyboard device or
allow interaction between Xkb and the input extension.

Several types of interaction between Xkb and the input extension are defined by Xkb.
Some or all may be alowed by the X server implementation.

Regardless of whether the server allows interaction between Xkb and the input extension,
the following accessis provided:

» Xkb functionality for the core X keyboard device and its mapping is accessed viathe
functions described in the other chapters of this specification.

» Xkb functionality for the core X pointer device is accessed via the XkbGetDevicelnfo
and XkbSetDevicel nfo functions described in this chapter.

If all types of interaction are alowed between Xkb and the input extension, the following
additional accessis provided:

 If alowed, Xkb functionality for additional KeyClass devices supported by the input
extension is accessed via those same functions.

» If dlowed, Xkb functionality for non-KeyClass devices supported by the input exten-
sion is aso accessed via the XkbGetDevicel nfo and X kbSetDevicel nfo functions
described in this chapter.

Each device has an X Input Extension device ID. Each device may have severa classes of
feedback. For example, there are two types of feedbacks that can generate bells: bell feed-
back and keyboard feedback (BellFeedbackClass and KbdFeedbackClass). A
device can have more than one feedback of each type; the feedback 1D identifies the par-
ticular feedback within its class.

A keyboard feedback has:

» Auto-repeat status (global and per key)
 32LEDs
* Abdl

An indicator feedback has;

* Upto32LEDs

If the input extension is present and the server allows interaction between the input exten-
sion and XKkb, then the core keyboard, the core keyboard indicators, and the core keyboard
bells may each be addressed using an appropriate device spec, class, and ID. The constant
XkbXIDf1tID may be used asthe device ID to specify the core keyboard indicators for
the core indicator feedback. The particular device ID corresponding to the core keyboard

November 10, 1997 Library Version 1.0/Document Revision 1.1 198

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

21.1

feedback and the core indicator feedback may be obtained by calling XkbGetDevicelnfo
and specifying XkbUseCoreKbd as the device_spec; the values will be returned in
dflt_kbd_id and dflt_led_id.

If the server does not allow Xkb access to input extension KeyClass devices, attempts to
use Xkb requests with those devices fail with aBadKeyboard error. Attempts to access

non-KeyClass input extension devices via XkbGetDevicel nfo and XkbSetDevicel nfo fail

silently if Xkb access to those devicesis not supported by the X server.

XkbDevicelnfoRec

Information about X Input Extension devicesis transferred between a client program and
the Xkb extension in an XkbDeviceInfoRec structure:

typedef struct {
char * name; [* namefor device */
Atom type; [* namefor class of devices*/
unsigned short device spec; /* device of interest */
Bool has own_state;/* True=>this device hasits own state */

unsigned short supported; /* bitsindicating supported capabilities */
unsigned short unsupported; /* bitsindicating unsupported capabilities */

unsigned short num_btns; /* number of entriesin btn_acts */
XkbAction * btn_acts; * button actions */

unsigned short sz_leds; /* total number of entriesin LEDs vector */
unsigned short num_leds, /* number of valid entriesin LEDs vector */

unsigned short dfit_kbd_fb; /* input extension ID of default (core kbd) indicator */
unsigned short dflt_led fb; /* input extension ID of default indicator feedback */

XkbDevicel edinfoPtr leds; /* LED descriptions */

} XkbDevicel nfoRec, * XkbDevicelnfoPtr;

typedef struct {
unsigned short led class, [* classfor this LED device*/
unsigned short led_id; /* ID for this LED device*/
unsigned int phys indicators; /* bitsfor which LEDs physically present */
unsigned int maps_present; /* bitsfor which LEDs have maps in maps */
unsigned int names present; /* bitsfor which LEDs arein names*/
unsigned int state; /* 1 bit => corresponding LED ison */
Atom names] XkbNumlndicators]; /* namesfor LEDs*/
XkblndicatorMapRec maps; /* indicator maps for each LED */

} XkbDevicel edl nfoRec, * XkbDevicel edInfoPtr;

Thetypefield is aregistered symbolic name for a class of devices (for example, “TABLET”). If a
deviceisakeyboard (that is, isamember of KeyClass), it hasits own state, and has_own_state
isTrue. If has own_stateis False, the state of the core keyboard is used. The supported and
unsupported fields are masks where each bit indicates a capability. The meaning of the
mask bitsislisted in Table 21.1, together with the fields in the XkbDeviceInfoRec
structure that are associated with the capability represented by each bit. The same bits are
used to indicate the specific information desired in many of the functions described subse-
guently in this section.

November 10, 1997 Library Version 1.0/Document Revision 1.1 199

The X Keyboard Extension

21 Attaching Xkb Actionsto X Input Extension

Table21.1 XkbDevicel nfoRec M ask Bits

XkbDevicel nfoRec

Name Fields Effected Value Capability If Set

XkbXI_KeyboardsMask (1L << 0) Clientscan useall Xkb reguestsand
events with KeyClass devices sup-
ported by the input device exten-
sion.

XkbXI1_ButtonActionsiMask num_btns (1L <<1) Clientscan assign key actionsto

btn_acts buttons on non-KeyClass input
extension devices.

XkbXI_IndicatorNamesMask leds->names (1L <<2) Clientscan assign namesto indica-
torson non-KeyClass input exten-
sion devices.

XkbXI _IndicatorM apsM ask leds->maps (1L <<3) Clientscan assign indicator mapsto
indicators on non-KeyClass input
extension devices.

XkbXI_IndicatorStateM ask leds->state (1L <<4) Clientscan request the status of
indicators on non-KeyClass input
extension devices.

XkbXI_IndicatorsMask sz leds (Ox1c) XkbXI_IndicatorNamesMask |

num_leds XkbXI_IndicatorMapsMask |
leds->* XkbXI_IndicatorStateM ask

XkbX1_UnsupportedFeaturesMask unsupported (1L <<15)

XkbXI_AllDeviceFeaturesMask Those selected by (0Ox1€) XkbXI_IndicatorsMask |

Value column masks XkbSI_ButtonActionsMask

XkbXI_AllFeaturesMask Those selected by (0Ox1f) XkbSI_AllDeviceFeaturesMask |

Value column masks XkbSl_KeyboardsMask
XkbXI_AllDetailsMask Thoseselected by (0x801f) XkbXI_AllFeaturesMask |

Vaue column masks

XkbXI_UnsupportedFeaturesM ask

21.2

The name, type, has_own_state, supported, and unsupported fields are awaysfilled in when a
valid reply isreturned from the server involving an XkbDeviceInfoRec. All of the other
fields are modified only if the particular function asks for them.

Querying Xkb Features for Non-KeyClass Input Extension Devices

To determine whether the X server allows Xkb access to particular capabilities of input
devices other than the core X keyboard, or to determine the status of indicator maps, indi-
cator names or button actions on anon-KeyClass extension device, use XkbGetDevice-
Info.

XkbDevicelnfoPtr XkbGetDevicel nfo(dpy, which, device _spec, ind_class, ind_id)

Display * dpy; [* connection to X server */

unsigned int which; /* mask indicating information to return */
unsigned int device_spec; /* devicelD, or XkbUseCoreKbd */
unsigned int ind_class; /* feedback class for indicator requests */
unsigned int ind_id; * feedback ID for indicator requests */

XkbGetDevicelnfo returns information about the input device specified by device _spec.
Unlike the device_spec parameter of most Xkb functions, device_spec does not need to be

November 10, 1997

Library Version 1.0/Document Revision 1.1 200

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

akeyboard device. It must, however, indicate either the core keyboard or avalid X Input
Extension device.

The which parameter is amask specifying optional information to be returned. It is an
inclusive OR of one or more of the values from Table 21.1 and causes the returned
XkbDeviceInfoRec to contain values for the corresponding fields specified in the table.

The XkbDeviceInfoRec returned by XkbGetDevicelnfo always has values for name
(may beanull string, “"), type, supported, unsupported, has own_state, dflt_kbd_fd, and
dflt_kbd_fb. Other fields arefilled in as specified by which.

Upon return, the supported field will be set to the inclusive OR of zero or more bits from
Table 21.1; each bit set indicates an optional Xkb extension device feature supported by
the server implementation, and a client may modify the associated behavior.

If the XkbButtonActionsMask bit is set in which, the XkbDeviceInfoRec returned
will have the button actions (btn_actsfield) filled in for all buttons.

If which includes one of the bitsin XkbXI IndicatorsMask, the feedback class of
the indicators must be specified inind_class, and the feedback ID of the indicators must
be specified in ind_id. If the request does not include any of the bitsin

XkbXI IndicatorsMask,theind classandind_id parametersareignored. The class
and 1D can be obtained via the input device extension XListl nputDevices request.

If any of the XkbXI IndicatorsMask bitsare set in which, the XkbDeviceInfoRec
returned will have filled in the portions of the leds structure corresponding to the indicator
feedback identified by ind_classand ind_id. The leds vector of the XkbDeviceInfoRec
isallocated if necessary and sz leds and num _ledsfilled in. Theled class, led id and
phys_indicatorsfields of the leds entry corresponding to ind_classand ind_id are always
filled in. If which contains XkbXI IndicatorNamesMask, the names present and
names fields of the leds structure corresponding to ind_class and ind_id are returned. If
which contains XkbXI IndicatorStateMask, the corresponding state field is updated.
If which contains XkbXI IndicatorMapsMask, the maps present and mapsfields are
updated.

Xkb provides convenience functions to request subsets of the information available via
XkbGetDevicel nfo. These convenience functions mirror some of the mask bits. The func-
tions al take an XkbDeviceInfoPtr asan input argument and operate on the X Input
Extension device specified by the device _spec field of the structure. Only the parts of the
structure indicated in the function description are updated. The XkbDeviceInfoRec
structure used in the function call can be obtained by calling XkbGetDevicelnfo or can be
allocated by calling XkbAllocDevicelnfo (see section 21.3).

These convenience functions are described as follows.

To query the button actions associated with an X Input Extension device, use XkbGetDe-
viceButtonActions.

Status XkbGetDeviceButtonActions(dpy, device_info, all_buttons, first_button, num_buttons)

Display * dpy; [* connectionto X server */

XkbDevicelnfoPtr device info; /* structure to update with results */

Bool all_buttons; /* True => get information for all buttons */
unsigned int first_button; /* number of first button for which info is desired */
unsigned int num_buttons;, /* number of buttons for which info isdesired */

November 10, 1997 Library Version 1.0/Document Revision 1.1 201

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

XkbGetDeviceButtonActions queries the server for the desired button information for the
device indicated by the device _spec field of device info and waitsfor areply. If success-
ful, XkbGetDeviceButtonActions backfills the button actions (btn_acts field of
device_info) for only the requested buttons, updates the name, type, supported, and unsup-
ported fields, and returns Success.

all_buttons, first_button and num_buttons specify the device buttons for which actions
should be returned. Setting all_buttons to True requests actions for al device buttons; if
all_buttonsis False, first_button and num_buttons specify arange of buttons for which
actions are requested.

If acompatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetDeviceButtonActions returns BadAccess. If allocation
errors occur, aBadalloc statusisreturned. If the specified device

(device_info->device spec) isinvalid, aBadKeyboard statusisreturned. If the device
has no buttons, a BadMatch statusis returned. If first_button and num_buttons specify
illegal buttons, aBadvalue statusis returned.

To query the indicator names, maps, and state associated with an LED feedback of an
input extension device, use XkbGetDevicel edInfo.

Status XkbGetDevicel edl nfo(dpy, device info, led class, led_id, which)

Display * dpy; /* connection to X server */

XkbDevicel nfoPtr device_info; /* structure to update with results */

unsigned int led class; /* LED feedback class assigned by input extension */
unsigned int led id; /* LED feedback 1D assigned by input extension */
unsigned int which; /* mask indicating desired information */

XkbGetDeviceledlnfo queries the server for the desired LED information for the feedback
specified by led classand led_id for the X input extension device indicated by
device_spec->device _info and waitsfor areply. If successful, XkbGetDeviceledinfo back-
fillsthe relevant fields of device info as determined by which with the results and returns
Success. Valid values for which are the inclusive OR of any of

XkbXI IndicatorNamesMask, XkbXI IndicatorMapsMask, and

XkbXI IndicatorStateMask.

Thefields of device info that are filled in when this request succeeds are name, type, sup-
ported, and unsupported, and portions of the leds structure corresponding to led_class and
led_id asindicated by the bits set in which. The device_info->leds vector is allocated if
necessary and sz_leds and num ledsfilled in. Theled class, led_id and phys_indicators
fields of the device_info->leds entry corresponding to led classand led_id are always
filled in.

If which contains XkbXI IndicatorNamesMask, the names present and names fields
of the device_info->leds structure corresponding to led classand led_id are updated, if
which contains XkbXI IndicatorStateMask, the corresponding state field is updated,
and if which contains XkbXI IndicatorMapsMask, the maps present and maps fields
are updated.

If acompatible version of Xkb is not available in the server or the Xkb extension has not
been properly initialized, XkbGetDeviceledInfo returns Badaccess. If allocation errors
occur, aBadAlloc statusis returned. If the device has no indicators, aBadMatch error is
returned. If ledClass or ledID haveillegal values, aBadvalue error isreturned. If they

November 10, 1997 Library Version 1.0/Document Revision 1.1 202

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

21.3

have legal values but do not specify afeedback that contains LEDs and is associated with
the specified device, aBadMatch error is returned.

Allocating, Initializing, and Freeing the XkbDevicelnfoRec Structure

To obtain an XkbDeviceInfoRec structure, use XkbGetDevicel nfo or XkbAllocDevice-
I nfo.

XkbDevicelnfoPtr XkbAllocDevicel nfo(device_spec, n_buttons, sz_|eds)

unsigned int device_spec; /* device ID with which structure will be used */
unsigned int n_buttons; /* number of button actions to allocate space for*/
unsigned int sz _leds; /* number of LED feedbacks to allocate space for */

XkbAllocDevicelnfo allocates space for an XkbDeviceInfoRec structure and initializes
that structure’ s device _spec field with the device ID specified by device spec. If
n_buttonsis nonzero, n_buttons XkbAct ions are linked into the XkbDeviceInfoRec
structure and initialized to zero. If sz ledsisnonzero, sz |leds XkbDeviceLedInfoRec
structures are also allocated and linked into the XkbDeviceInfoRec structure. If you
reguest XkbDeviceLedInfoRec structures be allocated using this request, you must ini-
tialize them explicitly.

To obtain an XkbDevicelLedInfoRec structure, use XkbAllocDeviceledlnfo.

Status XkbAllocDevicel edl nfo(devi, num_needed)
XkbDevicel nfoPtr device info; /* structure in which to allocate LED space */
int num_needed; /* number of indicators to allocate space for */

XkbAllocDeviceledinfo allocates space for an XkbDeviceLedInfoRec and placesitin
device_info. If num_needed is nonzero, num_needed XkbIndicatorMapRec structures
are also allocated and linked into the XkbDeviceLedInfoRec structure. If you request
XkbIndicatorMapRec structures be allocated using this request, you must initialize
them explicitly. All other fields are initialized to zero.

Toinitialize an XkbDevicelLedInfoRec structure, use XkbAddDevicelLedlnfo.

XkbDevicelL edinfoPtr XkbAddDevicel edl nfo(device info, led_class, led id)
XkbDevicel nfoPtr device info; /* structure in which to add LED info */
unsigned int led class; I* input extension class for LED device of interest */
unsigned int led id; /* input extension ID for LED device of interest */

XkbAddDevicel edinfo first checks to see whether an entry matching led_classand led _id
already exists in the device_info->leds array. If it finds a matching entry, it returns a
pointer to that entry. Otherwise, it checksto be sure thereis at least one empty entry in
device_info->leds and extendsit if there is not enough room. It then increments
device_info->num_leds and fillsin the next available entry in device_info->leds with
led_classand led_id.

If successful, XkbAddDeviceledinfo returns a pointer to the XkbDeviceLedInfoRec
structure that was initialized. If unable to allocate sufficient storage, or if device info
pointsto an invalid XkbDeviceInfoRec structure, or if led classor led id are inappro-
priate, XkbAddDevicel edInfo returns NULL.

November 10, 1997 Library Version 1.0/Document Revision 1.1 203

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

21.4

To allocate additional space for button actions in an XkbDeviceInfoRec structure, use
XkbResizeDevi ceButtonActions.

Status XkbResizeDeviceButtonActions(device _info, new_total)
XkbDevicelnfoPtr device_info; /* structurein which to allocate button actions */
unsigned int new_total; /* new total number of button actions needed */

XkbResizeDeviceButton reallocates space, if necessary, to make sure there is room for a
total of new_total button actionsin the device info structure. Any new entries allocated
are zeroed. If successful, XkbResizeDeviceButton returns Success. If new_total is zero,
al button actions are deleted, device_info->num_btnsis set to zero, and
device_info->btn_actsis set to NULL. If device_infoisinvalid or new_total is greater than
255, Badvalue isreturned. If amemory allocation failure occurs, aBadalloc is
returned.

To free an XkbDeviceInfoRec structure, use XkbFreeDevicelnfo.

void XkbFreeDevicel nfo(device info, which, free all)
XkbDevicelnfoPtr device info; /* pointer to XkbDeviceInfoRec inwhichto freeitems*/
unsigned int which; * mask of components of device_info to free */
Bool free_all; [* True => free everything, including device_info */

If free_all is True, the XkbFreeDevicel nfo frees all components of device_info and the
XkbDeviceInfoRec structure pointed to by device info itself. If free _all isFalse, the
value of which determines which subcomponents are freed. which isan inclusive OR of
one or more of the values from Table 21.1. If which contains

XkbXI ButtonActionsMask, al button actions associated with device_info are
freed, device_info->btn_actsis set to NULL, and device_info->num_btnsis set to zero. If
which contains all bitsin XkbXI IndicatorsMask, al XkbDeviceLedInfoRec
structures associated with device info are freed, device info->leds s set to NULL, and
device info->sz leds and device info->num leds are set to zero. If which contains
XkbXI IndicatorMapsMask, al indicator maps associated with device_info are
cleared, but the number of LEDs and the leds structures themselves are preserved. If
which contains XkbXI IndicatorNamesMask, al indicator names associated with
device_info are cleared, but the number of LEDs and the leds structures themselves are
preserved. If which contains XxkbXI IndicatorStateMask, theindicator state asso-
ciated with the device info leds are set to zeros but the number of LEDs and the leds struc-
tures themselves are preserved.

Setting Xkb Features for Non-KeyClass Input Extension Devices

The Xkb extension allows clients to assign any key action to either core pointer or input
extension device buttons. This makesit possible to control the keyboard or generate key-
board key events from extension devices or from the core pointer.

Key actions assigned to core X pointer buttons or input extension device buttons cause
key eventsto be generated asif they had originated from the core X keyboard.

Xkb implementations are required to support key actions for the buttons of the core
pointer device, but support for actions on extension devicesis optional. Implementations
that do not support button actions for extension devices must not set the

XkbXI ButtonActionsMask bit in the supported field of an XkbDeviceInfoRec
structure.

November 10, 1997 Library Version 1.0/Document Revision 1.1 204

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

If aclient attempts to modify valid characteristics of a device using an implementation
that does not support modification of those characteristics, no protocol error is generated.
Instead, the server reports afailure for the request; it also sends an XkbExtensionDevi -
ceNotify event to the client that issued the request if the client has selected to receive
these events.

To change characteristics of an X Input Extension device in the server, first modify alocal
copy of the device structure and then use either XkbSetDevicel nfo, or, to save network
traffic, use an XkbDeviceChangesRec structure (see section 21.6) and call
XkbChangeDevicel nfo to download the changes to the server.

To modify some or all of the characteristics of an X Input Extension device, use XkbSet-

Devicelnfo.

Bool XkbSetDevicel nfo(dpy, which, device_info)
Display * dpy; /* connection to X server */
unsigned int which; /* mask indicating characteristics to modify */
XkbDevicelnfoPtr device info; /* structure defining the device and modifications */

XkbSetDevicel nfo sends a request to the server to modify the characteristics of the device
specified in the device_info structure. The particular characteristics modified are identified
by the bits set in which and take their values from the relevant fields in device_info (see
Table 21.1). XkbSetDevicelnfo returns True if the request was successfully sent to the
server. If the X server implementation does not allow interaction between the X input
extension and the Xkb Extension, the function does nothing and returns False.

The which parameter specifies which aspects of the device should be changed and is a bit-
mask composed of an inclusive OR or one or more of the following bits:

XkbXI ButtonActionsMask, XkbXI IndicatorNamesMask,

XkbXI IndicatorMapsMask. If the features requested to be manipulated in which are
valid for the device, but the server does not support assignment of one or more of them,
that particular portion of the request isignored.

If the device specified in device_info->device_spec does not contain buttons and arequest
affecting buttons is made, or the device does not contain indicators and a request affecting
indicatorsis made, a BadMatch protocol error results.

If the XkbXI ButtonActionsMask bitisset in the supported mask returned by XkbGet-
Devicelnfo, the Xkb extension allows applications to assign key actions to buttons on
input extension devices other than the core keyboard device. If the

XkbXI ButtonActionsMask is setin which, the actionsfor all buttons specified in
device_info are set to the XkbActions specified in device_info->btn_acts. If the number
of buttons requested to be updated is not valid for the device, XkbSetDevicelnfo returns
False and aBadVvalue protocol error results.

If the XkbXTI IndicatorMaps and/or XkbXI IndicatorNamesMask bitissetinthe
supported mask returned by XkbGetDevicelnfo, the Xkb extension allows applications to
assign maps and / or names to the indicators of nonkeyboard extension devices. If sup-
ported, maps and / or names can be assigned to all extension device indicators, whether
they are part of akeyboard feedback or part of an indicator feedback.

If the XkbXI IndicatorMapsMask and/or XkbXI IndicatorNamesMask flagis set
in which, the indicator maps and / or names for all device_info->num_leds indicator
devices specified in device_info->leds are set to the maps and / or names specified in

November 10, 1997 Library Version 1.0/Document Revision 1.1 205

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

21.5

device_info->leds. device_info->leds->led_class and led_id specify the input extension
class and device ID for each indicator device to modify; if they haveinvalid values, a
BadValue protocol error results and XkbSetDevicelnfo returns False. If they have legal
values but do not specify akeyboard or indicator class feedback for the device in question,
aBadMatch error results. If any of the valuesin device_info->leds->namesare not avalid
Atom or None, a BadAtom protocol error results.

Xkb provides convenience functions to modify subsets of the information accessible via
XkbSetDevicelnfo. Only the parts of the structure indicated in the function description are
modified. These convenience functions are described as follows.

To change only the button actions for an input extension device, use XkbSetDeviceBut-
tonActions.

Bool XkbSetDeviceButtonActions(dpy, device, first_button, num_buttons, actions)

Display * dpy; /* connection to X server */

XkbDevicel nfoPtr device info; /* structure defining the device and modifications */
unsigned int first_button; /* number of first button to update, O relative */
unsigned int num_buttons; /* number of buttons to update */

XkbSetDeviceButtonActions assigns actions to the buttons of the device specified in
device_info->device_spec. Actions are assigned to num_buttons buttons beginning with
first_button and are taken from the actions specified in device_info->btn_acts.

If the server does not support assignment of Xkb actions to extension device buttons, Xkb-
SetDeviceButtonActions has no effect and returns False. If the device has no buttons or if
first_button or num_buttons specify buttons outside of the valid range as determined by
device_info->num_btns, the function has no effect and returns False. Otherwise, XkbSet-
DeviceButtonActions sends a request to the server to change the actions for the specified
buttons and returns True.

If the actual request sent to the server involved illegal button numbers, aBadvalue proto-
col error is generated. If an invalid device identifier is specified in

device _info->device _spec, aBadKeyboard protocol error results. If the actual device
specified in device _info->device _spec does not contain buttons and a request affecting
buttons is made, a BadMatch protocol error is generated.

XkbExtensionDeviceNotify Event

The Xkb extension generates XkbExtensionDeviceNotify events when the status of
an input extension device changes or when an attempt is made to use an Xkb featurethat is
not supported by a particular device.

Note Eventsindicating an attempt to use an unsupported feature are delivered only to the
client requesting the event.

To track changes to the status of input extension devices or attempts to use unsupported
features of adevice, select to receive XkbExtensionDeviceNotify eventsby caling
either XkbSelectEvents or XkbSelectEventDetails (see section 4.3).

To receive XkbExtensionDeviceNotify events under all possible conditions, call
XkbSelectEvents and pass XkbExtensionDeviceNotifyMask in both bits to_change
and values for_bhits.

November 10, 1997 Library Version 1.0/Document Revision 1.1 206

The X Keyboard Extension

21 Attaching Xkb Actionsto X Input Extension

21.6

The XkbExtensionDeviceNotify event has no event details. However, you can call
XkbSelectEventDetails using XkbExtensionDeviceNotify asthe event_type and spec-
ifying XkbAllExtensionDeviceMask in bits to_change and values for_bits. Thishas
the same effect asa call to XkbSelectEvents.

The structure for XkbExtensionDeviceNotify eventsis:

typedef struct {
int type; /* Xkb extension base event code */
unsigned long seridl; I* X server serial number for event */
Bool send_event; [* True => synthetically generated*/
Display * display; [* server connection where event generated */
Time time; [* server time when event generated */
int xkb_type; [* XkbExtensionDeviceNotifyEvent */
int device; /* Xkb device ID, will not be XkbUseCoreKbd */
unsigned int reason; /* reason for the event */
unsigned int supported; /* mask of supported features */
unsigned int unsupported; [* unsupported features this client attempted to use */
int first_btn; [* first button that changed */
int num_btns; /* number of buttons that changed */
unsigned int leds defined; /* indicators with names or maps */
unsigned int led_state; * current state of the indicators */
int led class; /* feedback class for LED changes*/
int led id; /* feedback |ID for LED changes*/

} XkbExtensionDeviceNotifyEvent;

The XkbExtensionDeviceNotify event hasfields enabling it to report changesin the
state (on/off) of al of the buttons for a device, but only for one LED feedback associated
with adevice. You will get multiple events when more than one LED feedback changes
state or configuration.

Tracking Changes to Extension Devices

Changes to an Xkb extension device may be tracked by listening to XkbDeviceExten-
sionNotify events and accumulating the changesin an XkbDeviceChangesRec struc-
ture. The changes noted in the structure may then be used in subsequent operationsto
update either a server configuration or alocal copy of an Xkb extension device configura-
tion. The changes structure is defined as follows:

typedef struct _XkbDeviceChanges {

unsigned int changed; [* bits indicating what has changed */
unsigned short first_btn; /* number of first button which changed, if any */
unsigned short num_btns; /* number of buttons that have changed */

XkbDeviceL edChangesRec leds;
} XkbDeviceChangesRec,* XkbDeviceChangesPir;

typedef struct _XkbDevicel edChanges {

unsigned short led class; [* class of thisindicator feedback bundle */
unsigned short led id; /* 1D of thisindicator feedback bundle */
unsigned int names, /* bitsindicating which names have changed */
unsigned int maps; * bits indicating which maps have changed */

struct _XkbDeviceL edChanges *next; /* link to indicator change record for next set */
} XkbDevicel edChangesRec,* XkbDevicel edChangesPtr;

November 10, 1997

Library Version 1.0/Document Revision 1.1 207

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

A local description of the configuration and state of a device may be kept in an XkbDevi -
ceInfoRec structure. The actual state or configuration of the device may change because
of XkbSetDevicel nfo and XkbSetButtonActions requests made by clients or by user interac-
tion with the device. The X server sends an XkbExtensionDeviceNotify event to
all interested clients when the state of any buttons or indicators or the configuration of the
buttons or indicators on the core keyboard or any input extension device changes. The
event reports the state of indicators for a single indicator feedback, and the state of up to
128 buttons. If more than 128 buttons or more than one indicator feedback are changed,
the additional buttons and indicator feedbacks are reported in subsequent events. Xkb pro-
vides functions with which you can track changes to input extension devices by noting the
changes that were made and then requesting the changed information from the server.

To note device changes reported in an XkbExtensionDeviceNotify event, use

XkbNoteDeviceChanges.

void XkbNoteDeviceChanges (old, new, wanted)
XkbDeviceChangesPtr old; [* structure tracking state changes */
XkbExtensionDeviceNotifyEvent * new;, [* event indicating state changes */
unsigned int wanted; /* mask indicating changes to note

*/

The wanted field specifies the changes that should be noted in old, and is composed of the
bitwise inclusive OR of one or more of the masksfrom Table 21.1. Thereason field of the
event in new indicates the types of changes the event is reporting. XkbNoteDeviceChanges
updates the XkbDeviceChangesRec specified by old with the changes that are both
specified in wanted and contained in new->reason.

To update alocal copy of the state and configuration of an X input extension device with
the changes previously noted in an XkbDeviceChangesRec structure, use XkbGetDevi-
cel nfoChanges.

To query the changes that have occurred in the button actions or indicator names and indi-
cator maps associated with an input extension device, use XkbGetDevicel nfoChanges.

Status XkbGetDevicel nffoChanges(dpy, device info, changes)

Display * dpy; /* connection to X server */
XkbDevicelnfoPtr device_info; /* structure to update with results */
XkbDeviceChangesPtr changes; [* contains notes of changes that have occurred */

The changes->changed field indicates which attributes of the device specified in
changes->device have changed. The parameters describing the changes are contained in
the other fields of changes. XkbGetDevicel nfoChanges uses that information to call Xkb-
GetDevicel nfo to obtain the current status of those attributes that have changed. It then
updates the local description of the device in device_info with the new information.

To update the server’ s description of a device with the changes noted in an XkbDevice-
ChangesRec, use XkbChangeDevicel nfo.

Bool XkbChangeDevicel nfo (dpy, device_info, changes)

Display * dpy; /* connection to X server */
XkbDevicel nfoPtr device info; /* local copy of device state and configuration */
XkbDeviceChangesPtr changes; /* note specifying changesin device_info */

November 10, 1997 Library Version 1.0/Document Revision 1.1 208

The X Keyboard Extension 21 Attaching Xkb Actionsto X Input Extension

XkbChangeDevicelnfo updates the server’ s description of the device specified in
device_info->device_spec with the changes specified in changes and contained in
device_info. The update is made by an XkbSetDevicel nfo request.

November 10, 1997 Library Version 1.0/Document Revision 1.1 209

The X Keyboard Extension 22 Debugging Aids

22

Debugging Aids

The debugging aids are intended for use primarily by Xkb implementors and are optional
in any implementation.

There are two bitmasks that may be used to control debugging. One bitmask controls the
output of debugging information, and the other controls behavior. Both bitmasks are ini-
tially all zeros.

To change the values of any of the debug controls, use XkbSetDebuggingFlags.
Bool XkbSetDebuggingFlags(display, mask, flags, msg, ctrls mask, ctrls, ret_flags, ret_ctrls)

Display * display; /* connection to X server */

unsigned int mask; /* mask selecting debug output flags to change */
unsigned int flags; /* values for debug output flags selected by mask */
char * msg; /* message to print right now */

unsigned int ctrls mask; /* mask selecting debug controls to change */
unsigned int ctrls; [* valuesfor debug controls selected by ctrls_mask */
unsigned int * ret flags; /* resulting state of all debug output flags */
unsigned int * ret_ctrls; [* resulting state of all debug controls */

XkbSetDebuggingFlags modifies the debug output flags as specified by mask and flags,
modifies the debug controls flags as specified by ctrls mask and ctrls, prints the message
msg, and backfillsret_flags and ret_ctrls with the resulting debug output and debug con-
trols flags.

When bits are set in the debug output masks, mask and flags, Xkb prints debug informa-
tion corresponding to each bit at appropriate points during its processing. The device to
which the output is written is implementati on-dependent, but is normally the same device
to which X server error messages are directed; thus the bits that can be set in mask and
flags is implementation-specific. To turn on a debug output selection, set the bit for the
output in the mask parameter and set the corresponding bit in the flags parameter. To turn
off event selection for an event, set the bit for the output in the mask parameter and do not
set the corresponding bit in the flags parameter.

When bits are set in the debug controls masks, ctrls mask and ctrls, Xkb modifiesits
behavior according to each controls bit. ctrls_mask and ctrls are related in the same way
that mask and flags are. The valid controls bits are defined in Table 22.1.

Table 22.1 Debug Control Masks

Debug Control Mask Value Meaning
XkbDF_Disablel ocks (1<<0) Disable actions that lock modifiers

XkbSetDebuggingFlags returns True if successful and False otherwise. The only proto-
col error it may generateisBadAlloc, if for somereason it is unable to allocate storage.

XkbSetDebuggingFlagsisintended for devel oper use and may be disabled in production X
servers. If it isdisabled, XkbSetDebuggingFlags has no effect and does not generate any
protocol errors.

The message in msg iswritten immediately. The deviceto which it iswritten isimplemen-
tation dependent but is normally the same device where X server error messages are
directed.

November 10, 1997 Library Version 1.0/Document Revision 1.1 210

The X Keyboard Extension Glossary

Glossary

Allocator
Xkb provides functions, known as allocators, to create and initialize Xkb data structures.

Audible Bell
Anaudible bell isthe sound generated by whatever bell is associated with the keyboard or
input extension device, as opposed to any other audible sound generated elsewhere in the
system.

Autoreset Controls

The autoreset controls configure the boolean controls to automatically be enabled or
disabled at the time a program exits.

Base Group

The group in effect asaresult of al actions other than a previouslock or latch request; the
base group is transient. For example, the user pressing and holding a group shift key that
shifts to Group2 would result in the base group being group 2 at that point in time.
Initially, base group is aways Groupl.

Base M odifiers
Modifiersthat are turned on as aresult of some actions other than previous lock or latch
requests; base modifiers are transient. For example, the user pressing and holding a key
bound to the Shift modifier would result in Shift being a base modifier at that point in
time.

Base Event Code

A number assigned by the X server at run timethat is assigned to the extension to identify
events from that extension.

Base State

The base group and base modifiers represent keys that are physically or logically down;
these congtitute the base state.

Boolean Controls

Global keyboard controls that may be selectively enabled and disabled under program
control and that may be automatically set to an on or off condition upon client program
exit.

Canonical Key Types

The canonical key types are predefined key types that describe the types of keys available
on most keyboards. The definitions for the canonical key types are held in the first
XkbNumRequiredTypes entries of the typesfield of the client map and are indexed using
the following constants:

XkbOneLevel Index
XkbTwoLevel Index
XkbAlphabeticIndex
XkbKeypadIndex

Client Map
The key mapping information needed to convert arbitrary keycodes to symbols.

November 10, 1997 Library Version 1.0/Document Revision 1.1 211

The X Keyboard Extension Glossary

Compat Name

The compat name is a string that provides some information about the rules used to bind
actions to keys that are changed using core protocol requests.

Compatibility State
When an Xkb-extended X server connects to an Xkb-unaware client, the compatibility
state remaps the keyboard group into a core modifier whenever possible.

Compatibility Grab State
The grab state that results from applying the compatibility map to the Xkb grab state.

Compatibility Map
The definition of how to map core protocol keyboard state to Xkb keyboard state.

Component Expression

An expression used to describe server keyboard database components to be loaded. It
describes the order in which the components should be loaded and the rules by which
duplicate attributes should be resolved.

Compose Processing
The process of mapping a series of keysymsto a string is known as compose processing.

Consumed Modifier

Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modifier should be considered despite having been used
to look up a symbol, key typesinclude an optional preserve field.

Core Event
An event created from the core X server.

Detectable Auto-Repeat

Detectable auto-repeat allows a client to detect an auto-repeating key. If aclient requests
and the server supports detectable auto-repeat, Xkb generates KeyRelease events only
when the key is physically released. Thus the client receives anumber of KeyPress
events for that key without intervening KeyRelease events until the key isfinally
released, when aKeyRelease event isreceived.

Effective Group

The effective group is the arithmetic sum of the locked, latched, and base groups. The
effective keyboard group is always brought back into range depending on the value of the
GroupsWrap control for the keyboard. If an event occurs with an effective group that is
legal for the keyboard as awhole, but not for the key in question, the group for that event
only is normalized using the algorithm specified by the group_info member of the key
symbol map (XkbSymMapRec).

Effective M ask

An Xkb modifier definition consists of a set of bit masks corresponding to the eight real
modifiers; asimilar set of bitmasks corresponding to the 16 named virtual modifiers; and
an effective mask. The effective mask represents the set of all real modifiers that can
logically be set either by setting any of the real modifiers or by setting any of the virtual
modifiersin the definition.

November 10, 1997 Library Version 1.0/Document Revision 1.1 212

The X Keyboard Extension Glossary

Effective M odifier
The effective modifiers are the bitwise union of the base, latched and locked modifiers.

Extension Device
Any keyboard or other input device recognized by the X input extension.

Global Keyboard Controls

Controlsthat affect the way Xkb generates key events. The controls affect all keys, as
opposed to per-key controls that are for asingle key. Global controls include

» RepeatKeys Control
Detectabl eAuto-repeat
SlowKeys
BounceKeys
StickyKeys
MouseKeys
MouseK eysAccel
AccessXKeys
AccessX Timeout
AccessX Feedback
Overlayl

Overlay2
EnabledControls

Grab State

The grab state is the state used when matching events to passive grabs. It consists of the
grab group and the grab modifiers.

Group
See Keysym Group

Group Index

A number used as the internal representation for a group number. Groupl through Group
4 have indices of 0 through 3.

GroupsWrap Control

If agroup index exceeds the maximum number of groups permitted for the specified
keyboard, it iswrapped or truncated back into range as specified by the global
GroupsWrap control. GroupsWrap can have the following values:

WrapIntoRange

ClampIntoRange

RedirectIntoRange

Key Type
An attribute of akey that identifies which modifiers affect the shift level of akey and the
number of groups on the key.

Key Width
The maximum number of shift levelsin any group for the key type associated with a key.

November 10, 1997 Library Version 1.0/Document Revision 1.1 213

The X Keyboard Extension Glossary

Keysym Group

A keysym group isalogical state of the keyboard providing access to a collection of
characters. A group usually contains a set of characters that logically belong together and
that may be arranged on several shift levels within that group. For example, Groupl could
be the English alphabet, and Group2 could be Greek. Xkb supports up to four different
groups for an input device or keyboard. Groups are in the range 1-4 (Groupl - Group4),
and are often referred to as G1 - G4 and indexed as 0 - 3.

I ndicator

Anindicator is afeedback mechanism such asan LED on an input device. Using Xkb, a
client application can determine the names of the variousindicators, determine and control
the way that the individual indicators should be updated to reflect keyboard changes, and
determine which of the 32 keyboard indicators reported by the protocol are actually
present on the keyboard.

I ndicator Feedback

Anindicator feedback describes the state of abank of up to 32 lights. It has a mask where
each bit correspondsto alight and an associated value mask that specifieswhich lights are
on or off.

Indicator Map

Anindicator has its own set of attributes that specify whether clients can explicitly set its
state and whether it tracks the keyboard state. The indicator map is the collection of these
attributes for each indicator and is held in the maps array, which is an array of
XkbIndicatorRec structures.

I nput Extension

An extension to the core X protocol that allows an X server to support multiple keyboards,
aswell as other input devices, in addition to the core X keyboard and pointer. Other types
of devices supported by the input extension include, but are not limited to: mice, tablets,
touchscreens, barcode readers, button boxes, trackballs, identifier devices, data gloves,
and eye trackers.

Key Action
A key action consists of an operator and some optional data. Once the server has applied
the global controls and per-key behavior and has decided to process akey event, it applies
key actions to determine the effects of the key on the internal state of the server. Xkb
supports actions that do the following:

» Change base, latched, or locked modifiers or group

Move the core pointer or simulate core pointer button events

Change most aspects of keyboard behavior

Terminate or suspend the server

Send a message to interested clients

Simulate events on other keys

Key Alias
A key aliasisasymbolic name for a specific physical key. Key aliases allow the keyboard
layout designer to assign multiple key namesto asingle key. This allows the keyboard
layout designer to refer to keys using either their position or their “function.” Key aliases
can be specified both in the symbolic names component and in the keyboard geometry.

November 10, 1997 Library Version 1.0/Document Revision 1.1 214

The X Keyboard Extension Glossary

Both sets of aliases are always valid, but key alias definitions in the keyboard geometry
have priority; if both symbolic names and geometry include aliases, you should consider
the definitions from the geometry before considering the definitions from the symbolic
names section.

Key Behavior
The behaviorsfield of the server map is an array of XkbBehavior, indexed by keycode,
and contains the behavior for each key. The X server uses key behavior to determine
whether to process or filter out any given key event; key behavior isindependent of
keyboard modifier or group state. Each key has exactly one behavior.
Key behaviorsinclude:

XkbKB_Default
XkbKB_Lock
XkbKB_RadioGroup
XkbKB_Overlayl
XkbKB_Overlay2

Key Symbol Map

A key symbol map describes the symbols bound to a key and the rules to be used to
interpret those symbols. It is an array of XkbSymMapRec structures indexed by keycode.

Key Type
Key types are used to determine the shift level of akey given the current state of the
keyboard. There is one key type for each group for akey. Key types are defined using the
XkbKeyTypeRec and XkbKTMapEntryRec structures. Xkb alows up to
XkbMaxKeyTypes (255) key types to be defined, but requires at least
XkbNumRequiredTypes (4) predefined types to be in akey map.

Keyboard Bells

The sound the default bell makes when rung is the system bell or the default keyboard
bell. Some input devices may have more than one bell, identified by bell _class and
bell_id.

Keyboard Components

There are five types of components stored in the X server database of keyboard
components. They correspond to the symbols, geometry, keycodes, compat, and types
symbolic names associated with a keyboard.

Keyboard Feedback
A keyboard feedback includes the following:

Keyclick volume
Bell volume
Bell pitch
Bell duration
Global auto-repeat
Per key auto-repeat
32 LEDs

Key Width, Key Type Width
The maximum number of shift levelsfor atypeisreferred to as the width of akey type.

November 10, 1997 Library Version 1.0/Document Revision 1.1 215

The X Keyboard Extension Glossary

Keyboard Geometry
Keyboard geometry describes the physical appearance of the keyboard, including the
shape, location, and color of all keyboard keys or other visible keyboard components such
asindicators and is stored in a XkbGeometryRec structure. The information contained in
akeyboard geometry is sufficient to allow a client program to draw an accurate
two-dimensional image of the keyboard.

Keyboard Geometry Name

The keyboard geometry name describes the physical location, size, and shape of the
various keys on the keyboard and is part of the XkbNamesRec structure.

Keyboard State

Keyboard state encompasses al of the transitory information necessary to map a physical
key press or release to an appropriate event.

Keycode
A numeric value returned to the X server when akey on akeyboard is pressed or released,
indicating which key is being modulated. Keycode numbers arein the range 1 <= keycode
<= max, where max is the number of physical keys on the device.

Keycode Name

The keycode name describes the range and meaning of the keycodes returned by the
keyboard and is part of the XkbNamesRec structure.

Latched Group
A latched group is agroup index that is combined with the base and locked group to form
the effective group. It applies only to the next key event that does not change the keyboard
state. The latched group can be changed by keyboard activity or via Xkb extension library
functions,

Latched Modifier
Latched modifiers are the set of modifiers that are combined with the base modifiers and
the locked modifiersto form the effective modifiers. It applies only to the next key event
that does not change the keyboard state.

LED

A light emitting diode. However, for the purposes of the X keyboard extension
specification, a LED is any form of visual two-state indicator that is either on or off.

L ocked Group
A locked group is agroup index that is combined with the base and latched group to form
the effective group. When agroup islocked, it supersedes any previous locked group and
remains the locked group for all future key events, until anew group islocked. The locked
group can be changed by keyboard activity or via Xkb extension library functions.

Locked Modifiers
L ocked modifiers are the set of modifiers that are combined with the base modifiers and
the latched modifiers to form the effective modifiers. A locked modifier appliesto all
future key events until it is explicitly unlocked.

November 10, 1997 Library Version 1.0/Document Revision 1.1 216

The X Keyboard Extension Glossary

L ookup State

The lookup state is composed of the lookup group and the lookup modifiers, and it isthe
state an Xkb-capable or Xkb-aware client should use to map a keycode to a keysym.

Modifier
A modifier isalogical condition that is either set or unset. The modifiers control the Shift
Level selected when akey event occurs. Xkb supports the core protocol eight modifiers
(Shift, Lock, Control, and Mod1 through Mods), called the real modifiers. In addition,

Xkb extends modifier flexibility by providing a set of sixteen named virtual modifiers,
each of which can be bound to any set of the eight real modifiers.

Modifier Key
A modifier key isakey whose operation has no immediate effect, but that, for aslong asit

is held down, modifies the effect of other keys. A modifier key may be, for example, a
shift key or acontrol key.

Modifier Definition
An Xkb modifier definition, held in an XkbModsRec, consists of aset of real modifiers, a
set of virtual modifiers, and an effective mask. The mask is the union of the real modifiers
and the set of real modifiers to which the virtual modifiers map; the mask cannot be
explicitly changed.

Nonkeyboard Extension Device

An input extension device that is not a keyboard. Other types of devices supported by the
input extension include, but are not limited to: mice, tablets, touchscreens, barcode
readers, button boxes, trackballs, identifier devices, data gloves, and eye trackers.

Outlines

Anoutlineisalist of one or more pointsthat describes a single closed polygon, used in the
geometry specification for a keyboard.

Physical Indicator Mask

The physical indicator mask isafield in the XkbIndicatorRec that indicates which
indicators are bound to physical LEDs on the keyboard; if abit is set in phys_indicators,
then the associated indicator has a physical LED associated with it. Thisfield is necessary
because some indicators may not have corresponding physical LEDs on the keyboard.

Physical Symbol Keyboard Name

The symbols keyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readabl e description of the intended locale or
usage of the keyboard with these symbols. The phys_symbols keyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Preserved Modifier

Xkb normally consumes modifiers in determining the appropriate symbol for an event,
that is, the modifiers are not considered during any of the later stages of event processing.
For those rare occasions when a modifier should be considered despite having been used
to look up a symbol, key typesinclude an optional preserve field. If amodifier is present
in the preservellist, it is a preserved modifier.

November 10, 1997 Library Version 1.0/Document Revision 1.1 217

The X Keyboard Extension Glossary

Radio Group

A radio group isa set of keyswhose behavior ssimulates a set of radio buttons. Once a key
inaradio group is pressed, it stays logically depressed until another key in the group is
pressed, at which point the previously depressed key islogically released. Consequently,
at most one key in aradio group can be logically depressed at one time.

Real Modifier

Xkb supports the eight core protocol modifiers (Shift, Lock, Control, and Modl
through Mod5); these are called the real modifiers, as opposed to the set of sixteen named
virtual modifiers that can be bound to any set of the eight real modifiers.

Server Internal Modifiers

Modifiers that the server uses to determine the appropriate symbol for an event; internal
modifiers are normally consumed by the server.

Shift Level

One of several states (normally 2 or 3) governing which graphic character is produced when a key
is actuated.

Symbol Keyboard Name

The symbols keyboard name identifies the symbols logically bound to the keys. The
symbols name is a human or application-readable description of the intended locale or
usage of the keyboard with these symbols. The phys symbols keyboard name, on the other
hand, identifies the symbols actually engraved on the keyboard.

Symbolic Name

Xkb supports symbolic names for most components of the keyboard extension. Most of
these symbolic names are grouped into the names component of the keyboard description.

State Field

The portion of a client-side core protocol event that holds the modifier, group, and button
state information pertaining to the event.

Types Name

The types name provides some information about the set of key types that can be
associated with the keyboard. In addition, each key type can have a name, and each shift
level of atype can have aname.

Valuator
A valuator reports a range of values for some entity, like amouse axis, adlider, or adial.

Virtual Modifier
XKkb provides a set of sixteen named virtual modifiers that can be bound to any set of the
eight real modifiers. Each virtua modifier can be bound to any set of the real modifiers
(Shift, Lock, Control, and Mod1-Mods).

Virtual Modifier Mapping
Xkb maintains a virtual modifier mapping, which lists the virtual modifiers associated
with each key.

November 10, 1997 Library Version 1.0/Document Revision 1.1 218

The X Keyboard Extension Glossary

Xkb-awar e Client

A client application that initializes Xkb extension and is consequently bound to an Xlib
that includes the Xkb extension.

Xkb-capable Client

A client application that makes no Xkb extension Xlib calls but is bound to an Xlib that
includes the Xkb extension.

Xkb-unawar e Client

A client application that makes no Xkb extension Xlib calls and is bound to an Xlib that
does not include the Xkb extension.

November 10, 1997 Library Version 1.0/Document Revision 1.1 219

The X Keyboard Extension

I ndex

A
AccessX enable/disable bits, table 75
AccessX Feedback 53, 63, 72
AccessXKeys 53, 72
AccessXNotify 64, 66
AccessXTimeout 53, 62, 72
Action modifiers 144
Actions 141
changing number of actions bound to key 160
controls action types, table 154
detecting key action messages 155
device button action types 158
for changing active screen 153
for changing button number simulated by mouse keys 149
for changing current group state 145
for changing state of boolean controls 154
for changing the state of modifiers 143
for generating a different keycode for key 156
for generating DeviceButtonPressand DeviceButtonRelease
158
for generating messages 155
for locking modifiers and group 150
for moving the pointer 147
for simulating events from device valuators 159
for simulating pointer button press and release 148
group action flags, table 146
group action types, table 146
ISO action flags, table 151
message action flags, table 155
modifier action flags, table 145
modifier action types, table 144
obtaining actions for keys from server 160
pointer action types, table 147
ponter button action flags, table 149
ponter button action types, table 149
switch screen action flags, table 153
Allocator, glossary entry 211
AlwaysConsumeShiftAndLock 83
Audible Bell, glossary entry 211
AudibleBell 48, 53, 56, 72
AutoReset 53, 55, 72, 81
Autoreset Controls, glossary entry 211
AX_BounceKeyReject 48
AX_FeatureChange 48
AX_FeatureOff 48
AX_FeatureOn 48
AX_IndicatorChange 48
AX_IndicatorOff 48
AX_IndicatorOn 48
ax_options 75
ax_options values 63
AX_SlowKeyAccept 48
AX_SlowKeyPress 48
AX_SlowKeyReject 48
AX_SlowKeyRelease 48
AX_SlowKeysWarning 48
AX_StickyLatch 48
AX_StickyLock 48
AX_StickyUnlock 48

B
BadAccess 9
BadAlloc 9
BadAtom 9
BadClass 9

BadDevice 9
Badld 9
Badlmplementation 9
BadKeyboard 4, 9
BadMatch 9
BadValue 9
Base error code 7
Base event code 7, 14
Base Event Code, glossary entry 211
Base group 20, 211
Base Group, glossary entry 211
Base modifiers 20, 211
Base Modifiers, glossary entry 211
Base State, glossary entry 211
BeepOnComposefFail 84
Behavior
key behaviors, table 161
keys 161
obtaining key behaviors from the server 162
BellFeedbackClass 48
Bells 47
audible 48
BeepOnComposeFail 84
bell_class and bell_id 48
detecting 51
fixed pitch bell only 64
forcing a server-generated bell 51
generating bell events 49
generating named bell events 50
high and low pitched beeps, rising and falling tones 63
names 47
predefined 48
sounding 49
Boolean controls 53
actions for changing the state of 154
Boolean Controls, glossary entry 211
BounceKeys 53, 66, 72
debounce delay 75
delay 66
Bounds
computing bounding box of arow 106
computing bounding box of a section 106
computing bounding box of a shape 105
keyboard geometry 93
sections 95
shapes 94
Buttons, pointer 20

C
Canonical key types 129
initializing 131
used in compatiblity map 176
Canonical Key Types, glossary entry 211
Changes data structures 12
ClamplntoRange 69, 74, 134
Client map 2, 116, 126
allocating and freeing 123
key symbol map 133
Client Map, glossary entry 211
Client types
Xkb-aware 3, 21, 167
Xkb-capable 3, 21, 167
Xkb-unaware 3, 21, 167
Colors
keyboard, key label 93

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-220

The X Keyboard Extension

I ndex

listed in geometry description 93
Compat Name, glossary entry 212
Compatibility 3

allocating and freeing maps 179

changing the server’s map 177

core keyboard mapping to Xkb keyboard mapping transfor-

mation 170

data structure 169

data structures, diagram 169

determining library 6

diagram 168

getting map components from server 174

group maps 169

map 167

setting explicit component controls 170, 171, 176

states 22

symbol interpretation match criteria, table 172

symbol interpretations 172

tracking changes to the map 178

types of transformations 168

using the compatibility map 175

with the core protocol 4

Xkb keyboard mapping to core keyboard mapping transfor-

mations 173

Xkb state to core protocol state transformation 169
Compatibility Grab State, glossary entry 212
Compatibility Map, glossary entry 212
Compatibility State, glossary entry 212
Component Expression, glossary entry 212
Components, explicit 163
Compose processing controls 83
Compose Processing, glossary entry 212
ComposeLED 84
Composing

BeepOnComposeFail 84

ComposeLED 84

ConsumeKeysOnComposeFail 83
Consumed Modifier, glossary entry 212
ConsumeK eysOnComposeFail 83
ConsumelL ookupM ods 82
Controls 2

AccessX Feedback 63

AccessX Timeout 62

actions for changing the state of 154

affecting compose processing 83

affecting keycode to string translation 82

alocating and freeing data structure 80

AlwaysConsumeShiftAndLock 83

AudibleBell 56

AutoReset 55, 81

BeepOnComposefFail 84

bell behavior 56

boolean 53, 82

BounceKeys 66

changing 77

changing the state of library controls 85

cleaning up on exit 55, 81

ComposeLED 84

ConsumeK eysOnComposeFail 83

Consumel ookupMods 82

controls action types, table 154

data structure 71

DetectableAutorepeat 57

determining the state of libarary controls 85

determining which library controls are implemented 85

effecting event delivery 84
EnabledControls 54
enabling and diabling other controls 54
for general keyboard mapping 68
ForcelL atin1L ookup 82
GroupsWrap 69
IgnoreGroupLock 70
IgnoreL ockMods 69
IgnoreNewKeyboards 84
InternalMods 70
keyboard 53
keyboard use for physically-impaired persons 61
library controls masks 85
MouseKeys 59
MouseKeysAccel 59
overlays 58
PerKeyRepeat 56
querying 77
repeat key behavior 56
RepeatKeys 56
SlowKeys 65
StickyKeys 67
tablelisting all 72
tracking changes to keyboard controls 79
using the mouse from the keyboard 59
X library 82

Core Event, glossary entry 212

D
Data structures 11
editing 11
enlarging 11
freeing 13
debounce_delay 75
Debugging 210
Detectable Auto-repeat, glossary entry 212
DetectableAutorepeat 53, 57, 72
Device feedback, types 198
Device identifier 10
Devi ce specifications, matching with display specifications 9
Devices
actions for generating DeviceButtonPress and DeviceBut-
tonRelease 158
actions simulating events from device valuators 159
allocating, initializing and freeing data structures 203
attaching Xkb actionsto 198
querying features for non-KeyClass devices 200
querying for button actions 201
querying indicator information 202
setting features for non-KeyClass devices 204
tracking changes to 207
Display, actions for changing active screen 153
Doodads 93, 96
in sections 95
indicator 96
logo 96
outline 96
priority 96
solid 96
text 96
types 96
Drawing a keyboard representation 97
DumbBells 64

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-221

The X Keyboard Extension

I ndex

E
Effective group 20
Effective Group, glossary entry 212
Effective mask 31
Effective Mask, glossary entry 212
Effective modifier mask 31
Effective Modifier, glossary entry 213
Effective modifiers 20
enabled_ctrls 74
EnabledControls 53, 54, 72
Errors, protocol 9
Events

AccessXNotify 64

base event code 14

data structures 15

interpreting key events 87

MouseKeys 65

overview 14

RepeatKeys 65

selecting for 15

StickyKeys 65

types 14

types, table 14
Explicit component masks, table 163
Explicit components 163
ExplicitAutoRepeat 163
ExplicitBehavior 163
Explicitinterpret 163
ExplicitkeyTypel 163
ExplicitkeyType2 163
ExplicitkeyType3 163
ExplicitkeyType4 163
ExplicitVModMap 163
Extension Device, glossary entry 213

F

Feedback, types 198
Fonts, key label 93
Forcel atin1L ookup 82

G
Geometry 3, 92
adding elementsto 106
allocating and freeing components 110
bounds, keyboard 93
bounds, sections 95
bounds, shapes 94
computing the bounding box of arow 106
computing the bounding box of a section 106
computing the bounding box of a shape 105
data structures 98
data structures, diagram 98
doodad types 96
doodads 93, 96
doodads in sections 95
drawing a keyboard representation 97
finding the overlay for akey 106
functions for using 105
getting from server 104
key aiases 93
key drawing order 95
key label color 93
key label font 93
keyboard color 93
keyboard with four sections, diagram 94

keys 95
list of colors 93
outlines 94
outlines, diagram 105
overlay keys 96
overlay rows 96
overlays 95
priority 92, 95
priority, doodads 96
properties 93, 106
rotated keyboard sections 92
rotated keyboard sections, diagram 92
rows 95
rows in asection, diagram 95
sections 93, 95
shapes 93, 94
top-level geometry description 92
Global Keyboard Controls, glossary entry 213
Grab group 21
Grab modifiers 21
Grab state 21
Grab State, glossary entry 213
Grabs
passive, ignoring group locks 70
Group Index, glossary entry 213
Group, glossary entry 213
Groups 20, 116, 117
bindings for alternate group hints 193
changing 23
changing current state via key actions 145
compatibility maps 169
group action flags, table 146
group action types, table 146
group index constants 137
handling illegal groups 69
locking via actions 150
normalizing groups into range 20, 134
per-key group information 134
symbolic group names 23
treatment of out-of-range groups 134
Groups Wrap Control, glossary entry 213
GroupsWrap 53, 68, 69, 72, 74

H
Header files 6

I
IgnoreGroupLock 54, 68, 70, 72
IgnoreLockMods 54, 68, 69, 72, 74
IgnoreNewKeyboards 84
Implicit support 87
Indicator feedback 198
Indicator Feedback, glossary entry 214
Indicator map 35
Indicator Map, glossary entry 214
Indicator, glossary entry 214
Indicators 3, 34
allocating and freeing maps 45
changing maps 42
changing maps and state 41
ComposeLED 84
data structures 34
effects of explicit changes on 41
geometry, colorswhen lit and dark 96
getting information about from server 39

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-222

The X Keyboard Extension Index
getting information by index 40 Keyboard Components, glossary entry 215
getting information by name 40 Keyboard controls 53
getting the state of 40 for physically-impaired persons 61
how controls affect 39 tracking changes 79
how groups affect 36 Keyboard description 2, 27
how modifiers affect 37 allocating and freeing 28
indicator drives keyboard 35 building from server database 193
keyboard drivesindicator 35 changing 12
maps 35 getting from server 28
names 34 updating library description 90
querying names, maps and state 202 Keyboard Feedback, glossary entry 215
tracking changes to state or map 44 Keyboard Geometry Name, glossary entry 216

Initializing Xkb 7 Keyboard Geometry, glossary entry 216

Input extension Keyboard mapping 116
attaching Xkb actions to devices 198 client map 116

Input Extension, glossary entry 214 server map 116

InternalMods 54, 68, 70, 72 shift levels and groups, diagram 117

1S09995 standard 116 Keyboard state 19

base group 20, 211

K base modifiers 20, 211

KbdFeedbackClass 48 compatibility states 22

Key Action, glossary entry 214 description 19

Key actions 141 determining 23
independence of modifier state 117 effective group 20

Key Alias, glossary entry 214 effective modifiers 20

Key aliases grab state 21
geometry 93 keysym groups 20
names array 181 lookup state 21

Key Behavior, glossary entry 215 modifiers 20

Key events tracking 24
interpreting 87 Keyboard State, glossary entry 216
Xkb filtering out-of-range keycodes 188 KeyClass 10, 157, 198

Key symbol map 133 Keycode Name, glossary entry 216

Key Symbol Map, glossary entry 215 Keycode to string translation 82

Key Type, glossary entry 213, 215 Keycode, glossary entry 216

Key types Keycodes
ALPHABETIC 130 actions for generating a different keycode for key 156
and shift levels 117 finding keysym bound to 89

canonical 129
canonical key types, initializing 131
canonical, used in compatibility map 176
changing the number of levelsin 132
copying key type data structures 132
getting from the server 131
KEYPAD 130
names 128
offset in symbol map 135
ONE_LEVEL 129
per-key key typesindices 133
TWO_LEVEL 129
width (number of shift levels) 135
Key types, example 128
Key Width, glossary entry 213
Key Width, Key Type Width, glossary entry 215
Keyboard
components, server database 190
feedback 198
geometry 92
geometry sections 93
IgnoreNewKeyboards 84
names 180
replacing on the fly 187
symbolic name 93
unresponsiveness because of SlowKeys 62
Keyboard Bells, glossary entry 215

keys which report more than one keycode 58
trandating keycode to symbol and modifiers 91
Xkb filtering out-of-range key events 188
Keymap
allocating and freeing 123, 124
changing map components 120
client map 126
functions 89
getting map components from the server 118
getting partial map components from the server, table 118
tracking changesto 122
Keys
actions 141
aliases 93, 181
behavior 118, 161
behaviors, table 161
bindings hints 193
changing number of actions bound to key 160
changing number of groups and types for 137
changing the number of symbols bound to 138
finding keysym bound to 89
finding symbol for key with a particular state 89
for generating a different keycode for key 156
geometry 95
geometry, drawing order 95
getting per-key modifier map from server 139
getting the symbol map from the server 136

November 10, 1997

Library Version 1.0/Document Revision 1.1 Index-223

The X Keyboard Extension

I ndex

label font and color 93
obtaining key actions for keys from server 160
obtaining key behaviors from the server 162
offset in symbol map 135
overlay geometry 96
per-key group information 134
per-key modifier map 138
symbolic names 181
types 127
width (number of shift levels) 135
Keysym group 20, 116
Keysym Group, glossary entry 214
Keysyms
finding modifier set bound to keysym 89
finding symbol for key with a particular state 89
to string trand ation control 83
trandating keycode to symbol and modifiers 91

L
Latched Group, glossary entry 216
Latched Modifier, glossary entry 216
LatchToLock 68
Latinl character set lookup 82
LED, glossary entry 216
Levels 116, 117
and key types 117
changing the number in akey type 132
key types 127
names 128
Linking with the Xkb extension 6
Locked Group, glossary entry 216
Locked Modifiers, glossary entry 216
Lookup group 21
Lookup modifiers 21
Lookup state 21
Lookup State, glossary entry 217

M
Major opcode 7
map 3
MappingNotify 84, 87, 88, 175, 178, 188
Messages
actions for generating 155
detecting key action messages 155
Modifier Definition, glossary entry 217
Modifier Key, glossary entry 217
Modifier, glossary entry 217
Modifiers 20
action flags 145
action types, table 144
actions for changing the state of 143
bindings for modifier keys hints 193
changing the state via key actions 144
consume lookup modifiers control 82
effective mask 31
finding modifier set bound to keysym 89
forcing shift and lock to be consumed 83
getting per-key map from server 139
in actions to generate different keycode for key 157
inactive virtual modifiers 32
key action independent of 117
key types containing 127
locking via actions 150
masks 22
modifier definition 30

names and masks 30
per-key modifier map 138
preserve field 128
preventing from being consumed 128
real 30
specifying which should be consumed by server 70
trandating keycode to symbol and modifiers 91
virtual 30
virtual modifier server mapping 164
MotionNotify 147
Mouse
using from the keyboard 59
MouseKeys 53, 59, 72
acceleration, diagram 61
changing button number simulated by mouse keys 149
MouseKeysAccel 53, 59, 73
absolute pointer motion 60
fields, table 59
relative pointer motion 60

N
Names 3
allocating and freeing symbolic names 186
changing symbolic names on server 183
getting keyboard description by component expression
names 194
getting symbolic names from server 183
shift level 128
symbolic 180
symbolic keyboard 93
symbolic names masks, table 182
tracking changes 185
types 128
NewKeyboardNotify 84
Non-keyboard Extension Device, glossary entry 217
Normalizing groups 20

o]
Outlines 94
approximation 94
primary 94
Outlines, glossary entry 217
Overlays
controls 58
geometry keys 96
geometry rows 96
geometry, finding the overlay for akey 106
in geometry sections 95
Overlay1 and Overlay2 controls 53, 73

P
PerKeyRepeat 53, 56, 73, 76
Physical Indicator Mask, glossary entry 217
Physical Symbol Keyboard Name, glossary entry 217
Pointer
buttons 20
changing button number simulated by mouse keys 149
motion, absolute 60
motion, relative 60
moving viaactions 147
pointer action types, table 147
pointer button action flags, table 149
pointer button action types, table 149
simulating pointer buttons via key actions 148
Preserved Modifier, glossary entry 217

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-224

The X Keyboard Extension

I ndex

Preserving modifiers from being consumed 128
Priority
doodads 96
geometry 92
sections 95
Properties
geometry 106
Protocol errors 9
added by Xkb 4

R
Radio Group, glossary entry 218
Radio groups 3, 161

names 182
Real Modifier, glossary entry 218
Real modifiers 30
RedirectIntoRange 69, 74, 134
Remapping

avoiding automatic by server 163
repeat_delay 75
repeat_interval 75
Repeating keys

controls 56

detecting 57
RepeatKeys 53, 56, 73
Rows 95

geometry 95

overlay 96

S
Sections 93, 95
doodadsin 95
overlays 95
priority 95
Server
avoiding automatic remapping by 163
Server database 190
changing map components 120
class(member) form 191
complete and partial entries 190
component hints 192
component names 191
getting key types 131
getting map components from 118

getting partial map components from, table 118

listing keyboard components 191
obtaining virtual modifier bindings from 165
virtual modifier definitions 164
Server interaction with clients, diagram 167
Server Internal Modifiers, glossary entry 218
Server map 2
allocating and freeing 124
keyboard mapping 116, 140
Shapes 93, 94
Shift Level, glossary entry 218
Shift levels 116, 117
and key types 117
changing the number of in akey type 132
key types 127
names 128
SlowKeys 53, 65, 73
acceptance delay 65, 75
Standard, 1SO9995 116
State Field, glossary entry 218
StickyKeys 53, 67, 73

automatically turning off 68

locking amodifier 68
Symbol Keyboard Name, glossary entry 218
Symbolic Name, glossary entry 218
Symbolic names 180

T
Trandating
series of keysymsto string 82
single keycode to string 82
TwoKeys 68

Y,
Valuator 159
Valuator action 159
Valuator, glossary entry 218
Version, determining 6
Virtual Modifier Mapping, glossary entry 218
Virtual Modifier, glossary entry 218
Virtual modifiers 30
conventions for names 32
data structure relationships, diagram 165
effective mask 31
example 32
inactive 32
key mapping 31
master modifier definitions 31
modifier definition 30
names and masks 30
obtaining bindings from server 165
server mapping 164
Visual bells, generating 47, 52

w
Want and need components, table 195, 197
WraplntoRange 69, 74, 134

X
X library controls 82
X library functions affected by Xkb 88
X server version required 1
XChangeDeviceNotify 187
XEvent 18
Xkb
attaching actions to input extension devices 198
changes data structures 12
competibility map 167
extension components 1
extension library functions 4
groups and shift levels 117
implicit support 87
keyboard extension support for keyboards 1
keyboard mapping 116
overall structure, diagram 2
overview 1
state, diagram 19
X library functions affected 88
Xkb client map, diagram 126
Xkb events
base event code 14
data structures 15
overview 14
selecting for 15
types 14
types, table 14

November 10, 1997 Library Version 1.0/Document Revision 1.1 Index-225

The X Keyboard Extension

I ndex

Xkb extension

disabling 8

name 6
Xkb server map, diagram 140
XKB.h 6
Xkb_RGAllowNone 162
XkbAccessXNotify 15, 64
XkbAccessX NotifyEvent 18, 64
XkbAction data structure 143
XkbActionCtrls macro 155
XkbActionMessage 15, 155
XkbActionMessageEvent 18, 156
XkbAddDevicelL edinfo() 203
XkbAddGeomColor() 107
XkbAddGeomDoodad() 109
XkbAddGeomKey() 108
XkbAddGeomKeyAlias() 107
XkbAddGeomOQutline(') 107
XkbAddGeomOverlay() 109
XkbAddGeomOverlayKey() 109
XkbAddGeomOverlayRow() 109
XkbAddGeomProperty() 107
XkbAddGeomRow() 108
XkbAddGeomSection() 108
XkbAddGeomShape() 108
XkbAddSyminterpret() 177
XkbAllocClientMap() 123
XkbAllocCompatMap() 179
XkbAllocControls() 80
XkbAllocDevicelnfo() 203
XkbAllocDeviceLedinfo() 203
XkbAllocGeomColors() 111
XkbAllocGeomDoodads() 114
XkbAllocGeometry() 115
XkbAllocGeomKeyAliases() 111
XkbAllocGeomKeys() 110
XkbAllocGeomOutlines() 110
XkbAllocGeomOverlayKeys() 114
XkbAllocGeomOverlayRows() 114
XkbAllocGeomOverlays() 113
XkbAllocGeomPoints() 112
XkbAllocGeomProps() 110
XkbAllocGeomRows() 113
XkbAllocGeomSectionDoodads() 114
XkbAllocGeomSections() 112
XkbAllocGeomShapes() 112
XkbAlloclndicatorMaps() 45
XkbAllocKeyboard() 28
XkbAllocNames() 186
XkbAllocServerMap() 124
XkbAlphabeticlndex canonical key type 129
XkbAnyAction data structure 143
XkbAnyEvent 15, 18
XkbApplyCompatMapToKey() 176
Xkb-aware client 3, 21
Xkb-aware Client, glossary entry 219
XkbAX_AnyFeedback macro 76
XkbAX_DumbBellFBMask 64
XkbAX_NeedFeedback macro 76
XkbAX_NeedOption macro 76
XkbAXN_AXKWarning 65
XkbAXN_BKAccept 65
XkbAXN_BKReject 65
XkbAXN_SKAccept 64
XkbAXN_SKPress 64

XkbAXN_SKReject 64
XkbAXN_SKRelease 64
XkbBehavior data structure 161
XkbBell() 49
XkbBellEvent() 50
XkbBelINotify 14, 47, 64
XkbBelINotifyEvent 18, 52
XkbBoundsRec 101
Xkb-capable client 3, 21
Xkb-capable Client, glossary entry 219
XkbChangeControls() 78
XkbChangeDevicelnfo() 208
XkbChangeEnabledControls() 54
XkbChangelndicators() 44
XkbChangeMap() 121
XkbChangeNames() 184
XkbChangeTypesOfKey() 137
XkbClamplntoRange 69, 74, 134
XkbClientMapRec 127
XkbColorRec 101
XkbCompatMapNotify 14, 174, 178
XkbCompatM apNotifyEvent 18, 178
XkbCompatMapRec 169
XkbComponentListRec 192
XkbComponentNameRec 192
XkbComponentNamesRec 192
XkbComputeRowBounds() 106
XkbComputeSectionBounds() 106
XkbComputeShapeBounds() 105
XkbComputeShapeTop() 105
XkbControlsChangesRec 78
XkbControlsNotify 14, 62
XkbControlsNotifyEvent 18, 79
XkbControlsRec 72

allocating and freeing 80
XkbCopyKeyType() 132
XkbCopyKeyTypes() 133
XkbCtrlsAction data structure 154
XkbDescRec 27

component references 27
XkbDeviceBell() 49
XkbDeviceBellEvent() 50
XkbDeviceBtnAction data structure 158
XkbDeviceChangesRec 207
XkbDevicelnfoRec 199
XkbDevicel edChangesRec 207
XkbDevicel edinfoRec 199
XkbDeviceValuatorAction data structure 159
XkbDoodadRec 103
XkbEvent unified event type 18
XkbExtensionDeviceNotify 15, 205, 206, 208
XkbExtensionDeviceNotifyEvent 18, 207
XkbFindOverlayForKey() 106
XkbForceBell() 51
XkbForceDeviceBell() 51
XkbFreeClientMap() 124
XkbFreeCompatMap() 179
XkbFreeComponentList() 192
XkbFreeControls() 81
XkbFreeDevicelnfo() 204
XkbFreeGeomColors() 112
XkbFreeGeomDoodads() 115
XkbFreeGeometry() 115
XkbFreeGeomKeyAliases() 111
XkbFreeGeomKeys() 110

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-226

The X Keyboard Extension

I ndex

XkbFreeGeomOutlines() 110
XkbFreeGeomOverlayKeys() 114
XkbFreeGeomOverlayRows() 114
XkbFreeGeomOverlays() 113
XkbFreeGeomPoints() 112
XkbFreeGeomProperties() 111
XkbFreeGeomRows() 113
XkbFreeGeomSections() 113
XkbFreeGeomShapes() 112
XkbFreelndicatorMaps() 46
XkbFreeKeyboard() 29
XkbFreeNames() 186
XkbFreeServerMap() 125
XKBgeom.h 6

XkbGeometryRec 101
XkbGetAccessX Timeout() 62
XkbGetAutoRepeatRate() 57
XkbGetAutoResetControls() 55
XkbGetBounceKeysDelay() 66
XkbGetCompatMap() 174
XkbGetControls() 77
XkbGetControlsChanges() 80
XkbGetDetectableAutorepeat() 58
XkbGetDeviceButtonActions() 201
XkbGetDevicelnfo() 200
XkbGetDevicelnfoChanges() 208
XkbGetDeviceLedInfo() 202
XkbGetGeometry() 104
XkbGetlIndicatorChanges() 45
XkbGetIndicatorMap() 40
XkbGetIndicatorState() 40
XkbGetKeyActions() 160
XkbGetKeyBehaviors() 162
XkbGetKeyboard() 28, 197
XkbGetKeyboardByName() 194
XkbGetKeyExplicitComponents() 163
XkbGetKeyModifierMap() 139
XkbGetKeySyms() 136
XkbGetKeyTypes() 131
XkbGetKeyVirtualModMap() 166
XkbGetMap() 118
XkbGetNameChanges() 186
XkbGetNamedGeometry() 105
XkbGetNamedindicator() 41
XkbGetNames(') 183
XkbGetPerClientControls() 81
XkbGetSlowKeysDelay() 66
XkbGetState() 24
XkbGetStickyKeysOptions() 68
XkbGetUpdatedMap() 119
XkbGetVirtualMods() 165
XkbGetXlibControls() 85
XkbGroupAction data structure 146
XkblgnoreExtension() 8
XkbIM_LEDDrivesKB 35, 41
XkbIM_NoAutomatic 35, 42
XkbIM_NoExplicit 35, 41
XkbIM_UseBase 37, 38
XkbIM_UseCompat 38
XkbIM_UseEffective 37, 38
XkbIM_Usel atched 37, 38
XkbIM_Usel ocked 37, 38
XkbIM_UseNone 37, 38
XkblndicatorChangesRec 43
XkblndicatorDoodadRec 104

XkblndicatorMapNotify 14, 44
XkblndicatorMapRec 35
XkblndicatorNotifyEvent 18, 44
XkblndicatorRec 34
XkblndicatorStateNotify 14, 44
XkblnitCanonicalKeyTypes() 131
Xkbl SOAction data structure 151
XkbKB_Default 161
XkbKB_Lock 162
XkbKB_Overlayl 162
XkbKB_Overlay2 162
XkbKB_Permanent 162
XkbKB_RadioGroup 162
XkbKeyAction macro 142
XkbKeyActionEntry macro 142
XkbKeyActionsPtr macro 142
XkbKeyAliasRec 101, 180
XkbKeycodeToKeysym() 89
XkbKeyGrouplnfo macro 135
XkbKeyGroupswidth macro 135
XkbKeyGroupWidth macro 136
XkbKeyHasActions macro 141
XkbKeyNameRec 180
XkbKeyNumActions macro 141
XkbKeyNumGroups macro 135
XkbKeyNumSyms macro 136
XkbKeypadlndex canonical key type 129
XkbKeyRec 102
XkbKeySymEntry macro 136
XkbKeySymsOffset macro 136
XkbKeySymsPtr macro 136
XkbKeysymToModifiers() 89
XkbKeyType macro 134
XkbKeyTypelndex macro 134
XkbKeyTypeRec 127
XkbKeyTypesForCoreSymbols() 176
XkbKTMapEntryRec 127
XkbLatchGroup() 23
XkbLatchModifiers() 22
XkbLC_AllControls 85
XkbLC_AlphanumericKeys 193
XKbLC_AlternateGroup 193
XkbLC_AlwaysConsumeShiftAndLock 85
XkbLC_BeepOnComposeFail 85
XkbLC_ComposeL ED 85
XkbLC_ConsumeKeysOnComposeFail 85
XkbLC_Consumel ookupMods 85
XKbLC_Default 193
XkbLC_Forcel atin1L ookup 85
XkbLC_FunctionKeys 193
XkbLC_Hidden 193
XkbLC_lgnoreNewKeyboards 85
XkbLC_KeypadKeys 193
XKkbLC_ModifierKeys 193
XkbLC_Partial 193

XKBlib.h 6

XkbLibraryVersion() 6
XkbListComponents() 191
XkbLockGroup() 23
XkbLockModifiers() 22
XkbLogoDoodadRec 104
XkbLookupKeyBinding() 90
XkbLookupKeySym() 89
XkbMapChangesRec 121
XkbMapNotify 14, 87, 88, 122, 178

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-227

The X Keyboard Extension

I ndex

XkbMapNotifyEvent 18, 122

XkbM essageA ction data structure 155
XkbModAction data structure 144
XkbModActionVMods macro 145
XkbNameChangesRec 184
XkbNamesNotify 14, 185
XkbNamesNotifyEvent 18, 185
XkbNamesRec 180
XkbNewKeyboardNotify 14, 87, 187
XkbNewKeyboardNotifyEvent 18, 188
XkbNoteControlsChanges() 80
XkbNoteDeviceChanges() 208
XkbNotelndicatorChanges() 45
XkbNoteNameChanges() 185
XkbOneL evellndex canonical key type 129
XkbOpenDisplay() 8

XkbOutlineRec 101

XkbOutOf RangeGroupl nfo macro 135
XkbOutOf RangeGroupNumber macro 135
XkbOverlayKeyRec 102
XkbOverlayRec 102
XkbOverlayRowRec 102
XkbPointRec 101

XkbPropertyRec 101

XkbPtrAction data structure 147
XkbPtrActionX macro 148
XkbPtrActionY macro 148
XkbPtrBtnAction data structure 148
XkbPtrDfltAction data structure 150
XkbQueryExtension() 7
XkbRedirectIntoRange 69, 74, 134
XkbRedirectKeyAction data structure 156
XkbRefreshKeyboardMapping() 90
XkbResizeDeviceButtonActions() 204
XkbResizeKeyActions() 160
XkbResizeKeySyms() 138
XkbResizeKeyType() 132
XkbRowRec 102
XkbSA_ActionMessage 143, 155
XkbSA_AffectDfltBtn 149
XkbSA_ClearLocks 145, 146
XkbSA_DeviceBtn 143, 158
XkbSA_DeviceVauator 143, 159
XkbSA_DfltBtnAbsolute 150
XkbSA_GroupAbsolute 146, 151
XkbSA_IgnoreVal 159
XkbSA_1SODfltIsGroup 151, 152
XkbSA_|SODNoAffectMods 152
XkbSA_1SOLock 143, 151
XkbSA_ISONoAffectCtrls 151, 152, 153
XkbSA_ISONoAffectGroup 151, 152, 153
XkbSA_ISONoAffectMods 151, 152
XkbSA_ISONoAffectPtr 151, 152, 153
XkbSA_LatchGroup 143, 146
XkbSA_LatchMods 143, 144

XkbSA _LatchToLock 145, 146
XkbSA_L ockControls 143, 154
XKbSA_L ockDeviceBtn 143
XkbSA_LockDeviceBtn 158

XkbSA_L ockGroup 143, 146
XkbSA_LockMods 143, 144

XKbSA_LockNoLock 145, 149, 152, 154, 158
XKbSA_LockNoUnlock 145, 149, 152, 154, 159

XkbSA_LockPtrBtn 143, 149
XkbSA_MessageGenKeyEvent 155

XkbSA_MessageOnPress 155
XkbSA_MessageOnRelease 155
XkbSA_MoveAbsoluteX 147
XkbSA_MoveAbsoluteY 148
XkbSA_MovePtr 143, 147
XkbSA_NoAcceleration 147
XkbSA_NoAction 143
XKbSA_PtrBtn 143
XkbSA_PtrBtn 149
XkbSA_RedirectKey 143, 156
XkbSA_SetControls 143, 154
XKbSA_SetGroup 143, 146
XkbSA_SetMods 143, 144
XkbSA_SetPtrDflt 143, 149
XKbSA_SetVal Absolute 159
XkbSA_SetValCenter 159
XkbSA_SetValMax 159
XkbSA_SetValMin 159
XkbSA_SetValRelative 159
XkbSA_SwitchAbsolute 153
XkbSA_SwitchApplication 153
XkbSA_SwitchScreen 143, 153
XkbSA_UseDfltButton 149
XKkbSA_UseModMapMaods 145, 152
XkbSAActionSetCtrls macro 155
XkbSAGroup macro 147
XkbSAPtrDfltValue macro 150
XkbSARedirectSetVMods macro 157
XkbSARedirectSetVModsMask macro 157
XkbSARedirectVMods macro 157
XkbSARedirectVModsMask macro 157
XkbSA Screen macro 153

XkbSA SetGroup macro 147

XkbSA SetPtrDfltValue macro 150
XkbSA SetScreen macro 154
XkbSectionRec 103
XkbSelectEventDetails() 17
XkbSelectEvents mask constants 17
XkbSelectEvents() 16
XkbServerMapRec 141
XkbSetAccessX Timeout() 63
XkbSetAutoRepeatRate() 57
XkbSetAutoResetControls() 55
XkbSetBounceKeysDelay() 67
XkbSetCompatMap() 177
XkbSetControls() 77
XkbSetDebuggingFlags() 210
XkbSetDetectableAutorepeat() 58
XkbSetDeviceButtonActions() 206
XkbSetDevicelnfo() 205
XkbSetlgnoreLockMods() 70
XkbSetIndicatorMap() 42
XkbSetMap() 120
XkbSetModActionVMods macro 145
XkbSetNamedindicator() 43
XkbSetNames() 183
XkbSetPerClientControls() 81
XkbSetPtrActionX macro 148
XkbSetPtrActionY macro 148
XkbSetServerInternalMods() 71
XkbSetSlowKeysDelay() 66
XkbSetStickyKeysOptions() 68
XkbSetXlibControls() 85
XkbShapeDoodadRec 103
XkbShapeRec 101

November 10, 1997

Library Version 1.0/Document Revision 1.1

Index-228

The X Keyboard Extension

I ndex

XkbSI_AllOf 172

XkbSI_AnyOf 172

XkbSI_AnyOfOrNone 172

XkbSI_Exactly 172

XkbSI_NoneOf 172

XkbStateNotify 14, 24, 65
XkbStateNotify event detail masks 24
XkbStateNotifyEvent 18, 25

XkbStateRec 24

Xkbstr.h 6

XkbSwitchScreenAction data structure 153
XkbSyminterpretRec 172
XkbSymMapRec 133

XkbTextDoodadRec 104
XkbTranslateKeyCode() 91
XkbTrandateKeySym() 90

XkbTwoL evelIndex canonical key type 129
Xkb-unaware client 4, 21

Xkb-unaware Client, glossary entry 219
XkbUpdateM apFromCore() 175
XkbUseCoreKbd 10, 15
XkbVirtualModsToReal () 32
XkbWraplntoRange 69, 74, 134
XkbXIDfltID 198
XkbXlibControlsimplemented() 85
XKeycodeToKeysym(), Xkb modifications 88
XKeysymToKeycode(), Xkb modifications 88
Xlib version required 1

XLookupKeysym(), Xkb modifications 88
XLookupString() 82

function which is equivalent, XkbL ookupKeyBinding() 90

Xkb modifications 88
XMappingNotify 187
XRebindKeysym(), Xkb modifications 89
XRefreshKeyboardM apping()

function which is equivalent, XkbRefreshKeyboardM ap-

ping() 90
Xkb modifications 88

November 10, 1997 Library Version 1.0/Document Revision 1.1

Index-229

