Linux Standard Base Core Specification for IA64 3.0Preview1

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1; with no Invariant Sections, with no Front-Cover Texts, and with no Back-Cover Texts. A copy of the license is included in the section entitled "GNU Free Documentation License".

Portions of the text are copyrighted by the following parties:

  • The Regents of the University of California

  • Free Software Foundation

  • Ian F. Darwin

  • Paul Vixie

  • BSDI (now Wind River)

  • Andrew G Morgan

  • Jean-loup Gailly and Mark Adler

  • Massachusetts Institute of Technology

These excerpts are being used in accordance with their respective licenses.

Linux is a trademark of Linus Torvalds.

UNIX a registered trademark of the Open Group in the United States and other countries.

LSB is a trademark of the Free Standards Group in the USA and other countries.

AMD is a trademark of Advanced Micro Devices, Inc.

Intel and Itanium are registered trademarks and Intel386 is a trademarks of Intel Corporation.

OpenGL is a registered trademark of Silicon Graphics, Inc.

Table of Contents
Specification Introduction
ELF Specification
Linux Standard Base Specification
Linux Packaging Specification
Free Documentation License

Foreword

This is version 3.0Preview1 of the Linux Standard Base Core Specification for IA64. An implementation of this version of the specification may not claim to be an implementation of the Linux Standard Base unless it has successfully completed the compliance process as defined by the Free Standards Group.


Introduction

The LSB defines a binary interface for application programs that are compiled and packaged for LSB-conforming implementations on many different hardware architectures. Since a binary specification shall include information specific to the computer processor architecture for which it is intended, it is not possible for a single document to specify the interface for all possible LSB-conforming implementations. Therefore, the LSB is a family of specifications, rather than a single one.

This document should be used in conjunction with the documents it references. This document enumerates the system components it includes, but descriptions of those components may be included entirely or partly in this document, partly in other documents, or entirely in other reference documents. For example, the section that describes system service routines includes a list of the system routines supported in this interface, formal declarations of the data structures they use that are visible to applications, and a pointer to the underlying referenced specification for information about the syntax and semantics of each call. Only those routines not described in standards referenced by this document, or extensions to those standards, are described in the detail. Information referenced in this way is as much a part of this document as is the information explicitly included here.

The specification carries a version number of either the form x.y or x.y.z. This version number carries the following meaning:

  • The first number (x) is the major version number. All versions with the same major version number should share binary compatibility. Any addition or deletion of a new library results in a new version number. Interfaces marked as deprecated may be removed from the specification at a major version change.

  • The second number (y) is the minor version number. Individual interfaces may be added if all certified implementations already had that (previously undocumented) interface. Interfaces may be marked as deprecated at a minor version change. Other minor changes may be permitted at the discretion of the LSB workgroup.

  • The third number (z), if present, is the editorial level. Only editorial changes should be included in such versions.

I. Introductory Elements


Chapter 1. Scope

1.1. General

The Linux Standard Base (LSB) defines a system interface for compiled applications and a minimal environment for support of installation scripts. Its purpose is to enable a uniform industry standard environment for high-volume applications conforming to the LSB.

These specifications are composed of two basic parts: A common specification ("LSB-generic") describing those parts of the interface that remain constant across all implementations of the LSB, and an architecture-specific specification ("LSB-arch") describing the parts of the interface that vary by processor architecture. Together, the LSB-generic and the architecture-specific supplement for a single hardware architecture provide a complete interface specification for compiled application programs on systems that share a common hardware architecture.

The LSB-generic document shall be used in conjunction with an architecture-specific supplement. Whenever a section of the LSB-generic specification shall be supplemented by architecture-specific information, the LSB-generic document includes a reference to the architecture supplement. Architecture supplements may also contain additional information that is not referenced in the LSB-generic document.

The LSB contains both a set of Application Program Interfaces (APIs) and Application Binary Interfaces (ABIs). APIs may appear in the source code of portable applications, while the compiled binary of that application may use the larger set of ABIs. A conforming implementation shall provide all of the ABIs listed here. The compilation system may replace (e.g. by macro definition) certain APIs with calls to one or more of the underlying binary interfaces, and may insert calls to binary interfaces as needed.

The LSB is primarily a binary interface definition. Not all of the source level APIs available to applications may be contained in this specification.


1.2. Module Specific Scope

This is the Itanium architecture specific Core module of the Linux Standards Base (LSB). This module supplements the generic LSB Core module with those interfaces that differ between architectures.

Interfaces described in this module are mandatory except where explicitly listed otherwise. Core interfaces may be supplemented by other modules; all modules are built upon the core.


Chapter 2. Normative References

The specifications listed below are referenced in whole or in part by the Linux Standard Base. In this specification, where only a particular section of one of these references is identified, then the normative reference is to that section alone, and the rest of the referenced document is informative.

Table 2-1. Normative References

NameTitleURL
DWARF Debugging Information FormatDWARF Debugging Information Format, Revision 2.0.0 (July 27, 1993)http://www.eagercon.com/dwarf/dwarf-2.0.0.pdf
Filesystem Hierarchy StandardFilesystem Hierarchy Standard (FHS) 2.3http://www.pathname.com/fhs/
Gdk 2.6.2 Reference ManualGdk 2.6.2 Reference Manualhttp://www.gtk.org/api/2.6/gdk/index.html
Gdk-pixbuf 2.6.2 Reference ManualGdk-pixbuf 2.6.2 Reference Manualhttp://www.gtk.org/api/2.6/gdk-pixbuf/index.html
Glib 2.6.2 Reference ManualGlib 2.6.2 Reference Manualhttp://www.gtk.org/api/2.6/glib/index.html
Gobject 2.6.2 Reference ManualGobject 2.6.2 Reference Manualhttp://www.gtk.org/api/2.6/gobject/index.html
Gtk 2.6.2 Reference ManualGtk 2.6.2 Reference Manualhttp://www.gtk.org/api/2.6/gtk/index.html
IEEE Std 754-1985IEEE Standard 754 for Binary Floating-Point Arithmetichttp://www.ieee.org/
Intel® Itanium ™ Processor-specific Application Binary InterfaceIntel® Itanium ™ Processor-specific Application Binary Interfacehttp://refspecs.freestandards.org/elf/IA64-SysV-psABI.pdf
ISO C (1999)ISO/IEC 9899: 1999, Programming Languages --C
ISO POSIX (2003)

ISO/IEC 9945-1:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 1: Base Definitions

ISO/IEC 9945-2:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 2: System Interfaces

ISO/IEC 9945-3:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 3: Shell and Utilities

ISO/IEC 9945-4:2003 Information technology -- Portable Operating System Interface (POSIX) -- Part 4: Rationale

Including Technical Cor. 1: 2004

http://www.unix.org/version3/
ISO/IEC TR14652ISO/IEC Technical Report 14652:2002 Specification method for cultural conventions
Itanium ™ Architecture Software Developer's Manual Volume 1Itanium ™ Architecture Software Developer's Manual Volume 1: Application Architecturehttp://refspecs.freestandards.org/IA64-softdevman-vol1.pdf
Itanium ™ Architecture Software Developer's Manual Volume 2Itanium ™ Architecture Software Developer's Manual Volume 2: System Architecturehttp://refspecs.freestandards.org/IA64-softdevman-vol2.pdf
Itanium ™ Architecture Software Developer's Manual Volume 3Itanium ™ Architecture Software Developer's Manual Volume 3: Instruction Set Referencehttp://refspecs.freestandards.org/IA64-softdevman-vol3.pdf
Itanium ™ Architecture Software Developer's Manual Volume 4IA-64 Processor Reference: Intel® Itanium ™ Processor Reference Manual for Software Developmenthttp://refspecs.freestandards.org/IA64-softdevman-vol4.pdf
Itanium ™ Software Conventions and Runtime GuideItanium ™ Software Conventions & Runtime Architecture Guide, September 2000http://refspecs.freestandards.org/IA64conventions.pdf
ITU-T V.42International Telecommunication Union Recommendation V.42 (2002): Error-correcting procedures for DCEs using asynchronous-to-synchronous conversionITUVhttp://www.itu.int/rec/recommendation.asp?type=folders&lang=e&parent=T-REC-V.42
Large File SupportLarge File Supporthttp://www.UNIX-systems.org/version2/whatsnew/lfs20mar.html
Li18nux Globalization SpecificationLI18NUX 2000 Globalization Specification, Version 1.0 with Amendment 4http://www.li18nux.org/docs/html/LI18NUX-2000-amd4.htm
Linux Allocated Device RegistryLINUX ALLOCATED DEVICEShttp://www.lanana.org/docs/device-list/devices.txt
PAMOpen Software Foundation, Request For Comments: 86.0 , October 1995, V. Samar & R.Schemers (SunSoft)http://www.opengroup.org/tech/rfc/mirror-rfc/rfc86.0.txt
RFC 1321: The MD5 Message-Digest AlgorithmIETF RFC 1321: The MD5 Message-Digest Algorithmhttp://www.ietf.org/rfc/rfc1321.txt
RFC 1833: Binding Protocols for ONC RPC Version 2IETF RFC 1833: Binding Protocols for ONC RPC Version 2http://www.ietf.org/rfc/rfc1833.txt
RFC 1950: ZLIB Compressed Data Format SpecicationIETF RFC 1950: ZLIB Compressed Data Format Specificationhttp://www.ietf.org/rfc/rfc1950.txt
RFC 1951: DEFLATE Compressed Data Format SpecificationIETF RFC 1951: DEFLATE Compressed Data Format Specification version 1.3http://www.ietf.org/rfc/rfc1951.txt
RFC 1952: GZIP File Format SpecificationIETF RFC 1952: GZIP file format specification version 4.3http://www.ietf.org/rfc/rfc1952.txt
RFC 2440: OpenPGP Message FormatIETF RFC 2440: OpenPGP Message Formathttp://www.ietf.org/rfc/rfc2440.txt
RFC 2821:Simple Mail Transfer ProtocolIETF RFC 2821: Simple Mail Transfer Protocolhttp://www.ietf.org/rfc/rfc2821.txt
RFC 2822:Internet Message FormatIETF RFC 2822: Internet Message Formathttp://www.ietf.org/rfc/rfc2822.txt
RFC 791:Internet ProtocolIETF RFC 791: Internet Protocol Specificationhttp://www.ietf.org/rfc/rfc791.txt
SUSv2CAE Specification, January 1997, System Interfaces and Headers (XSH),Issue 5 (ISBN: 1-85912-181-0, C606)http://www.opengroup.org/publications/catalog/un.htm
SUSv2 Commands and UtilitiesThe Single UNIX® Specification(SUS) Version 2, Commands and Utilities (XCU), Issue 5 (ISBN: 1-85912-191-8, C604)http://www.opengroup.org/publications/catalog/un.htm
SVID Issue 3American Telephone and Telegraph Company, System V Interface Definition, Issue 3 ; Morristown, NJ, UNIX Press, 1989.(ISBN 0201566524)
SVID Issue 4System V Interface Definition,Fourth Edition
System V ABISystem V Application Binary Interface, Edition 4.1http://www.caldera.com/developers/devspecs/gabi41.pdf
System V ABI UpdateSystem V Application Binary Interface - DRAFT - 17 December 2003http://www.caldera.com/developers/gabi/2003-12-17/contents.html
this specificationLinux Standard Basehttp://www.linuxbase.org/spec/
X/Open CursesCAE Specification, May 1996, X/Open Curses, Issue 4, Version 2 (ISBN: 1-85912-171-3, C610), plus Corrigendum U018http://www.opengroup.org/publications/catalog/un.htm

Chapter 3. Requirements

3.1. Relevant Libraries

The libraries listed in Table 3-1 shall be available on IA64 Linux Standard Base systems, with the specified runtime names. These names override or supplement the names specified in the generic LSB specification. The specified program interpreter, referred to as proginterp in this table, shall be used to load the shared libraries specified by DT_NEEDED entries at run time.

Table 3-1. Standard Library Names

LibraryRuntime Name
libmlibm.so.6.1
libdllibdl.so.2
libcryptlibcrypt.so.1
libzlibz.so.1
libncurseslibncurses.so.5
libutillibutil.so.1
libclibc.so.6.1
libpthreadlibpthread.so.0
proginterp/lib/ld-lsb-ia64.so.3
libgcc_slibgcc_s.so.1

These libraries will be in an implementation-defined directory which the dynamic linker shall search by default.


3.2. LSB Implementation Conformance

A conforming implementation shall satisfy the following requirements:

  • The implementation shall implement fully the architecture described in the hardware manual for the target processor architecture.

  • The implementation shall be capable of executing compiled applications having the format and using the system interfaces described in this document.

  • The implementation shall provide libraries containing the interfaces specified by this document, and shall provide a dynamic linking mechanism that allows these interfaces to be attached to applications at runtime. All the interfaces shall behave as specified in this document.

  • The map of virtual memory provided by the implementation shall conform to the requirements of this document.

  • The implementation's low-level behavior with respect to function call linkage, system traps, signals, and other such activities shall conform to the formats described in this document.

  • The implementation shall provide all of the mandatory interfaces in their entirety.

  • The implementation may provide one or more of the optional interfaces. Each optional interface that is provided shall be provided in its entirety. The product documentation shall state which optional interfaces are provided.

  • The implementation shall provide all files and utilities specified as part of this document in the format defined here and in other referenced documents. All commands and utilities shall behave as required by this document. The implementation shall also provide all mandatory components of an application's runtime environment that are included or referenced in this document.

  • The implementation, when provided with standard data formats and values at a named interface, shall provide the behavior defined for those values and data formats at that interface. However, a conforming implementation may consist of components which are separately packaged and/or sold. For example, a vendor of a conforming implementation might sell the hardware, operating system, and windowing system as separately packaged items.

  • The implementation may provide additional interfaces with different names. It may also provide additional behavior corresponding to data values outside the standard ranges, for standard named interfaces.


3.3. LSB Application Conformance

A conforming application shall satisfy the following requirements:

  • Its executable files are either shell scripts or object files in the format defined for the Object File Format system interface.

  • Its object files participate in dynamic linking as defined in the Program Loading and Linking System interface.

  • It employs only the instructions, traps, and other low-level facilities defined in the Low-Level System interface as being for use by applications.

  • If it requires any optional interface defined in this document in order to be installed or to execute successfully, the requirement for that optional interface is stated in the application's documentation.

  • It does not use any interface or data format that is not required to be provided by a conforming implementation, unless:

    • If such an interface or data format is supplied by another application through direct invocation of that application during execution, that application is in turn an LSB conforming application.

    • The use of that interface or data format, as well as its source, is identified in the documentation of the application.

  • It shall not use any values for a named interface that are reserved for vendor extensions.

A strictly conforming application does not require or use any interface, facility, or implementation-defined extension that is not defined in this document in order to be installed or to execute successfully.


Chapter 4. Definitions

For the purposes of this document, the following definitions, as specified in the ISO/IEC Directives, Part 2, 2001, 4th Edition, apply:

can

be able to; there is a possibility of; it is possible to

cannot

be unable to; there is no possibilty of; it is not possible to

may

is permitted; is allowed; is permissible

need not

it is not required that; no...is required

shall

is to; is required to; it is required that; has to; only...is permitted; it is necessary

shall not

is not allowed [permitted] [acceptable] [permissible]; is required to be not; is required that...be not; is not to be

should

it is recommended that; ought to

should not

it is not recommended that; ought not to


Chapter 5. Terminology

For the purposes of this document, the following terms apply:

archLSB

The architectural part of the LSB Specification which describes the specific parts of the interface that are platform specific. The archLSB is complementary to the gLSB.

Binary Standard

The total set of interfaces that are available to be used in the compiled binary code of a conforming application.

gLSB

The common part of the LSB Specification that describes those parts of the interface that remain constant across all hardware implementations of the LSB.

implementation-defined

Describes a value or behavior that is not defined by this document but is selected by an implementor. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence of the value or behavior. An application that relies on such a value or behavior cannot be assured to be portable across conforming implementations. The implementor shall document such a value or behavior so that it can be used correctly by an application.

Shell Script

A file that is read by an interpreter (e.g., awk). The first line of the shell script includes a reference to its interpreter binary.

Source Standard

The set of interfaces that are available to be used in the source code of a conforming application.

undefined

Describes the nature of a value or behavior not defined by this document which results from use of an invalid program construct or invalid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.

unspecified

Describes the nature of a value or behavior not specified by this document which results from use of a valid program construct or valid data input. The value or behavior may vary among implementations that conform to this document. An application should not rely on the existence or validity of the value or behavior. An application that relies on any particular value or behavior cannot be assured to be portable across conforming implementations.

Other terms and definitions used in this document shall have the same meaning as defined in Chapter 3 of the Base Definitions volume of ISO POSIX (2003).


Chapter 6. Documentation Conventions

Throughout this document, the following typographic conventions are used:

function()

the name of a function

command

the name of a command or utility

CONSTANT

a constant value

parameter

a parameter

variable

a variable

Throughout this specification, several tables of interfaces are presented. Each entry in these tables has the following format:

name

the name of the interface

(symver)

An optional symbol version identifier, if required.

[refno]

A reference number indexing the table of referenced specifications that follows this table.

For example,

forkpty(GLIBC_2.0) [1]

refers to the interface named forkpty() with symbol version GLIBC_2.0 that is defined in the first of the listed references below the table.


Chapter 1. Machine Interface

1.1. Processor Architecture

The Itanium™ Architecture is specified by the following documents

Only the features of the Itanium™ processor instruction set may be assumed to be present. An application is responsible for determining if any additional instruction set features are available before using those additional features. If a feature is not present, then the application may not use it.

Only instructions which do not require elevated privileges may be used.

Applications may not make system calls directly. The interfaces in the C library must be used instead.

There are some features of the Itanium™ processor architecture that need not be supported by a conforming implementation. These are described in this chapter. A conforming application shall not rely on these features.

Applications conforming to this specification must provide feedback to the user if a feature that is required for correct execution of the application is not present. Applications conforming to this specification should attempt to execute in a diminished capacity if a required feature is not present.

This specfication does not provide any performance guarantees of a conforming system. A system conforming to this specification may be implemented in either hardware or software.

This specification describes only LP64 (i.e. 32-bit integers, 64-bit longs and pointers) based implementations. Implementations may also provide ILP32 (32-bit integers, longs, and pointers), but conforming applications shall not rely on support for ILP32. See section 1.2 of the Intel® Itanium ™ Processor-specific Application Binary Interface for further information.


1.2. Data Representation

See Itanium ™ Software Conventions and Runtime Guide Chapter 4.

Within this specification, the term byte refers to an 8-bit object, the term halfword refers to a 16-bit object, the term word refers to a 32-bit object, the term doubleword refers to a 64-bit object, and the term quadword refers to a 128-bit object. Although the Itanium™ architecture also supports 120-bit addressable objects, this specification does not require LSB-conforming implementations to provide support for these objects.


1.2.1. Byte Ordering

LSB-conforming applications shall use little-endian byte ordering. LSB-conforming implementations may support big-endian applications.


1.2.2. Fundamental Types

Table 2-1 describes how fundemental C language data types shall be represented:

Table 1-1. Scalar Types

TypeCsizeofAlignment (bytes)Notes
Integralchar11 
signed char
unsigned char
short22 
signed short
unsigned short
int44 
signed int
unsigned int
long88 
signed long
unsigned long
long long88See Note Below
signed long long
unsigned long long
Pointerany-type *88 
any-type (*)()
Floating-Pointfloat44 
double88 
long double1616 

Note: Support for the long long data type is dependent on support for ISO9899:1999 C language. This standard is not required for LSB-conformance, but this data type is important when developing applications for the Itanium™ architecture. The GNU Compiler Collection (gcc) includes support for long long of ISO9899:1999.

A null pointer (for all types) shall have the value zero.


1.2.3. Aggregates and Unions

Aggregates (structures and arrays) and unions assume the alignment of their most strictly aligned component. The size of any object, including aggregates and unions, shall always be a multiple of the object's alignment. An array uses the same alignment as its elements. Structure and union objects may require padding to meet size and element constraints. The contents of such padding is undefined.

  • An entire structure or union object shall be aligned on the same boundary as its most strictly aligned member.

  • Each member shall be assigned to the lowest available offset with the appropriate alignment. This may require internal padding, depending on the previous member.

  • A structure's size shall be increased, if necessary, to make it a multiple of the alignment. This may require tail padding, depending on the last member.

A conforming application shall not read padding.

    struct {
        char c;
    }
   
Byte aligned, sizeof is 1
OffsetByte 0
0c0

Figure 1-1. Structure Smaller Than A Word

    struct {
        char  c;
        char  d;
        short s;
        int   i;
        long  l;
    }
   
Doubleword Aligned, sizeof is 16
OffsetByte 3Byte 2Byte 1Byte 0
0s2d1c0
4i0
8l0
12 

Figure 1-2. No Padding

    struct {
        char  c;
        long  l;
        int   i;
        short s;
    }
   
Doubleword Aligned, sizeof is 24
OffsetByte 3Byte 2Byte 1Byte 0
0pad1c0
4pad1
8l0
12 
16i0
20pad2s0

Figure 1-3. Internal and Tail Padding


1.2.4. Bit Fields

C struct and union definitions may have bit-fields, which define integral objects with a specified number of bits.

Bit fields that are declared with neither signed nor unsigned specifier shall always be treated as unsigned. Bit fields obey the same size and alignment rules as other structure and union members, with the following additional properties:

  • Bit-fields are allocated from right to left (least to most significant).

  • A bit-field must entirely reside in a storage unit for its appropriate type. A bit field shall never cross its unit boundary.

  • Bit-fields may share a storage unit with other struct/union members, including members that are not bit fields. Such other struct/union members shall occupy different parts of the storage unit.

  • The type of unnamed bit-fields shall not affect the alignment of a structure or union, although individual bit-field member offsets shall obey the alignment constraints.

Bit-field TypeWidth wRange
signed char
char
unsigned char
     
1 to 8
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1
     
signed short
short
unsigned short
     
1 to 16
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1
     
signed int
int
unsigned int
     
1 to 32
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1
     
signed long
long
unsigned long
     
1 to 64
-2w-1 to 2w-1-1
0 to 2w-1
0 to 2w-1
     

Figure 1-4. Bit-Field Ranges


Chapter 2. Function Calling Sequence

LSB-conforming applications shall use the procedure linkage and function calling sequence as defined in Chapter 8.4 of the Itanium ™ Software Conventions and Runtime Guide.


2.1. CPU Registers

The CPU general and other registers are as defined in the Itanium ™ Architecture Software Developer's Manual Volume 1 Section 3.1.


2.2. Floating Point Registers

The floating point registers are as defined in the Itanium ™ Architecture Software Developer's Manual Volume 1 Section 3.1.


2.3. Stack Frame

The stackframe layout is as described in the Itanium ™ Software Conventions and Runtime Guide Chapter 8.4.


2.5. Return Values

See Itanium ™ Software Conventions and Runtime Guide Chapter 8.6.


2.5.1. Void

Functions that return no value (void functions) are not required to put any particular value in any general register.


2.5.4. Struct and Union

See Itanium ™ Software Conventions and Runtime Guide Chapter 8.6 (aggregate return values). Depending on the size (including any padding), aggregate data types may be passed in one or more general registers, or in memory.


Chapter 4. Process Initialization

LSB-conforming applications shall use the Process Startup as defined in Section 3.3.5 of the Intel® Itanium ™ Processor-specific Application Binary Interface.


4.1. Special Registers

Intel® Itanium ™ Processor-specific Application Binary Interface, section 3.3.5, defines required register initializations for process startup.


4.2. Process Stack (on entry)

As defined in Intel® Itanium ™ Processor-specific Application Binary Interface, section 3.3.5, the return pointer register (rp) shall contain a valid return address, such that if the application program returns from the main entry routine, the implementation shall cause the application to exit normally, using the returned value as the exit status. Further, the unwind information for this "bottom of stack" routine in the implementation shall provide a mechanism for recognizing the bottom of the stack during a stack unwind.


4.3. Auxiliary Vector

The auxiliary vector conveys information from the operating system to the application. Only the terminating null auxiliary vector entry is required, but if any other entries are present, they shall be interpreted as follows. This vector is an array of the following structures.

typedef struct
{
  long int a_type;              /* Entry type */
  union
    {
      long int a_val;           /* Integer value */
      void *a_ptr;              /* Pointer value */
      void (*a_fcn) (void);     /* Function pointer value */
    } a_un;
} auxv_t;

The application shall interpret the a_un value according to the a_type. Other auxiliary vector types are reserved.

The a_type field shall contain one of the following values:

AT_NULL

The last entry in the array has type AT_NULL. The value in a_un is undefined.

AT_IGNORE

The value in a_un is undefined, and should be ignored.

AT_EXECFD

File descriptor of program

AT_PHDR

Program headers for program

AT_PHENT

Size of program header entry

AT_PHNUM

Number of program headers

AT_PAGESZ

System page size

AT_BASE

Base address of interpreter

AT_FLAGS

Flags

AT_ENTRY

Entry point of program

AT_NOTELF

Program is not ELF

AT_UID

Real uid

AT_EUID

Effective uid

AT_GID

Real gid

AT_EGID

Effective gid

AT_CLKTCK

Frequency of times()

AT_PLATFORM

String identifying platform.

AT_HWCAP

Machine dependent hints about processor capabilities.

AT_FPUCW

Used FPU control word

AT_DCACHEBSIZE

Data cache block size

AT_ICACHEBSIZE

Instruction cache block size

AT_UCACHEBSIZE

Unified cache block size

Note: The auxiliary vector is intended for passing information from the operating system to the program interpreter.


4.4. Environment

Although a pointer to the environment vector should be available as a third argument to the main() entry point, conforming applications should use getenv() to access the environment. (See ISO POSIX (2003), Section exec()).


Chapter 5. Coding Examples

LSB-conforming applications may implement fundamental operations using the Coding Examples as shown below.

Sample code sequences and coding conventions can be found in Itanium ™ Software Conventions and Runtime Guide, Chapter 9.


5.1. Code Model Overview/Architecture Constraints

As defined in Intel® Itanium ™ Processor-specific Application Binary Interface, relocatable files, executable files, and shared object files that are supplied as part of an application must use Position Independent Code, as described in Itanium ™ Software Conventions and Runtime Guide, Chapter 12.


5.4. Function Calls

See Itanium ™ Software Conventions and Runtime Guide, Chapter 8.4.

Four types of procedure call are defined in Itanium ™ Software Conventions and Runtime Guide, Chapter 8.3. Although special calling conventions are permitted, provided that the compiler and runtime library agree on these conventions, none are defined for this standard. Consequently, no application shall depend on a type of procedure call other than Direct Calls, Direct Dynamically Linked Calls, or Indirect Calls, as defined in Itanium ™ Software Conventions and Runtime Guide, Chapter 8.3.


5.4.1. Absolute Direct Function Call

Conforming applications shall not use absolute addressing.


5.4.2. Absolute Indirect Function Call

Conforming applications shall not use absolute addressing.


5.5. Branching

Branching is described in Itanium ™ Architecture Software Developer's Manual Volume 4, Chapter 4.5.


5.5.2. Absolute switch() code

Conforming applications shall not use absolute addressing.


5.5.3. Position-Independent switch() code

Where there are several possible targets for a branch, the compiler may use a number of different code generation strategies. See Itanium ™ Software Conventions and Runtime Guide, Chapter 9.1.7.


Chapter 6. C Stack Frame


6.2. Dynamic Allocation of Stack Space

The C library alloca() function should be used to dynamically allocate stack space.


Chapter 7. Debug Information

The LSB does not currently specify the format of Debug information.

II. Object Format

LSB-conforming implementations shall support an object file , called Executable and Linking Format (ELF) as defined by the System V ABI, Intel® Itanium ™ Processor-specific Application Binary Interface and as supplemented by the Linux Standard Base Specification and this document.

Table of Contents
8. ELF Header
9. Sections
10. Symbol Table
11. Relocation

Chapter 8. ELF Header

8.1. Machine Information

LSB-conforming applications shall use the Machine Information as defined in Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4. Implementations shall support the LP64 model. It is unspecified whether or not the ILP32 model shall also be supported.


8.1.1. File Class

For LP64 relocatable objects, the file class value in e_ident[EI_CLASS] may be either ELFCLASS32 or ELFCLASS64, and a conforming linker must be able to process either or both classes.


8.1.2. Data Encoding

Implementations shall support 2's complement, little endian data encoding. The data encoding value in e_ident[EI_DATA] shall contain the value ELFDATA2LSB.


8.1.3. OS Identification

The OS Identification field e_ident[EI_OSABI] shall contain the value ELFOSABI_LINUX.


8.1.4. Processor Identification

The processor identification value held in e_machine shall contain the value EM_IA_64.


8.1.5. Processor Specific Flags

The flags field e_flags shall be as described in Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4.1.1.6.

The following additional processor-specific flags are defined:

Table 8-1. Additional Processor-Specific Flags

NameValue
EF_IA_64_LINUX_EXECUTABLE_STACK0x00000001

EF_IA_64_LINUX_EXECUTABLE_STACK

The stack and heap sections are executable. If this flag is not set, code can not be executed from the stack or heap.


Chapter 9. Sections

The Itanium™ architecture defines two processor-specific section types, as described in Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4.


9.1. Special Sections

The following sections are defined in the Intel® Itanium ™ Processor-specific Application Binary Interface.

Table 9-1. ELF Special Sections

NameTypeAttributes
.gotSHT_PROGBITSSHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT
.IA_64.archextSHT_IA_64_EXT0
.IA_64.pltoffSHT_PROGBITSSHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT
.IA_64.unwindSHT_IA_64_UNWINDSHF_ALLOC+SHF_LINK_ORDER
.IA_64.unwind_infoSHT_PROGBITSSHF_ALLOC
.pltSHT_PROGBITSSHF_ALLOC+SHF_EXECINSTR
.sbssSHT_NOBITSSHF_ALLOC+SHF_WRITE
.sdataSHT_PROGBITSSHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT
.sdata1SHT_PROGBITSSHF_ALLOC+SHF_WRITE+SHF_IA_64_SHORT

.got

This section holds the Global Offset Table. See `Coding Examples' in Chapter 3, `Special Sections' in Chapter 4, and `Global Offset Table' in Chapter 5 of the processor supplement for more information.

.IA_64.archext

This section holds product-specific extension bits. The link editor will perform a logical "or" of the extension bits of each object when creating an executable so that it creates only a single .IA_64.archext section in the executable.

.IA_64.pltoff

This section holds local function descriptor entries.

.IA_64.unwind

This section holds the unwind function table. The contents are described in the Intel (r) Itanium (tm) Processor Specific ABI.

.IA_64.unwind_info

This section holds stack unwind and and exception handling information. The exception handling information is programming language specific, and is unspecified.

.plt

This section holds the Procedure Linkage Table.

.sbss

This section holds uninitialized data that contribute to the program''s memory image. Data objects contained in this section are recommended to be eight bytes or less in size. The system initializes the data with zeroes when the program begins to run. The section occupies no file space, as indicated by the section type SHT_NOBITS. The .sbss section is placed so it may be accessed using short direct addressing (22 bit offset from gp).

.sdata

This section and the .sdata1 section hold initialized data that contribute to the program''s memory image. Data objects contained in this section are recommended to be eight bytes or less in size. The .sdata and .sdata1 sections are placed so they may be accessed using short direct addressing (22 bit offset from gp).

.sdata1

See .sdata.


9.2. Linux Special Sections

The following Linux IA-64 specific sections are defined here.

Table 9-2. Additional Special Sections

NameTypeAttributes
.opdSHT_PROGBITSSHF_ALLOC
.rela.dynSHT_RELASHF_ALLOC
.rela.IA_64.pltoffSHT_RELASHF_ALLOC

.opd

This section holds function descriptors

.rela.dyn

This section holds relocation information, as described in `Relocation'. These relocations are applied to the .dyn section.

.rela.IA_64.pltoff

This section holds relocation information, as described in `Relocation'. These relocations are applied to the .IA_64.pltoff section.


9.3. Section Types

Section Types are described in the Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4.2. LSB conforming implementations are not required to use any sections in the range from SHT_IA_64_LOPSREG to SHT_IA_64_HIPSREG. Additionally, LSB conforming implementations are not required to support the SHT_IA_64_PRIORITY_INIT section, beyond the gABI requirements for the handling of unrecognized section types, linking them into a contiguous section in the object file created by the static linker.


Chapter 10. Symbol Table

If an executable file contains a reference to a function defined in one of its associated shared objects, the symbol table section for that file shall contain an entry for that symbol. The st_shndx member of that symbol table entry contains SHN_UNDEF. This signals to the dynamic linker that the symbol definition for that function is not contained in the executable file itself. If that symbol has been allocated a procedure linkage table entry in the executable file, and the st_value member for that symbol table entry is non-zero, the value shall contain the virtual address of the first instruction of that procedure linkage table entry. Otherwise, the st_value member contains zero. This procedure linkage table entry address is used by the dynamic linker in resolving references to the address of the function.

Note: Need to add something here about st_info and st_other ...


Chapter 11. Relocation

LSB-conforming applications shall use Relocations as defined in Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 4.3.

III. Program Loading and Dynamic Linking

LSB-conforming implementations shall support the object file information and system actions that create running programs as specified in the System V ABI, Intel® Itanium ™ Processor-specific Application Binary Interface and as supplemented by the Linux Standard Base Specification and this document.


Chapter 13. Program Loading

See Intel® Itanium ™ Processor-specific Application Binary Interface, Chapter 5.2.

List of Tables
1-1. libc Definition
1-2. libc - RPC Function Interfaces
1-3. libc - System Calls Function Interfaces
1-4. libc - Standard I/O Function Interfaces
1-5. libc - Standard I/O Data Interfaces
1-6. libc - Signal Handling Function Interfaces
1-7. libc - Signal Handling Data Interfaces
1-8. libc - Localization Functions Function Interfaces
1-9. libc - Localization Functions Data Interfaces
1-10. libc - Socket Interface Function Interfaces
1-11. libc - Wide Characters Function Interfaces
1-12. libc - String Functions Function Interfaces
1-13. libc - IPC Functions Function Interfaces
1-14. libc - Regular Expressions Function Interfaces
1-15. libc - Character Type Functions Function Interfaces
1-16. libc - Time Manipulation Function Interfaces
1-17. libc - Time Manipulation Data Interfaces
1-18. libc - Terminal Interface Functions Function Interfaces
1-19. libc - System Database Interface Function Interfaces
1-20. libc - Language Support Function Interfaces
1-21. libc - Large File Support Function Interfaces
1-22. libc - Standard Library Function Interfaces
1-23. libc - Standard Library Data Interfaces
1-24. libm Definition
1-25. libm - Math Function Interfaces
1-26. libm - Math Data Interfaces
1-27. libpthread Definition
1-28. libpthread - Realtime Threads Function Interfaces
1-29. libpthread - Posix Threads Function Interfaces
1-30. libgcc_s Definition
1-31. libgcc_s - Unwind Library Function Interfaces
1-32. libdl Definition
1-33. libdl - Dynamic Loader Function Interfaces
1-34. libcrypt Definition
1-35. libcrypt - Encryption Function Interfaces
2-1. libz Definition
2-2. libncurses Definition
2-3. libutil Definition
2-4. libutil - Utility Functions Function Interfaces
A-1. libgcc_s Function Interfaces
A-2. libm Function Interfaces

I. Base Libraries

Table of Contents
1. Libraries

Chapter 1. Libraries

An LSB-conforming implementation shall support base libraries which provide interfaces for accessing the operating system, processor and other hardware in the system.

Only those interfaces that are unique to the Itanium™ platform are defined here. This section should be used in conjunction with the corresponding section in the Linux Standard Base Specification.


1.1. Program Interpreter/Dynamic Linker

The LSB specifies the Program Interpreter to be /lib/ld-lsb-ia64.so.3.


1.2. Interfaces for libc

Table 1-1 defines the library name and shared object name for the libc library

Table 1-1. libc Definition

Library:libc
SONAME:libc.so.6.1

The behavior of the interfaces in this library is specified by the following specifications:

Large File Support
this specification
SUSv2
ISO POSIX (2003)
SVID Issue 3
SVID Issue 4


1.2.1. RPC


1.2.1.1. Interfaces for RPC

An LSB conforming implementation shall provide the architecture specific functions for RPC specified in Table 1-2, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-2. libc - RPC Function Interfaces

authnone_create(GLIBC_2.2) [1]svc_getreqset(GLIBC_2.2) [2]svcudp_create(GLIBC_2.2) [3]xdr_int(GLIBC_2.2) [2]xdr_u_long(GLIBC_2.2) [2]
clnt_create(GLIBC_2.2) [1]svc_register(GLIBC_2.2) [3]xdr_accepted_reply(GLIBC_2.2) [2]xdr_long(GLIBC_2.2) [2]xdr_u_short(GLIBC_2.2) [2]
clnt_pcreateerror(GLIBC_2.2) [1]svc_run(GLIBC_2.2) [3]xdr_array(GLIBC_2.2) [2]xdr_opaque(GLIBC_2.2) [2]xdr_union(GLIBC_2.2) [2]
clnt_perrno(GLIBC_2.2) [1]svc_sendreply(GLIBC_2.2) [3]xdr_bool(GLIBC_2.2) [2]xdr_opaque_auth(GLIBC_2.2) [2]xdr_vector(GLIBC_2.2) [2]
clnt_perror(GLIBC_2.2) [1]svcerr_auth(GLIBC_2.2) [2]xdr_bytes(GLIBC_2.2) [2]xdr_pointer(GLIBC_2.2) [2]xdr_void(GLIBC_2.2) [2]
clnt_spcreateerror(GLIBC_2.2) [1]svcerr_decode(GLIBC_2.2) [2]xdr_callhdr(GLIBC_2.2) [2]xdr_reference(GLIBC_2.2) [2]xdr_wrapstring(GLIBC_2.2) [2]
clnt_sperrno(GLIBC_2.2) [1]svcerr_noproc(GLIBC_2.2) [2]xdr_callmsg(GLIBC_2.2) [2]xdr_rejected_reply(GLIBC_2.2) [2]xdrmem_create(GLIBC_2.2) [2]
clnt_sperror(GLIBC_2.2) [1]svcerr_noprog(GLIBC_2.2) [2]xdr_char(GLIBC_2.2) [2]xdr_replymsg(GLIBC_2.2) [2]xdrrec_create(GLIBC_2.2) [2]
key_decryptsession(GLIBC_2.2) [2]svcerr_progvers(GLIBC_2.2) [2]xdr_double(GLIBC_2.2) [2]xdr_short(GLIBC_2.2) [2]xdrrec_eof(GLIBC_2.2) [2]
pmap_getport(GLIBC_2.2) [3]svcerr_systemerr(GLIBC_2.2) [2]xdr_enum(GLIBC_2.2) [2]xdr_string(GLIBC_2.2) [2] 
pmap_set(GLIBC_2.2) [3]svcerr_weakauth(GLIBC_2.2) [2]xdr_float(GLIBC_2.2) [2]xdr_u_char(GLIBC_2.2) [2] 
pmap_unset(GLIBC_2.2) [3]svctcp_create(GLIBC_2.2) [3]xdr_free(GLIBC_2.2) [2]xdr_u_int(GLIBC_2.2) [3] 

Referenced Specification(s)


1.2.2. System Calls


1.2.2.1. Interfaces for System Calls

An LSB conforming implementation shall provide the architecture specific functions for System Calls specified in Table 1-3, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-3. libc - System Calls Function Interfaces

__fxstat(GLIBC_2.2) [1]fchmod(GLIBC_2.2) [2]getwd(GLIBC_2.2) [2]read(GLIBC_2.2) [2]setrlimit(GLIBC_2.2) [2]
__getpgid(GLIBC_2.2) [1]fchown(GLIBC_2.2) [2]initgroups(GLIBC_2.2) [1]readdir(GLIBC_2.2) [2]setrlimit64(GLIBC_2.2) [3]
__lxstat(GLIBC_2.2) [1]fcntl(GLIBC_2.2) [1]ioctl(GLIBC_2.2) [1]readdir_r(GLIBC_2.2) [2]setsid(GLIBC_2.2) [2]
__xmknod(GLIBC_2.2) [1]fdatasync(GLIBC_2.2) [2]kill(GLIBC_2.2) [1]readlink(GLIBC_2.2) [2]setuid(GLIBC_2.2) [2]
__xstat(GLIBC_2.2) [1]flock(GLIBC_2.2) [1]killpg(GLIBC_2.2) [2]readv(GLIBC_2.2) [2]sleep(GLIBC_2.2) [2]
access(GLIBC_2.2) [2]fork(GLIBC_2.2) [2]lchown(GLIBC_2.2) [2]rename(GLIBC_2.2) [2]statvfs(GLIBC_2.2) [2]
acct(GLIBC_2.2) [1]fstatvfs(GLIBC_2.2) [2]link(GLIBC_2.2) [1]rmdir(GLIBC_2.2) [2]stime(GLIBC_2.2) [1]
alarm(GLIBC_2.2) [2]fsync(GLIBC_2.2) [2]lockf(GLIBC_2.2) [2]sbrk(GLIBC_2.2) [4]symlink(GLIBC_2.2) [2]
brk(GLIBC_2.2) [4]ftime(GLIBC_2.2) [2]lseek(GLIBC_2.2) [2]sched_get_priority_max(GLIBC_2.2) [2]sync(GLIBC_2.2) [2]
chdir(GLIBC_2.2) [2]ftruncate(GLIBC_2.2) [2]mkdir(GLIBC_2.2) [2]sched_get_priority_min(GLIBC_2.2) [2]sysconf(GLIBC_2.2) [2]
chmod(GLIBC_2.2) [2]getcontext(GLIBC_2.2) [2]mkfifo(GLIBC_2.2) [2]sched_getparam(GLIBC_2.2) [2]time(GLIBC_2.2) [2]
chown(GLIBC_2.2) [2]getegid(GLIBC_2.2) [2]mlock(GLIBC_2.2) [2]sched_getscheduler(GLIBC_2.2) [2]times(GLIBC_2.2) [2]
chroot(GLIBC_2.2) [4]geteuid(GLIBC_2.2) [2]mlockall(GLIBC_2.2) [2]sched_rr_get_interval(GLIBC_2.2) [2]truncate(GLIBC_2.2) [2]
clock(GLIBC_2.2) [2]getgid(GLIBC_2.2) [2]mmap(GLIBC_2.2) [2]sched_setparam(GLIBC_2.2) [2]ulimit(GLIBC_2.2) [2]
close(GLIBC_2.2) [2]getgroups(GLIBC_2.2) [2]mprotect(GLIBC_2.2) [2]sched_setscheduler(GLIBC_2.2) [2]umask(GLIBC_2.2) [2]
closedir(GLIBC_2.2) [2]getitimer(GLIBC_2.2) [2]msync(GLIBC_2.2) [2]sched_yield(GLIBC_2.2) [2]uname(GLIBC_2.2) [2]
creat(GLIBC_2.2) [2]getloadavg(GLIBC_2.2) [1]munlock(GLIBC_2.2) [2]select(GLIBC_2.2) [2]unlink(GLIBC_2.2) [1]
dup(GLIBC_2.2) [2]getpagesize(GLIBC_2.2) [4]munlockall(GLIBC_2.2) [2]setcontext(GLIBC_2.2) [2]utime(GLIBC_2.2) [2]
dup2(GLIBC_2.2) [2]getpgid(GLIBC_2.2) [2]munmap(GLIBC_2.2) [2]setegid(GLIBC_2.2) [2]utimes(GLIBC_2.2) [2]
execl(GLIBC_2.2) [2]getpgrp(GLIBC_2.2) [2]nanosleep(GLIBC_2.2) [2]seteuid(GLIBC_2.2) [2]vfork(GLIBC_2.2) [2]
execle(GLIBC_2.2) [2]getpid(GLIBC_2.2) [2]nice(GLIBC_2.2) [2]setgid(GLIBC_2.2) [2]wait(GLIBC_2.2) [2]
execlp(GLIBC_2.2) [2]getppid(GLIBC_2.2) [2]open(GLIBC_2.2) [2]setitimer(GLIBC_2.2) [2]wait4(GLIBC_2.2) [1]
execv(GLIBC_2.2) [2]getpriority(GLIBC_2.2) [2]opendir(GLIBC_2.2) [2]setpgid(GLIBC_2.2) [2]waitpid(GLIBC_2.2) [1]
execve(GLIBC_2.2) [2]getrlimit(GLIBC_2.2) [2]pathconf(GLIBC_2.2) [2]setpgrp(GLIBC_2.2) [2]write(GLIBC_2.2) [2]
execvp(GLIBC_2.2) [2]getrusage(GLIBC_2.2) [2]pause(GLIBC_2.2) [2]setpriority(GLIBC_2.2) [2]writev(GLIBC_2.2) [2]
exit(GLIBC_2.2) [2]getsid(GLIBC_2.2) [2]pipe(GLIBC_2.2) [2]setregid(GLIBC_2.2) [2] 
fchdir(GLIBC_2.2) [2]getuid(GLIBC_2.2) [2]poll(GLIBC_2.2) [2]setreuid(GLIBC_2.2) [2] 

Referenced Specification(s)

[4]. SUSv2


1.2.3. Standard I/O


1.2.3.1. Interfaces for Standard I/O

An LSB conforming implementation shall provide the architecture specific functions for Standard I/O specified in Table 1-4, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-4. libc - Standard I/O Function Interfaces

_IO_feof(GLIBC_2.2) [1]fgetpos(GLIBC_2.2) [2]fsetpos(GLIBC_2.2) [2]putchar(GLIBC_2.2) [2]sscanf(GLIBC_2.2) [1]
_IO_getc(GLIBC_2.2) [1]fgets(GLIBC_2.2) [2]ftell(GLIBC_2.2) [2]putchar_unlocked(GLIBC_2.2) [2]telldir(GLIBC_2.2) [2]
_IO_putc(GLIBC_2.2) [1]fgetwc_unlocked(GLIBC_2.2) [1]ftello(GLIBC_2.2) [2]puts(GLIBC_2.2) [2]tempnam(GLIBC_2.2) [2]
_IO_puts(GLIBC_2.2) [1]fileno(GLIBC_2.2) [2]fwrite(GLIBC_2.2) [2]putw(GLIBC_2.2) [3]ungetc(GLIBC_2.2) [2]
asprintf(GLIBC_2.2) [1]flockfile(GLIBC_2.2) [2]getc(GLIBC_2.2) [2]remove(GLIBC_2.2) [2]vasprintf(GLIBC_2.2) [1]
clearerr(GLIBC_2.2) [2]fopen(GLIBC_2.2) [2]getc_unlocked(GLIBC_2.2) [2]rewind(GLIBC_2.2) [2]vdprintf(GLIBC_2.2) [1]
ctermid(GLIBC_2.2) [2]fprintf(GLIBC_2.2) [2]getchar(GLIBC_2.2) [2]rewinddir(GLIBC_2.2) [2]vfprintf(GLIBC_2.2) [2]
fclose(GLIBC_2.2) [2]fputc(GLIBC_2.2) [2]getchar_unlocked(GLIBC_2.2) [2]scanf(GLIBC_2.2) [1]vprintf(GLIBC_2.2) [2]
fdopen(GLIBC_2.2) [2]fputs(GLIBC_2.2) [2]getw(GLIBC_2.2) [3]seekdir(GLIBC_2.2) [2]vsnprintf(GLIBC_2.2) [2]
feof(GLIBC_2.2) [2]fread(GLIBC_2.2) [2]pclose(GLIBC_2.2) [2]setbuf(GLIBC_2.2) [2]vsprintf(GLIBC_2.2) [2]
ferror(GLIBC_2.2) [2]freopen(GLIBC_2.2) [2]popen(GLIBC_2.2) [2]setbuffer(GLIBC_2.2) [1] 
fflush(GLIBC_2.2) [2]fscanf(GLIBC_2.2) [1]printf(GLIBC_2.2) [2]setvbuf(GLIBC_2.2) [2] 
fflush_unlocked(GLIBC_2.2) [1]fseek(GLIBC_2.2) [2]putc(GLIBC_2.2) [2]snprintf(GLIBC_2.2) [2] 
fgetc(GLIBC_2.2) [2]fseeko(GLIBC_2.2) [2]putc_unlocked(GLIBC_2.2) [2]sprintf(GLIBC_2.2) [2] 

Referenced Specification(s)

[3]. SUSv2

An LSB conforming implementation shall provide the architecture specific data interfaces for Standard I/O specified in Table 1-5, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-5. libc - Standard I/O Data Interfaces

stderr(GLIBC_2.2) [1]stdin(GLIBC_2.2) [1]stdout(GLIBC_2.2) [1]  

Referenced Specification(s)


1.2.4. Signal Handling


1.2.4.1. Interfaces for Signal Handling

An LSB conforming implementation shall provide the architecture specific functions for Signal Handling specified in Table 1-6, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-6. libc - Signal Handling Function Interfaces

__libc_current_sigrtmax(GLIBC_2.2) [1]sigaction(GLIBC_2.2) [2]sighold(GLIBC_2.2) [2]sigorset(GLIBC_2.2) [1]sigset(GLIBC_2.2) [2]
__libc_current_sigrtmin(GLIBC_2.2) [1]sigaddset(GLIBC_2.2) [2]sigignore(GLIBC_2.2) [2]sigpause(GLIBC_2.2) [2]sigsuspend(GLIBC_2.2) [2]
__sigsetjmp(GLIBC_2.2) [1]sigaltstack(GLIBC_2.2) [2]siginterrupt(GLIBC_2.2) [2]sigpending(GLIBC_2.2) [2]sigtimedwait(GLIBC_2.2) [2]
__sysv_signal(GLIBC_2.2) [1]sigandset(GLIBC_2.2) [1]sigisemptyset(GLIBC_2.2) [1]sigprocmask(GLIBC_2.2) [2]sigwait(GLIBC_2.2) [2]
bsd_signal(GLIBC_2.2) [2]sigdelset(GLIBC_2.2) [2]sigismember(GLIBC_2.2) [2]sigqueue(GLIBC_2.2) [2]sigwaitinfo(GLIBC_2.2) [2]
psignal(GLIBC_2.2) [1]sigemptyset(GLIBC_2.2) [2]siglongjmp(GLIBC_2.2) [2]sigrelse(GLIBC_2.2) [2] 
raise(GLIBC_2.2) [2]sigfillset(GLIBC_2.2) [2]signal(GLIBC_2.2) [2]sigreturn(GLIBC_2.2) [1] 

Referenced Specification(s)

An LSB conforming implementation shall provide the architecture specific data interfaces for Signal Handling specified in Table 1-7, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-7. libc - Signal Handling Data Interfaces

_sys_siglist(GLIBC_2.3.3) [1]    

Referenced Specification(s)


1.2.5. Localization Functions


1.2.5.1. Interfaces for Localization Functions

An LSB conforming implementation shall provide the architecture specific functions for Localization Functions specified in Table 1-8, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-8. libc - Localization Functions Function Interfaces

bind_textdomain_codeset(GLIBC_2.2) [1]catopen(GLIBC_2.2) [2]dngettext(GLIBC_2.2) [1]iconv_open(GLIBC_2.2) [2]setlocale(GLIBC_2.2) [2]
bindtextdomain(GLIBC_2.2) [1]dcgettext(GLIBC_2.2) [1]gettext(GLIBC_2.2) [1]localeconv(GLIBC_2.2) [2]textdomain(GLIBC_2.2) [1]
catclose(GLIBC_2.2) [2]dcngettext(GLIBC_2.2) [1]iconv(GLIBC_2.2) [2]ngettext(GLIBC_2.2) [1] 
catgets(GLIBC_2.2) [2]dgettext(GLIBC_2.2) [1]iconv_close(GLIBC_2.2) [2]nl_langinfo(GLIBC_2.2) [2] 

Referenced Specification(s)

An LSB conforming implementation shall provide the architecture specific data interfaces for Localization Functions specified in Table 1-9, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-9. libc - Localization Functions Data Interfaces

_nl_msg_cat_cntr(GLIBC_2.2) [1]    

Referenced Specification(s)


1.2.6. Socket Interface


1.2.6.1. Interfaces for Socket Interface

An LSB conforming implementation shall provide the architecture specific functions for Socket Interface specified in Table 1-10, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-10. libc - Socket Interface Function Interfaces

__h_errno_location(GLIBC_2.2) [1]gethostname(GLIBC_2.2) [2]if_nameindex(GLIBC_2.2) [2]send(GLIBC_2.2) [2]socket(GLIBC_2.2) [2]
accept(GLIBC_2.2) [2]getpeername(GLIBC_2.2) [2]if_nametoindex(GLIBC_2.2) [2]sendmsg(GLIBC_2.2) [2]socketpair(GLIBC_2.2) [2]
bind(GLIBC_2.2) [2]getsockname(GLIBC_2.2) [2]listen(GLIBC_2.2) [2]sendto(GLIBC_2.2) [2] 
bindresvport(GLIBC_2.2) [1]getsockopt(GLIBC_2.2) [1]recv(GLIBC_2.2) [2]setsockopt(GLIBC_2.2) [1] 
connect(GLIBC_2.2) [2]if_freenameindex(GLIBC_2.2) [2]recvfrom(GLIBC_2.2) [2]shutdown(GLIBC_2.2) [2] 
gethostid(GLIBC_2.2) [2]if_indextoname(GLIBC_2.2) [2]recvmsg(GLIBC_2.2) [2]sockatmark(GLIBC_2.2.4) [2] 

Referenced Specification(s)


1.2.7. Wide Characters


1.2.7.1. Interfaces for Wide Characters

An LSB conforming implementation shall provide the architecture specific functions for Wide Characters specified in Table 1-11, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-11. libc - Wide Characters Function Interfaces

__wcstod_internal(GLIBC_2.2) [1]mbsinit(GLIBC_2.2) [2]vwscanf(GLIBC_2.2) [1]wcsnlen(GLIBC_2.2) [1]wcstoumax(GLIBC_2.2) [2]
__wcstof_internal(GLIBC_2.2) [1]mbsnrtowcs(GLIBC_2.2) [1]wcpcpy(GLIBC_2.2) [1]wcsnrtombs(GLIBC_2.2) [1]wcstouq(GLIBC_2.2) [1]
__wcstol_internal(GLIBC_2.2) [1]mbsrtowcs(GLIBC_2.2) [2]wcpncpy(GLIBC_2.2) [1]wcspbrk(GLIBC_2.2) [2]wcswcs(GLIBC_2.2) [2]
__wcstold_internal(GLIBC_2.2) [1]mbstowcs(GLIBC_2.2) [2]wcrtomb(GLIBC_2.2) [2]wcsrchr(GLIBC_2.2) [2]wcswidth(GLIBC_2.2) [2]
__wcstoul_internal(GLIBC_2.2) [1]mbtowc(GLIBC_2.2) [2]wcscasecmp(GLIBC_2.2) [1]wcsrtombs(GLIBC_2.2) [2]wcsxfrm(GLIBC_2.2) [2]
btowc(GLIBC_2.2) [2]putwc(GLIBC_2.2) [2]wcscat(GLIBC_2.2) [2]wcsspn(GLIBC_2.2) [2]wctob(GLIBC_2.2) [2]
fgetwc(GLIBC_2.2) [2]putwchar(GLIBC_2.2) [2]wcschr(GLIBC_2.2) [2]wcsstr(GLIBC_2.2) [2]wctomb(GLIBC_2.2) [2]
fgetws(GLIBC_2.2) [2]swprintf(GLIBC_2.2) [2]wcscmp(GLIBC_2.2) [2]wcstod(GLIBC_2.2) [2]wctrans(GLIBC_2.2) [2]
fputwc(GLIBC_2.2) [2]swscanf(GLIBC_2.2) [1]wcscoll(GLIBC_2.2) [2]wcstof(GLIBC_2.2) [2]wctype(GLIBC_2.2) [2]
fputws(GLIBC_2.2) [2]towctrans(GLIBC_2.2) [2]wcscpy(GLIBC_2.2) [2]wcstoimax(GLIBC_2.2) [2]wcwidth(GLIBC_2.2) [2]
fwide(GLIBC_2.2) [2]towlower(GLIBC_2.2) [2]wcscspn(GLIBC_2.2) [2]wcstok(GLIBC_2.2) [2]wmemchr(GLIBC_2.2) [2]
fwprintf(GLIBC_2.2) [2]towupper(GLIBC_2.2) [2]wcsdup(GLIBC_2.2) [1]wcstol(GLIBC_2.2) [2]wmemcmp(GLIBC_2.2) [2]
fwscanf(GLIBC_2.2) [1]ungetwc(GLIBC_2.2) [2]wcsftime(GLIBC_2.2) [2]wcstold(GLIBC_2.2) [2]wmemcpy(GLIBC_2.2) [2]
getwc(GLIBC_2.2) [2]vfwprintf(GLIBC_2.2) [2]wcslen(GLIBC_2.2) [2]wcstoll(GLIBC_2.2) [2]wmemmove(GLIBC_2.2) [2]
getwchar(GLIBC_2.2) [2]vfwscanf(GLIBC_2.2) [1]wcsncasecmp(GLIBC_2.2) [1]wcstombs(GLIBC_2.2) [2]wmemset(GLIBC_2.2) [2]
mblen(GLIBC_2.2) [2]vswprintf(GLIBC_2.2) [2]wcsncat(GLIBC_2.2) [2]wcstoq(GLIBC_2.2) [1]wprintf(GLIBC_2.2) [2]
mbrlen(GLIBC_2.2) [2]vswscanf(GLIBC_2.2) [1]wcsncmp(GLIBC_2.2) [2]wcstoul(GLIBC_2.2) [2]wscanf(GLIBC_2.2) [1]
mbrtowc(GLIBC_2.2) [2]vwprintf(GLIBC_2.2) [2]wcsncpy(GLIBC_2.2) [2]wcstoull(GLIBC_2.2) [2] 

Referenced Specification(s)


1.2.8. String Functions


1.2.8.1. Interfaces for String Functions

An LSB conforming implementation shall provide the architecture specific functions for String Functions specified in Table 1-12, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-12. libc - String Functions Function Interfaces

__mempcpy(GLIBC_2.2) [1]bzero(GLIBC_2.2) [2]strcasestr(GLIBC_2.2) [1]strncat(GLIBC_2.2) [2]strtok(GLIBC_2.2) [2]
__rawmemchr(GLIBC_2.2) [1]ffs(GLIBC_2.2) [2]strcat(GLIBC_2.2) [2]strncmp(GLIBC_2.2) [2]strtok_r(GLIBC_2.2) [2]
__stpcpy(GLIBC_2.2) [1]index(GLIBC_2.2) [2]strchr(GLIBC_2.2) [2]strncpy(GLIBC_2.2) [2]strtold(GLIBC_2.2) [2]
__strdup(GLIBC_2.2) [1]memccpy(GLIBC_2.2) [2]strcmp(GLIBC_2.2) [2]strndup(GLIBC_2.2) [1]strtoll(GLIBC_2.2) [2]
__strtod_internal(GLIBC_2.2) [1]memchr(GLIBC_2.2) [2]strcoll(GLIBC_2.2) [2]strnlen(GLIBC_2.2) [1]strtoq(GLIBC_2.2) [1]
__strtof_internal(GLIBC_2.2) [1]memcmp(GLIBC_2.2) [2]strcpy(GLIBC_2.2) [2]strpbrk(GLIBC_2.2) [2]strtoull(GLIBC_2.2) [2]
__strtok_r(GLIBC_2.2) [1]memcpy(GLIBC_2.2) [2]strcspn(GLIBC_2.2) [2]strptime(GLIBC_2.2) [1]strtoumax(GLIBC_2.2) [2]
__strtol_internal(GLIBC_2.2) [1]memmove(GLIBC_2.2) [2]strdup(GLIBC_2.2) [2]strrchr(GLIBC_2.2) [2]strtouq(GLIBC_2.2) [1]
__strtold_internal(GLIBC_2.2) [1]memrchr(GLIBC_2.2) [1]strerror(GLIBC_2.2) [2]strsep(GLIBC_2.2) [1]strxfrm(GLIBC_2.2) [2]
__strtoll_internal(GLIBC_2.2) [1]memset(GLIBC_2.2) [2]strerror_r(GLIBC_2.2) [1]strsignal(GLIBC_2.2) [1]swab(GLIBC_2.2) [2]
__strtoul_internal(GLIBC_2.2) [1]rindex(GLIBC_2.2) [2]strfmon(GLIBC_2.2) [2]strspn(GLIBC_2.2) [2] 
__strtoull_internal(GLIBC_2.2) [1]stpcpy(GLIBC_2.2) [1]strftime(GLIBC_2.2) [2]strstr(GLIBC_2.2) [2] 
bcmp(GLIBC_2.2) [2]stpncpy(GLIBC_2.2) [1]strlen(GLIBC_2.2) [2]strtof(GLIBC_2.2) [2] 
bcopy(GLIBC_2.2) [2]strcasecmp(GLIBC_2.2) [2]strncasecmp(GLIBC_2.2) [2]strtoimax(GLIBC_2.2) [2] 

Referenced Specification(s)


1.2.9. IPC Functions


1.2.9.1. Interfaces for IPC Functions

An LSB conforming implementation shall provide the architecture specific functions for IPC Functions specified in Table 1-13, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-13. libc - IPC Functions Function Interfaces

ftok(GLIBC_2.2) [1]msgrcv(GLIBC_2.2) [1]semget(GLIBC_2.2) [1]shmctl(GLIBC_2.2) [1] 
msgctl(GLIBC_2.2) [1]msgsnd(GLIBC_2.2) [1]semop(GLIBC_2.2) [1]shmdt(GLIBC_2.2) [1] 
msgget(GLIBC_2.2) [1]semctl(GLIBC_2.2) [1]shmat(GLIBC_2.2) [1]shmget(GLIBC_2.2) [1] 

Referenced Specification(s)


1.2.10. Regular Expressions


1.2.10.1. Interfaces for Regular Expressions

An LSB conforming implementation shall provide the architecture specific functions for Regular Expressions specified in Table 1-14, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-14. libc - Regular Expressions Function Interfaces

regcomp(GLIBC_2.2) [1]regerror(GLIBC_2.2) [1]regexec(GLIBC_2.2) [2]regfree(GLIBC_2.2) [1] 

Referenced Specification(s)


1.2.11. Character Type Functions


1.2.11.1. Interfaces for Character Type Functions

An LSB conforming implementation shall provide the architecture specific functions for Character Type Functions specified in Table 1-15, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-15. libc - Character Type Functions Function Interfaces

__ctype_get_mb_cur_max(GLIBC_2.2) [1]isdigit(GLIBC_2.2) [2]iswalnum(GLIBC_2.2) [2]iswlower(GLIBC_2.2) [2]toascii(GLIBC_2.2) [2]
_tolower(GLIBC_2.2) [2]isgraph(GLIBC_2.2) [2]iswalpha(GLIBC_2.2) [2]iswprint(GLIBC_2.2) [2]tolower(GLIBC_2.2) [2]
_toupper(GLIBC_2.2) [2]islower(GLIBC_2.2) [2]iswblank(GLIBC_2.2) [2]iswpunct(GLIBC_2.2) [2]toupper(GLIBC_2.2) [2]
isalnum(GLIBC_2.2) [2]isprint(GLIBC_2.2) [2]iswcntrl(GLIBC_2.2) [2]iswspace(GLIBC_2.2) [2] 
isalpha(GLIBC_2.2) [2]ispunct(GLIBC_2.2) [2]iswctype(GLIBC_2.2) [2]iswupper(GLIBC_2.2) [2] 
isascii(GLIBC_2.2) [2]isspace(GLIBC_2.2) [2]iswdigit(GLIBC_2.2) [2]iswxdigit(GLIBC_2.2) [2] 
iscntrl(GLIBC_2.2) [2]isupper(GLIBC_2.2) [2]iswgraph(GLIBC_2.2) [2]isxdigit(GLIBC_2.2) [2] 

Referenced Specification(s)


1.2.12. Time Manipulation


1.2.12.1. Interfaces for Time Manipulation

An LSB conforming implementation shall provide the architecture specific functions for Time Manipulation specified in Table 1-16, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-16. libc - Time Manipulation Function Interfaces

adjtime(GLIBC_2.2) [1]ctime(GLIBC_2.2) [2]gmtime(GLIBC_2.2) [2]localtime_r(GLIBC_2.2) [2]ualarm(GLIBC_2.2) [2]
asctime(GLIBC_2.2) [2]ctime_r(GLIBC_2.2) [2]gmtime_r(GLIBC_2.2) [2]mktime(GLIBC_2.2) [2] 
asctime_r(GLIBC_2.2) [2]difftime(GLIBC_2.2) [2]localtime(GLIBC_2.2) [2]tzset(GLIBC_2.2) [2] 

Referenced Specification(s)

An LSB conforming implementation shall provide the architecture specific data interfaces for Time Manipulation specified in Table 1-17, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-17. libc - Time Manipulation Data Interfaces

__daylight(GLIBC_2.2) [1]__tzname(GLIBC_2.2) [1]timezone(GLIBC_2.2) [2]  
__timezone(GLIBC_2.2) [1]daylight(GLIBC_2.2) [2]tzname(GLIBC_2.2) [2]  

Referenced Specification(s)


1.2.13. Terminal Interface Functions


1.2.13.1. Interfaces for Terminal Interface Functions

An LSB conforming implementation shall provide the architecture specific functions for Terminal Interface Functions specified in Table 1-18, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-18. libc - Terminal Interface Functions Function Interfaces

cfgetispeed(GLIBC_2.2) [1]cfsetispeed(GLIBC_2.2) [1]tcdrain(GLIBC_2.2) [1]tcgetattr(GLIBC_2.2) [1]tcsendbreak(GLIBC_2.2) [1]
cfgetospeed(GLIBC_2.2) [1]cfsetospeed(GLIBC_2.2) [1]tcflow(GLIBC_2.2) [1]tcgetpgrp(GLIBC_2.2) [1]tcsetattr(GLIBC_2.2) [1]
cfmakeraw(GLIBC_2.2) [2]cfsetspeed(GLIBC_2.2) [2]tcflush(GLIBC_2.2) [1]tcgetsid(GLIBC_2.2) [1]tcsetpgrp(GLIBC_2.2) [1]

Referenced Specification(s)


1.2.14. System Database Interface


1.2.14.1. Interfaces for System Database Interface

An LSB conforming implementation shall provide the architecture specific functions for System Database Interface specified in Table 1-19, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-19. libc - System Database Interface Function Interfaces

endgrent(GLIBC_2.2) [1]getgrgid_r(GLIBC_2.2) [1]getprotoent(GLIBC_2.2) [1]getservent(GLIBC_2.2) [1]setgroups(GLIBC_2.2) [2]
endprotoent(GLIBC_2.2) [1]getgrnam(GLIBC_2.2) [1]getpwent(GLIBC_2.2) [1]getutent(GLIBC_2.2) [2]setprotoent(GLIBC_2.2) [1]
endpwent(GLIBC_2.2) [1]getgrnam_r(GLIBC_2.2) [1]getpwnam(GLIBC_2.2) [1]getutent_r(GLIBC_2.2) [2]setpwent(GLIBC_2.2) [1]
endservent(GLIBC_2.2) [1]getgrouplist(GLIBC_2.2.4) [2]getpwnam_r(GLIBC_2.2) [1]getutxent(GLIBC_2.2) [1]setservent(GLIBC_2.2) [1]
endutent(GLIBC_2.2) [3]gethostbyaddr(GLIBC_2.2) [1]getpwuid(GLIBC_2.2) [1]getutxid(GLIBC_2.2) [1]setutent(GLIBC_2.2) [2]
endutxent(GLIBC_2.2) [1]gethostbyname(GLIBC_2.2) [1]getpwuid_r(GLIBC_2.2) [1]getutxline(GLIBC_2.2) [1]setutxent(GLIBC_2.2) [1]
getgrent(GLIBC_2.2) [1]getprotobyname(GLIBC_2.2) [1]getservbyname(GLIBC_2.2) [1]pututxline(GLIBC_2.2) [1]utmpname(GLIBC_2.2) [2]
getgrgid(GLIBC_2.2) [1]getprotobynumber(GLIBC_2.2) [1]getservbyport(GLIBC_2.2) [1]setgrent(GLIBC_2.2) [1] 

Referenced Specification(s)

[3]. SUSv2


1.2.15. Language Support


1.2.15.1. Interfaces for Language Support

An LSB conforming implementation shall provide the architecture specific functions for Language Support specified in Table 1-20, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-20. libc - Language Support Function Interfaces

__libc_start_main(GLIBC_2.2) [1]    

Referenced Specification(s)


1.2.16. Large File Support


1.2.16.1. Interfaces for Large File Support

An LSB conforming implementation shall provide the architecture specific functions for Large File Support specified in Table 1-21, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-21. libc - Large File Support Function Interfaces

__fxstat64(GLIBC_2.2) [1]fopen64(GLIBC_2.2) [2]ftello64(GLIBC_2.2) [2]lseek64(GLIBC_2.2) [2]readdir64(GLIBC_2.2) [2]
__lxstat64(GLIBC_2.2) [1]freopen64(GLIBC_2.2) [2]ftruncate64(GLIBC_2.2) [2]mkstemp64(GLIBC_2.2) [2]statvfs64(GLIBC_2.2) [2]
__xstat64(GLIBC_2.2) [1]fseeko64(GLIBC_2.2) [2]ftw64(GLIBC_2.2) [2]mmap64(GLIBC_2.2) [2]tmpfile64(GLIBC_2.2) [2]
creat64(GLIBC_2.2) [2]fsetpos64(GLIBC_2.2) [2]getrlimit64(GLIBC_2.2) [2]nftw64(GLIBC_2.2) [2]truncate64(GLIBC_2.2) [2]
fgetpos64(GLIBC_2.2) [2]fstatvfs64(GLIBC_2.2) [2]lockf64(GLIBC_2.2) [2]open64(GLIBC_2.2) [2] 

Referenced Specification(s)


1.2.17. Standard Library


1.2.17.1. Interfaces for Standard Library

An LSB conforming implementation shall provide the architecture specific functions for Standard Library specified in Table 1-22, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-22. libc - Standard Library Function Interfaces

_Exit(GLIBC_2.2) [1]dirname(GLIBC_2.2) [1]glob(GLIBC_2.2) [1]lsearch(GLIBC_2.2) [1]srand48(GLIBC_2.2) [1]
__assert_fail(GLIBC_2.2) [2]div(GLIBC_2.2) [1]glob64(GLIBC_2.2) [2]makecontext(GLIBC_2.2) [1]srandom(GLIBC_2.2) [1]
__cxa_atexit(GLIBC_2.2) [2]drand48(GLIBC_2.2) [1]globfree(GLIBC_2.2) [1]malloc(GLIBC_2.2) [1]strtod(GLIBC_2.2) [1]
__errno_location(GLIBC_2.2) [2]ecvt(GLIBC_2.2) [1]globfree64(GLIBC_2.2) [2]memmem(GLIBC_2.2) [2]strtol(GLIBC_2.2) [1]
__fpending(GLIBC_2.2) [2]erand48(GLIBC_2.2) [1]grantpt(GLIBC_2.2) [1]mkstemp(GLIBC_2.2) [1]strtoul(GLIBC_2.2) [1]
__getpagesize(GLIBC_2.2) [2]err(GLIBC_2.2) [2]hcreate(GLIBC_2.2) [1]mktemp(GLIBC_2.2) [1]swapcontext(GLIBC_2.2) [1]
__isinf(GLIBC_2.2) [2]error(GLIBC_2.2) [2]hdestroy(GLIBC_2.2) [1]mrand48(GLIBC_2.2) [1]syslog(GLIBC_2.2) [1]
__isinff(GLIBC_2.2) [2]errx(GLIBC_2.2) [2]hsearch(GLIBC_2.2) [1]nftw(GLIBC_2.2) [1]system(GLIBC_2.2) [2]
__isinfl(GLIBC_2.2) [2]fcvt(GLIBC_2.2) [1]htonl(GLIBC_2.2) [1]nrand48(GLIBC_2.2) [1]tdelete(GLIBC_2.2) [1]
__isnan(GLIBC_2.2) [2]fmtmsg(GLIBC_2.2) [1]htons(GLIBC_2.2) [1]ntohl(GLIBC_2.2) [1]tfind(GLIBC_2.2) [1]
__isnanf(GLIBC_2.2) [2]fnmatch(GLIBC_2.2.3) [1]imaxabs(GLIBC_2.2) [1]ntohs(GLIBC_2.2) [1]tmpfile(GLIBC_2.2) [1]
__isnanl(GLIBC_2.2) [2]fpathconf(GLIBC_2.2) [1]imaxdiv(GLIBC_2.2) [1]openlog(GLIBC_2.2) [1]tmpnam(GLIBC_2.2) [1]
__sysconf(GLIBC_2.2) [2]free(GLIBC_2.2) [1]inet_addr(GLIBC_2.2) [1]perror(GLIBC_2.2) [1]tsearch(GLIBC_2.2) [1]
_exit(GLIBC_2.2) [1]freeaddrinfo(GLIBC_2.2) [1]inet_ntoa(GLIBC_2.2) [1]posix_memalign(GLIBC_2.2) [1]ttyname(GLIBC_2.2) [1]
_longjmp(GLIBC_2.2) [1]ftrylockfile(GLIBC_2.2) [1]inet_ntop(GLIBC_2.2) [1]posix_openpt(GLIBC_2.2.1) [1]ttyname_r(GLIBC_2.2) [1]
_setjmp(GLIBC_2.2) [1]ftw(GLIBC_2.2) [1]inet_pton(GLIBC_2.2) [1]ptsname(GLIBC_2.2) [1]twalk(GLIBC_2.2) [1]
a64l(GLIBC_2.2) [1]funlockfile(GLIBC_2.2) [1]initstate(GLIBC_2.2) [1]putenv(GLIBC_2.2) [1]unlockpt(GLIBC_2.2) [1]
abort(GLIBC_2.2) [1]gai_strerror(GLIBC_2.2) [1]insque(GLIBC_2.2) [1]qsort(GLIBC_2.2) [1]unsetenv(GLIBC_2.2) [1]
abs(GLIBC_2.2) [1]gcvt(GLIBC_2.2) [1]isatty(GLIBC_2.2) [1]rand(GLIBC_2.2) [1]usleep(GLIBC_2.2) [1]
atof(GLIBC_2.2) [1]getaddrinfo(GLIBC_2.2) [1]isblank(GLIBC_2.2) [1]rand_r(GLIBC_2.2) [1]verrx(GLIBC_2.2) [2]
atoi(GLIBC_2.2) [1]getcwd(GLIBC_2.2) [1]jrand48(GLIBC_2.2) [1]random(GLIBC_2.2) [1]vfscanf(GLIBC_2.2) [2]
atol(GLIBC_2.2) [1]getdate(GLIBC_2.2) [1]l64a(GLIBC_2.2) [1]realloc(GLIBC_2.2) [1]vscanf(GLIBC_2.2) [2]
atoll(GLIBC_2.2) [1]getenv(GLIBC_2.2) [1]labs(GLIBC_2.2) [1]realpath(GLIBC_2.3) [1]vsscanf(GLIBC_2.2) [2]
basename(GLIBC_2.2) [1]getlogin(GLIBC_2.2) [1]lcong48(GLIBC_2.2) [1]remque(GLIBC_2.2) [1]vsyslog(GLIBC_2.2) [2]
bsearch(GLIBC_2.2) [1]getnameinfo(GLIBC_2.2) [1]ldiv(GLIBC_2.2) [1]seed48(GLIBC_2.2) [1]warn(GLIBC_2.2) [2]
calloc(GLIBC_2.2) [1]getopt(GLIBC_2.2) [2]lfind(GLIBC_2.2) [1]setenv(GLIBC_2.2) [1]warnx(GLIBC_2.2) [2]
closelog(GLIBC_2.2) [1]getopt_long(GLIBC_2.2) [2]llabs(GLIBC_2.2) [1]sethostname(GLIBC_2.2) [2]wordexp(GLIBC_2.2.2) [1]
confstr(GLIBC_2.2) [1]getopt_long_only(GLIBC_2.2) [2]lldiv(GLIBC_2.2) [1]setlogmask(GLIBC_2.2) [1]wordfree(GLIBC_2.2) [1]
cuserid(GLIBC_2.2) [3]getsubopt(GLIBC_2.2) [1]longjmp(GLIBC_2.2) [1]setstate(GLIBC_2.2) [1] 
daemon(GLIBC_2.2) [2]gettimeofday(GLIBC_2.2) [1]lrand48(GLIBC_2.2) [1]srand(GLIBC_2.2) [1] 

Referenced Specification(s)

[3]. SUSv2

An LSB conforming implementation shall provide the architecture specific data interfaces for Standard Library specified in Table 1-23, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-23. libc - Standard Library Data Interfaces

__environ(GLIBC_2.2) [1]_sys_errlist(GLIBC_2.3) [1]getdate_err(GLIBC_2.2) [2]opterr(GLIBC_2.2) [2]optopt(GLIBC_2.2) [2]
_environ(GLIBC_2.2) [1]environ(GLIBC_2.2) [2]optarg(GLIBC_2.2) [2]optind(GLIBC_2.2) [2] 

Referenced Specification(s)


1.3. Data Definitions for libc

This section defines global identifiers and their values that are associated with interfaces contained in libc. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content.

These definitions are intended to supplement those provided in the referenced underlying specifications.

This specification uses ISO/IEC 9899 C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


1.3.1. errno.h


#define EDEADLOCK	EDEADLK

1.3.2. fcntl.h


#define F_GETLK64	5
#define F_SETLK64	6
#define F_SETLKW64	7

1.3.3. inttypes.h


typedef long int intmax_t;
typedef unsigned long int uintmax_t;
typedef unsigned long int uintptr_t;
typedef unsigned long int uint64_t;

1.3.4. limits.h


#define LONG_MAX	0x7FFFFFFFFFFFFFFFL
#define ULONG_MAX	0xFFFFFFFFFFFFFFFFUL

#define CHAR_MAX	SCHAR_MAX
#define CHAR_MIN	SCHAR_MIN

#define PTHREAD_STACK_MIN	196608

1.3.5. setjmp.h


typedef long int __jmp_buf[70] __attribute__ ((aligned (16)));

1.3.6. signal.h


#define SIGEV_PAD_SIZE	((SIGEV_MAX_SIZE/sizeof(int))-4)

#define SI_PAD_SIZE	((SI_MAX_SIZE/sizeof(int))-4)

struct sigaction
{
  union
  {
    sighandler_t _sa_handler;
    void (*_sa_sigaction) (int, siginfo_t *, void *);
  }
  __sigaction_handler;
  unsigned long int sa_flags;
  sigset_t sa_mask;
}
 ;
#define MINSIGSTKSZ	131027
#define SIGSTKSZ	262144

struct ia64_fpreg
{
  union
  {
    unsigned long int bits[2];
    long double __dummy;
  }
  u;
}
 ;

struct sigcontext
{
  unsigned long int sc_flags;
  unsigned long int sc_nat;
  stack_t sc_stack;
  unsigned long int sc_ip;
  unsigned long int sc_cfm;
  unsigned long int sc_um;
  unsigned long int sc_ar_rsc;
  unsigned long int sc_ar_bsp;
  unsigned long int sc_ar_rnat;
  unsigned long int sc_ar_ccv;
  unsigned long int sc_ar_unat;
  unsigned long int sc_ar_fpsr;
  unsigned long int sc_ar_pfs;
  unsigned long int sc_ar_lc;
  unsigned long int sc_pr;
  unsigned long int sc_br[8];
  unsigned long int sc_gr[32];
  struct ia64_fpreg sc_fr[128];
  unsigned long int sc_rbs_base;
  unsigned long int sc_loadrs;
  unsigned long int sc_ar25;
  unsigned long int sc_ar26;
  unsigned long int sc_rsvd[12];
  unsigned long int sc_mask;
}
 ;

1.3.7. stddef.h


typedef long int ptrdiff_t;
typedef unsigned long int size_t;

1.3.8. stdio.h


#define __IO_FILE_SIZE	216

1.3.9. sys/ioctl.h


#define FIONREAD	0x541B
#define TIOCNOTTY	0x5422

1.3.10. sys/ipc.h


struct ipc_perm
{
  key_t __key;
  uid_t uid;
  gid_t gid;
  uid_t cuid;
  uid_t cgid;
  mode_t mode;
  unsigned short __seq;
  unsigned short __pad1;
  unsigned long int __unused1;
  unsigned long int __unused2;
}
 ;

1.3.11. sys/mman.h


#define MCL_CURRENT	1
#define MCL_FUTURE	2

1.3.12. sys/msg.h


struct msqid_ds
{
  struct ipc_perm msg_perm;
  time_t msg_stime;
  time_t msg_rtime;
  time_t msg_ctime;
  unsigned long int __msg_cbytes;
  unsigned long int msg_qnum;
  unsigned long int msg_qbytes;
  pid_t msg_lspid;
  pid_t msg_lrpid;
  unsigned long int __unused1;
  unsigned long int __unused2;
}
 ;

1.3.13. sys/sem.h


struct semid_ds
{
  struct ipc_perm sem_perm;
  time_t sem_otime;
  time_t sem_ctime;
  unsigned long int sem_nsems;
  unsigned long int __unused1;
  unsigned long int __unused2;
}
 ;

1.3.14. sys/shm.h


#define SHMLBA	(1024*1024)

struct shmid_ds
{
  struct ipc_perm shm_perm;
  size_t shm_segsz;
  time_t shm_atime;
  time_t shm_dtime;
  time_t shm_ctime;
  pid_t shm_cpid;
  pid_t shm_lpid;
  unsigned long int shm_nattch;
  unsigned long int __unused1;
  unsigned long int __unused2;
}
 ;

1.3.15. sys/socket.h


typedef uint64_t __ss_aligntype;

#define SO_RCVLOWAT	18
#define SO_SNDLOWAT	19
#define SO_RCVTIMEO	20
#define SO_SNDTIMEO	21

1.3.16. sys/stat.h


#define _STAT_VER	1

struct stat
{
  dev_t st_dev;
  ino_t st_ino;
  nlink_t st_nlink;
  mode_t st_mode;
  uid_t st_uid;
  gid_t st_gid;
  unsigned int pad0;
  dev_t st_rdev;
  off_t st_size;
  struct timespec st_atim;
  struct timespec st_mtim;
  struct timespec st_ctim;
  blksize_t st_blksize;
  blkcnt_t st_blocks;
  unsigned long int __unused[3];
}
 ;
struct stat64
{
  dev_t st_dev;
  ino64_t st_ino;
  nlink_t st_nlink;
  mode_t st_mode;
  uid_t st_uid;
  gid_t st_gid;
  unsigned int pad0;
  dev_t st_rdev;
  off_t st_size;
  struct timespec st_atim;
  struct timespec st_mtim;
  struct timespec st_ctim;
  blksize_t st_blksize;
  blkcnt64_t st_blocks;
  unsigned long int __unused[3];
}
 ;

1.3.17. sys/statvfs.h


struct statvfs
{
  unsigned long int f_bsize;
  unsigned long int f_frsize;
  fsblkcnt64_t f_blocks;
  fsblkcnt64_t f_bfree;
  fsblkcnt64_t f_bavail;
  fsfilcnt64_t f_files;
  fsfilcnt64_t f_ffree;
  fsfilcnt64_t f_favail;
  unsigned long int f_fsid;
  unsigned long int f_flag;
  unsigned long int f_namemax;
  unsigned int __f_spare[6];
}
 ;
struct statvfs64
{
  unsigned long int f_bsize;
  unsigned long int f_frsize;
  fsblkcnt64_t f_blocks;
  fsblkcnt64_t f_bfree;
  fsblkcnt64_t f_bavail;
  fsfilcnt64_t f_files;
  fsfilcnt64_t f_ffree;
  fsfilcnt64_t f_favail;
  unsigned long int f_fsid;
  unsigned long int f_flag;
  unsigned long int f_namemax;
  unsigned int __f_spare[6];
}
 ;

1.3.18. sys/types.h


typedef long int int64_t;

typedef int64_t ssize_t;

#define __FDSET_LONGS	16

1.3.19. termios.h


#define OLCUC	0000002
#define ONLCR	0000004
#define XCASE	0000004
#define NLDLY	0000400
#define CR1	0001000
#define IUCLC	0001000
#define CR2	0002000
#define CR3	0003000
#define CRDLY	0003000
#define TAB1	0004000
#define TAB2	0010000
#define TAB3	0014000
#define TABDLY	0014000
#define BS1	0020000
#define BSDLY	0020000
#define VT1	0040000
#define VTDLY	0040000
#define FF1	0100000
#define FFDLY	0100000

#define VSUSP	10
#define VEOL	11
#define VREPRINT	12
#define VDISCARD	13
#define VWERASE	14
#define VEOL2	16
#define VMIN	6
#define VSWTC	7
#define VSTART	8
#define VSTOP	9

#define IXON	0002000
#define IXOFF	0010000

#define CS6	0000020
#define CS7	0000040
#define CS8	0000060
#define CSIZE	0000060
#define CSTOPB	0000100
#define CREAD	0000200
#define PARENB	0000400
#define PARODD	0001000
#define HUPCL	0002000
#define CLOCAL	0004000
#define VTIME	5

#define ISIG	0000001
#define ICANON	0000002
#define ECHOE	0000020
#define ECHOK	0000040
#define ECHONL	0000100
#define NOFLSH	0000200
#define TOSTOP	0000400
#define ECHOCTL	0001000
#define ECHOPRT	0002000
#define ECHOKE	0004000
#define FLUSHO	0010000
#define PENDIN	0040000
#define IEXTEN	0100000

1.3.20. ucontext.h


#define _SC_GR0_OFFSET	(((char *) & ((struct sigcontext *) 0)->sc_gr[0]) - (char *) 0)

typedef struct sigcontext mcontext_t;

typedef struct ucontext
{
  union
  {
    mcontext_t _mc;
    struct
    {
      unsigned long int _pad[_SC_GR0_OFFSET / 8];
      struct ucontext *_link;
    }
    _uc;
  }
  _u;
}
ucontext_t;

1.3.21. unistd.h


typedef long int intptr_t;

1.3.22. utmp.h


struct lastlog
{
  time_t ll_time;
  char ll_line[UT_LINESIZE];
  char ll_host[UT_HOSTSIZE];
}
 ;

struct utmp
{
  short ut_type;
  pid_t ut_pid;
  char ut_line[UT_LINESIZE];
  char ut_id[4];
  char ut_user[UT_NAMESIZE];
  char ut_host[UT_HOSTSIZE];
  struct exit_status ut_exit;
  long int ut_session;
  struct timeval ut_tv;
  int32_t ut_addr_v6[4];
  char __unused[20];
}
 ;

1.3.23. utmpx.h


struct utmpx
{
  short ut_type;
  pid_t ut_pid;
  char ut_line[UT_LINESIZE];
  char ut_id[4];
  char ut_user[UT_NAMESIZE];
  char ut_host[UT_HOSTSIZE];
  struct exit_status ut_exit;
  long int ut_session;
  struct timeval ut_tv;
  int32_t ut_addr_v6[4];
  char __unused[20];
}
 ;

1.4. Interfaces for libm

Table 1-24 defines the library name and shared object name for the libm library

Table 1-24. libm Definition

Library:libm
SONAME:libm.so.6.1

The behavior of the interfaces in this library is specified by the following specifications:

ISO C (1999)
this specification
SUSv2
ISO POSIX (2003)


1.4.1. Math


1.4.1.1. Interfaces for Math

An LSB conforming implementation shall provide the architecture specific functions for Math specified in Table 1-25, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-25. libm - Math Function Interfaces

__finite(GLIBC_2.2) [1]ccoshl(GLIBC_2.2) [2]exp(GLIBC_2.2) [2]j1l(GLIBC_2.2) [1]powl(GLIBC_2.2) [2]
__finitef(GLIBC_2.2) [1]ccosl(GLIBC_2.2) [2]exp2(GLIBC_2.2) [2]jn(GLIBC_2.2) [2]remainder(GLIBC_2.2) [2]
__finitel(GLIBC_2.2) [1]ceil(GLIBC_2.2) [2]exp2f(GLIBC_2.2) [2]jnf(GLIBC_2.2) [1]remainderf(GLIBC_2.2) [2]
__fpclassify(GLIBC_2.2) [3]ceilf(GLIBC_2.2) [2]exp2l(GLIBC_2.2) [2]jnl(GLIBC_2.2) [1]remainderl(GLIBC_2.2) [2]
__fpclassifyf(GLIBC_2.2) [3]ceill(GLIBC_2.2) [2]expf(GLIBC_2.2) [2]ldexp(GLIBC_2.2) [2]remquo(GLIBC_2.2) [2]
__fpclassifyl(GLIBC_2.2) [1]cexp(GLIBC_2.2) [2]expl(GLIBC_2.2) [2]ldexpf(GLIBC_2.2) [2]remquof(GLIBC_2.2) [2]
__signbit(GLIBC_2.2) [1]cexpf(GLIBC_2.2) [2]expm1(GLIBC_2.2) [2]ldexpl(GLIBC_2.2) [2]remquol(GLIBC_2.2) [2]
__signbitf(GLIBC_2.2) [1]cexpl(GLIBC_2.2) [2]expm1f(GLIBC_2.2) [2]lgamma(GLIBC_2.2) [2]rint(GLIBC_2.2) [2]
__signbitl(GLIBC_2.2) [1]cimag(GLIBC_2.2) [2]expm1l(GLIBC_2.2) [2]lgamma_r(GLIBC_2.2) [1]rintf(GLIBC_2.2) [2]
acos(GLIBC_2.2) [2]cimagf(GLIBC_2.2) [2]fabs(GLIBC_2.2) [2]lgammaf(GLIBC_2.2) [2]rintl(GLIBC_2.2) [2]
acosf(GLIBC_2.2) [2]cimagl(GLIBC_2.2) [2]fabsf(GLIBC_2.2) [2]lgammaf_r(GLIBC_2.2) [1]round(GLIBC_2.2) [2]
acosh(GLIBC_2.2) [2]clog(GLIBC_2.2) [2]fabsl(GLIBC_2.2) [2]lgammal(GLIBC_2.2) [2]roundf(GLIBC_2.2) [2]
acoshf(GLIBC_2.2) [2]clog10(GLIBC_2.2) [1]fdim(GLIBC_2.2) [2]lgammal_r(GLIBC_2.2) [1]roundl(GLIBC_2.2) [2]
acoshl(GLIBC_2.2) [2]clog10f(GLIBC_2.2) [1]fdimf(GLIBC_2.2) [2]llrint(GLIBC_2.2) [2]scalb(GLIBC_2.2) [2]
acosl(GLIBC_2.2) [2]clog10l(GLIBC_2.2) [1]fdiml(GLIBC_2.2) [2]llrintf(GLIBC_2.2) [2]scalbf(GLIBC_2.2) [1]
asin(GLIBC_2.2) [2]clogf(GLIBC_2.2) [2]feclearexcept(GLIBC_2.2) [2]llrintl(GLIBC_2.2) [2]scalbl(GLIBC_2.2) [1]
asinf(GLIBC_2.2) [2]clogl(GLIBC_2.2) [2]fegetenv(GLIBC_2.2) [2]llround(GLIBC_2.2) [2]scalbln(GLIBC_2.2) [2]
asinh(GLIBC_2.2) [2]conj(GLIBC_2.2) [2]fegetexceptflag(GLIBC_2.2) [2]llroundf(GLIBC_2.2) [2]scalblnf(GLIBC_2.2) [2]
asinhf(GLIBC_2.2) [2]conjf(GLIBC_2.2) [2]fegetround(GLIBC_2.2) [2]llroundl(GLIBC_2.2) [2]scalblnl(GLIBC_2.2) [2]
asinhl(GLIBC_2.2) [2]conjl(GLIBC_2.2) [2]feholdexcept(GLIBC_2.2) [2]log(GLIBC_2.2) [2]scalbn(GLIBC_2.2) [2]
asinl(GLIBC_2.2) [2]copysign(GLIBC_2.2) [2]feraiseexcept(GLIBC_2.2) [2]log10(GLIBC_2.2) [2]scalbnf(GLIBC_2.2) [2]
atan(GLIBC_2.2) [2]copysignf(GLIBC_2.2) [2]fesetenv(GLIBC_2.2) [2]log10f(GLIBC_2.2) [2]scalbnl(GLIBC_2.2) [2]
atan2(GLIBC_2.2) [2]copysignl(GLIBC_2.2) [2]fesetexceptflag(GLIBC_2.2) [2]log10l(GLIBC_2.2) [2]significand(GLIBC_2.2) [1]
atan2f(GLIBC_2.2) [2]cos(GLIBC_2.2) [2]fesetround(GLIBC_2.2) [2]log1p(GLIBC_2.2) [2]significandf(GLIBC_2.2) [1]
atan2l(GLIBC_2.2) [2]cosf(GLIBC_2.2) [2]fetestexcept(GLIBC_2.2) [2]log1pf(GLIBC_2.2) [2]significandl(GLIBC_2.2) [1]
atanf(GLIBC_2.2) [2]cosh(GLIBC_2.2) [2]feupdateenv(GLIBC_2.2) [2]log1pl(GLIBC_2.2) [2]sin(GLIBC_2.2) [2]
atanh(GLIBC_2.2) [2]coshf(GLIBC_2.2) [2]finite(GLIBC_2.2) [4]log2(GLIBC_2.2) [2]sincos(GLIBC_2.2) [1]
atanhf(GLIBC_2.2) [2]coshl(GLIBC_2.2) [2]finitef(GLIBC_2.2) [1]log2f(GLIBC_2.2) [2]sincosf(GLIBC_2.2) [1]
atanhl(GLIBC_2.2) [2]cosl(GLIBC_2.2) [2]finitel(GLIBC_2.2) [1]log2l(GLIBC_2.2) [2]sincosl(GLIBC_2.2) [1]
atanl(GLIBC_2.2) [2]cpow(GLIBC_2.2) [2]floor(GLIBC_2.2) [2]logb(GLIBC_2.2) [2]sinf(GLIBC_2.2) [2]
cabs(GLIBC_2.2) [2]cpowf(GLIBC_2.2) [2]floorf(GLIBC_2.2) [2]logbf(GLIBC_2.2) [2]sinh(GLIBC_2.2) [2]
cabsf(GLIBC_2.2) [2]cpowl(GLIBC_2.2) [2]floorl(GLIBC_2.2) [2]logbl(GLIBC_2.2) [2]sinhf(GLIBC_2.2) [2]
cabsl(GLIBC_2.2) [2]cproj(GLIBC_2.2) [2]fma(GLIBC_2.2) [2]logf(GLIBC_2.2) [2]sinhl(GLIBC_2.2) [2]
cacos(GLIBC_2.2) [2]cprojf(GLIBC_2.2) [2]fmaf(GLIBC_2.2) [2]logl(GLIBC_2.2) [2]sinl(GLIBC_2.2) [2]
cacosf(GLIBC_2.2) [2]cprojl(GLIBC_2.2) [2]fmal(GLIBC_2.2) [2]lrint(GLIBC_2.2) [2]sqrt(GLIBC_2.2) [2]
cacosh(GLIBC_2.2) [2]creal(GLIBC_2.2) [2]fmax(GLIBC_2.2) [2]lrintf(GLIBC_2.2) [2]sqrtf(GLIBC_2.2) [2]
cacoshf(GLIBC_2.2) [2]crealf(GLIBC_2.2) [2]fmaxf(GLIBC_2.2) [2]lrintl(GLIBC_2.2) [2]sqrtl(GLIBC_2.2) [2]
cacoshl(GLIBC_2.2) [2]creall(GLIBC_2.2) [2]fmaxl(GLIBC_2.2) [2]lround(GLIBC_2.2) [2]tan(GLIBC_2.2) [2]
cacosl(GLIBC_2.2) [2]csin(GLIBC_2.2) [2]fmin(GLIBC_2.2) [2]lroundf(GLIBC_2.2) [2]tanf(GLIBC_2.2) [2]
carg(GLIBC_2.2) [2]csinf(GLIBC_2.2) [2]fminf(GLIBC_2.2) [2]lroundl(GLIBC_2.2) [2]tanh(GLIBC_2.2) [2]
cargf(GLIBC_2.2) [2]csinh(GLIBC_2.2) [2]fminl(GLIBC_2.2) [2]matherr(GLIBC_2.2) [1]tanhf(GLIBC_2.2) [2]
cargl(GLIBC_2.2) [2]csinhf(GLIBC_2.2) [2]fmod(GLIBC_2.2) [2]modf(GLIBC_2.2) [2]tanhl(GLIBC_2.2) [2]
casin(GLIBC_2.2) [2]csinhl(GLIBC_2.2) [2]fmodf(GLIBC_2.2) [2]modff(GLIBC_2.2) [2]tanl(GLIBC_2.2) [2]
casinf(GLIBC_2.2) [2]csinl(GLIBC_2.2) [2]fmodl(GLIBC_2.2) [2]modfl(GLIBC_2.2) [2]tgamma(GLIBC_2.2) [2]
casinh(GLIBC_2.2) [2]csqrt(GLIBC_2.2) [2]frexp(GLIBC_2.2) [2]nan(GLIBC_2.2) [2]tgammaf(GLIBC_2.2) [2]
casinhf(GLIBC_2.2) [2]csqrtf(GLIBC_2.2) [2]frexpf(GLIBC_2.2) [2]nanf(GLIBC_2.2) [2]tgammal(GLIBC_2.2) [2]
casinhl(GLIBC_2.2) [2]csqrtl(GLIBC_2.2) [2]frexpl(GLIBC_2.2) [2]nanl(GLIBC_2.2) [2]trunc(GLIBC_2.2) [2]
casinl(GLIBC_2.2) [2]ctan(GLIBC_2.2) [2]gamma(GLIBC_2.2) [4]nearbyint(GLIBC_2.2) [2]truncf(GLIBC_2.2) [2]
catan(GLIBC_2.2) [2]ctanf(GLIBC_2.2) [2]gammaf(GLIBC_2.2) [1]nearbyintf(GLIBC_2.2) [2]truncl(GLIBC_2.2) [2]
catanf(GLIBC_2.2) [2]ctanh(GLIBC_2.2) [2]gammal(GLIBC_2.2) [1]nearbyintl(GLIBC_2.2) [2]y0(GLIBC_2.2) [2]
catanh(GLIBC_2.2) [2]ctanhf(GLIBC_2.2) [2]hypot(GLIBC_2.2) [2]nextafter(GLIBC_2.2) [2]y0f(GLIBC_2.2) [1]
catanhf(GLIBC_2.2) [2]ctanhl(GLIBC_2.2) [2]hypotf(GLIBC_2.2) [2]nextafterf(GLIBC_2.2) [2]y0l(GLIBC_2.2) [1]
catanhl(GLIBC_2.2) [2]ctanl(GLIBC_2.2) [2]hypotl(GLIBC_2.2) [2]nextafterl(GLIBC_2.2) [2]y1(GLIBC_2.2) [2]
catanl(GLIBC_2.2) [2]dremf(GLIBC_2.2) [1]ilogb(GLIBC_2.2) [2]nexttoward(GLIBC_2.2) [2]y1f(GLIBC_2.2) [1]
cbrt(GLIBC_2.2) [2]dreml(GLIBC_2.2) [1]ilogbf(GLIBC_2.2) [2]nexttowardf(GLIBC_2.2) [2]y1l(GLIBC_2.2) [1]
cbrtf(GLIBC_2.2) [2]erf(GLIBC_2.2) [2]ilogbl(GLIBC_2.2) [2]nexttowardl(GLIBC_2.2) [2]yn(GLIBC_2.2) [2]
cbrtl(GLIBC_2.2) [2]erfc(GLIBC_2.2) [2]j0(GLIBC_2.2) [2]pow(GLIBC_2.2) [2]ynf(GLIBC_2.2) [1]
ccos(GLIBC_2.2) [2]erfcf(GLIBC_2.2) [2]j0f(GLIBC_2.2) [1]pow10(GLIBC_2.2) [1]ynl(GLIBC_2.2) [1]
ccosf(GLIBC_2.2) [2]erfcl(GLIBC_2.2) [2]j0l(GLIBC_2.2) [1]pow10f(GLIBC_2.2) [1] 
ccosh(GLIBC_2.2) [2]erff(GLIBC_2.2) [2]j1(GLIBC_2.2) [2]pow10l(GLIBC_2.2) [1] 
ccoshf(GLIBC_2.2) [2]erfl(GLIBC_2.2) [2]j1f(GLIBC_2.2) [1]powf(GLIBC_2.2) [2] 

Referenced Specification(s)

[4]. SUSv2

An LSB conforming implementation shall provide the architecture specific data interfaces for Math specified in Table 1-26, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-26. libm - Math Data Interfaces

signgam(GLIBC_2.2) [1]    

Referenced Specification(s)


1.5. Data Definitions for libm

This section defines global identifiers and their values that are associated with interfaces contained in libm. These definitions are organized into groups that correspond to system headers. This convention is used as a convenience for the reader, and does not imply the existence of these headers, or their content.

These definitions are intended to supplement those provided in the referenced underlying specifications.

This specification uses ISO/IEC 9899 C Language as the reference programming language, and data definitions are specified in ISO C format. The C language is used here as a convenient notation. Using a C language description of these data objects does not preclude their use by other programming languages.


1.5.1. fenv.h


#define FE_INVALID	(1UL << 0)
#define FE_DIVBYZERO	(1UL << 2)
#define FE_OVERFLOW	(1UL << 3)
#define FE_UNDERFLOW	(1UL << 4)
#define FE_INEXACT	(1UL << 5)
#define FE_UNNORMAL	1UL << 1

#define FE_ALL_EXCEPT	(FE_INEXACT | FE_UNDERFLOW | FE_OVERFLOW | FE_DIVBYZERO | FE_UNNORMAL | FE_INVALID)

#define FE_TONEAREST	0
#define FE_DOWNWARD	1
#define FE_UPWARD	2
#define FE_TOWARDZERO	3

typedef unsigned long int fexcept_t;

typedef unsigned long int fenv_t;
#define FE_DFL_ENV	((__const fenv_t *) 0xc009804c0270033fUL)

1.5.2. math.h


#define fpclassify(x)	(sizeof (x) == sizeof (float) ? __fpclassifyf (x) :sizeof (x) == sizeof (double) ? __fpclassify (x) : __fpclassifyl (x))
#define signbit(x)	(sizeof (x) == sizeof (float)? __signbitf (x): sizeof (x) == sizeof (double)? __signbit (x) : __signbitl (x))

#define FP_ILOGB0	-2147483648
#define FP_ILOGBNAN	2147483647

1.6. Interfaces for libpthread

Table 1-27 defines the library name and shared object name for the libpthread library

Table 1-27. libpthread Definition

Library:libpthread
SONAME:libpthread.so.0

The behavior of the interfaces in this library is specified by the following specifications:

Large File Support
this specification
ISO POSIX (2003)


1.6.1. Realtime Threads


1.6.1.1. Interfaces for Realtime Threads

An LSB conforming implementation shall provide the architecture specific functions for Realtime Threads specified in Table 1-28, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-28. libpthread - Realtime Threads Function Interfaces

pthread_attr_getinheritsched(GLIBC_2.2) [1]pthread_attr_getscope(GLIBC_2.2) [1]pthread_attr_setschedpolicy(GLIBC_2.2) [1]pthread_getschedparam(GLIBC_2.2) [1] 
pthread_attr_getschedpolicy(GLIBC_2.2) [1]pthread_attr_setinheritsched(GLIBC_2.2) [1]pthread_attr_setscope(GLIBC_2.2) [1]pthread_setschedparam(GLIBC_2.2) [1] 

Referenced Specification(s)


1.6.2. Advanced Realtime Threads


1.6.2.1. Interfaces for Advanced Realtime Threads

No external functions are defined for libpthread - Advanced Realtime Threads


1.6.3. Posix Threads


1.6.3.1. Interfaces for Posix Threads

An LSB conforming implementation shall provide the architecture specific functions for Posix Threads specified in Table 1-29, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-29. libpthread - Posix Threads Function Interfaces

_pthread_cleanup_pop(GLIBC_2.2) [1]pthread_cancel(GLIBC_2.2) [2]pthread_join(GLIBC_2.2) [2]pthread_rwlock_init(GLIBC_2.2) [2]pthread_sigmask(GLIBC_2.2) [2]
_pthread_cleanup_push(GLIBC_2.2) [1]pthread_cond_broadcast(GLIBC_2.3.2) [2]pthread_key_create(GLIBC_2.2) [2]pthread_rwlock_rdlock(GLIBC_2.2) [2]pthread_testcancel(GLIBC_2.2) [2]
pread(GLIBC_2.2) [2]pthread_cond_destroy(GLIBC_2.3.2) [2]pthread_key_delete(GLIBC_2.2) [2]pthread_rwlock_timedrdlock(GLIBC_2.2) [2]pwrite(GLIBC_2.2) [2]
pread64(GLIBC_2.2) [3]pthread_cond_init(GLIBC_2.3.2) [2]pthread_kill(GLIBC_2.2) [2]pthread_rwlock_timedwrlock(GLIBC_2.2) [2]pwrite64(GLIBC_2.2) [3]
pthread_attr_destroy(GLIBC_2.2) [2]pthread_cond_signal(GLIBC_2.3.2) [2]pthread_mutex_destroy(GLIBC_2.2) [2]pthread_rwlock_tryrdlock(GLIBC_2.2) [2]sem_close(GLIBC_2.2) [2]
pthread_attr_getdetachstate(GLIBC_2.2) [2]pthread_cond_timedwait(GLIBC_2.3.2) [2]pthread_mutex_init(GLIBC_2.2) [2]pthread_rwlock_trywrlock(GLIBC_2.2) [2]sem_destroy(GLIBC_2.2) [2]
pthread_attr_getguardsize(GLIBC_2.2) [2]pthread_cond_wait(GLIBC_2.3.2) [2]pthread_mutex_lock(GLIBC_2.2) [2]pthread_rwlock_unlock(GLIBC_2.2) [2]sem_getvalue(GLIBC_2.2) [2]
pthread_attr_getschedparam(GLIBC_2.2) [2]pthread_condattr_destroy(GLIBC_2.2) [2]pthread_mutex_trylock(GLIBC_2.2) [2]pthread_rwlock_wrlock(GLIBC_2.2) [2]sem_init(GLIBC_2.2) [2]
pthread_attr_getstack(GLIBC_2.2) [2]pthread_condattr_getpshared(GLIBC_2.2) [2]pthread_mutex_unlock(GLIBC_2.2) [2]pthread_rwlockattr_destroy(GLIBC_2.2) [2]sem_open(GLIBC_2.2) [2]
pthread_attr_getstackaddr(GLIBC_2.2) [2]pthread_condattr_init(GLIBC_2.2) [2]pthread_mutexattr_destroy(GLIBC_2.2) [2]pthread_rwlockattr_getpshared(GLIBC_2.2) [2]sem_post(GLIBC_2.2) [2]
pthread_attr_getstacksize(GLIBC_2.2) [2]pthread_condattr_setpshared(GLIBC_2.2) [2]pthread_mutexattr_getpshared(GLIBC_2.2) [2]pthread_rwlockattr_init(GLIBC_2.2) [2]sem_timedwait(GLIBC_2.2) [2]
pthread_attr_init(GLIBC_2.2) [2]pthread_create(GLIBC_2.2) [2]pthread_mutexattr_gettype(GLIBC_2.2) [2]pthread_rwlockattr_setpshared(GLIBC_2.2) [2]sem_trywait(GLIBC_2.2) [2]
pthread_attr_setdetachstate(GLIBC_2.2) [2]pthread_detach(GLIBC_2.2) [2]pthread_mutexattr_init(GLIBC_2.2) [2]pthread_self(GLIBC_2.2) [2]sem_unlink(GLIBC_2.2) [2]
pthread_attr_setguardsize(GLIBC_2.2) [2]pthread_equal(GLIBC_2.2) [2]pthread_mutexattr_setpshared(GLIBC_2.2) [2]pthread_setcancelstate(GLIBC_2.2) [2]sem_wait(GLIBC_2.2) [2]
pthread_attr_setschedparam(GLIBC_2.2) [2]pthread_exit(GLIBC_2.2) [2]pthread_mutexattr_settype(GLIBC_2.2) [2]pthread_setcanceltype(GLIBC_2.2) [2] 
pthread_attr_setstackaddr(GLIBC_2.2) [2]pthread_getconcurrency(GLIBC_2.2) [2]pthread_once(GLIBC_2.2) [2]pthread_setconcurrency(GLIBC_2.2) [2] 
pthread_attr_setstacksize(GLIBC_2.3.3) [2]pthread_getspecific(GLIBC_2.2) [2]pthread_rwlock_destroy(GLIBC_2.2) [2]pthread_setspecific(GLIBC_2.2) [2] 

Referenced Specification(s)


1.7. Interfaces for libgcc_s

Table 1-30 defines the library name and shared object name for the libgcc_s library

Table 1-30. libgcc_s Definition

Library:libgcc_s
SONAME:libgcc_s.so.1

The behavior of the interfaces in this library is specified by the following specifications:

this specification


1.7.1. Unwind Library


1.7.1.1. Interfaces for Unwind Library

An LSB conforming implementation shall provide the architecture specific functions for Unwind Library specified in Table 1-31, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-31. libgcc_s - Unwind Library Function Interfaces

_Unwind_DeleteException(GCC_3.0) [1]_Unwind_GetGR(GCC_3.0) [1]_Unwind_GetLanguageSpecificData(GCC_3.0) [1]_Unwind_RaiseException(GCC_3.0) [1]_Unwind_SetGR(GCC_3.0) [1]
_Unwind_ForcedUnwind(GCC_3.0) [1]_Unwind_GetIP(GCC_3.0) [1]_Unwind_GetRegionStart(GCC_3.0) [1]_Unwind_Resume(GCC_3.0) [1]_Unwind_SetIP(GCC_3.0) [1]

Referenced Specification(s)


1.8. Interface Definitions for libgcc_s

Table of Contents
_Unwind_DeleteException -- private C++ error handling method
_Unwind_ForcedUnwind -- private C++ error handling method
_Unwind_GetGR -- private C++ error handling method
_Unwind_GetIP -- private C++ error handling method
_Unwind_GetLanguageSpecificData -- private C++ error handling method
_Unwind_GetRegionStart -- private C++ error handling method
_Unwind_RaiseException -- private C++ error handling method
_Unwind_Resume -- private C++ error handling method
_Unwind_SetGR -- private C++ error handling method
_Unwind_SetIP -- private C++ error handling method

The following interfaces are included in libgcc_s and are defined by this specification. Unless otherwise noted, these interfaces shall be included in the source standard.

Other interfaces listed above for libgcc_s shall behave as described in the referenced base document.

_Unwind_DeleteException

Name

_Unwind_DeleteException -- private C++ error handling method

Synopsis

void _Unwind_DeleteException((struct _Unwind_Exception *object));

Description

_Unwind_DeleteException() deletes the given exception object. If a given runtime resumes normal execution after catching a foreign exception, it will not know how to delete that exception. Such an exception shall be deleted by calling _Unwind_DeleteException(). This is a convenience function that calls the function pointed to by the exception_cleanup field of the exception header.

_Unwind_ForcedUnwind

Name

_Unwind_ForcedUnwind -- private C++ error handling method

Synopsis

_Unwind_Reason_Code _Unwind_ForcedUnwind((struct _Unwind_Exception *object), _Unwind_Stop_Fn stop, void *stop_parameter);

Description

_Unwind_ForcedUnwind() raises an exception for forced unwinding, passing along the given exception object, which should have its exception_class and exception_cleanup fields set. The exception object has been allocated by the language-specific runtime, and has a language-specific format, except that it shall contain an _Unwind_Exception struct.

Forced unwinding is a single-phase process. stop and stop_parameter control the termination of the unwind process instead of the usual personality routine query. stop is called for each unwind frame, with the parameteres described for the usual personality routine below, plus an additional stop_parameter.

Return Value

When stop identifies the destination frame, it transfers control to the user code as appropriate without returning, normally after calling _Unwind_DeleteException(). If not, then it should return an _Unwind_Reason_Code value.

If stop returns any reason code other than _URC_NO_REASON, then the stack state is indeterminate from the point of view of the caller of _Unwind_ForcedUnwind(). Rather than attempt to return, therefore, the unwind library should use the exception_cleanup entry in the exception, and then call abort().

_URC_NO_REASON

This is not the destination from. The unwind runtime will call frame's personality routine with the _UA_FORCE_UNWIND and _UA_CLEANUP_PHASE flag set in actions, and then unwind to the next frame and call the stop() function again.

_URC_END_OF_STACK

In order to allow _Unwind_ForcedUnwind() to perform special processing when it reaches the end of the stack, the unwind runtime will call it after the last frame is rejected, with a NULL stack pointer in the context, and the stop() function shall catch this condition. It may return this code if it cannot handle end-of-stack.

_URC_FATAL_PHASE2_ERROR

The stop() function may return this code for other fatal conditions like stack corruption.

_Unwind_GetGR

Name

_Unwind_GetGR -- private C++ error handling method

Synopsis

_Unwind_Word _Unwind_GetGR((struct _Unwind_Context *context), int index);

Description

_Unwind_GetGR() returns data at index found in context. The register is identified by its index: 0 to 31 are for the fixed registers, and 32 to 127 are for the stacked registers.

During the two phases of unwinding, only GR1 has a guaranteed value, which is the global pointer of the frame referenced by the unwind context. If the register has its NAT bit set, the behavior is unspecified.

_Unwind_GetIP

Name

_Unwind_GetIP -- private C++ error handling method

Synopsis

_Unwind_Ptr _Unwind_GetIP((struct _Unwind_Context *context));

Description

_Unwind_GetIP() returns the instruction pointer value for the routine identified by the unwind context.

_Unwind_GetLanguageSpecificData

Name

_Unwind_GetLanguageSpecificData -- private C++ error handling method

Synopsis

_Unwind_Ptr _Unwind_GetLanguageSpecificData((struct _Unwind_Context *context), uint value);

Description

_Unwind_GetLanguageSpecificData() returns the address of the language specific data area for the current stack frame.

_Unwind_GetRegionStart

Name

_Unwind_GetRegionStart -- private C++ error handling method

Synopsis

_Unwind_Ptr _Unwind_GetRegionStart((struct _Unwind_Context *context));

Description

_Unwind_GetRegionStart() routine returns the address (i.e., 0) of the beginning of the procedure or code fragment described by the current unwind descriptor block.

_Unwind_RaiseException

Name

_Unwind_RaiseException -- private C++ error handling method

Synopsis

_Unwind_Reason_Code _Unwind_RaiseException((struct _Unwind_Exception *object));

Description

_Unwind_RaiseException() raises an exception, passing along the given exception object, which should have its exception_class and exception_cleanup fields set. The exception object has been allocated by the language-specific runtime, and has a language-specific format, exception that it shall contain an _Unwind_Exception.

Return Value

_Unwind_RaiseException() does not return unless an error condition is found. If an error condition occurs, an _Unwind_Reason_Code is returnd:

_URC_END_OF_STACK

The unwinder encountered the end of the stack during phase one without finding a handler. The unwind runtime will not have modified the stack. The C++ runtime will normally call uncaught_exception() in this case.

_URC_FATAL_PHASE1_ERROR

The unwinder encountered an unexpected error during phase one, because of something like stack corruption. The unwind runtime will not have modified the stack. The C++ runtime will normally call terminate() in this case.

_URC_FATAL_PHASE2_ERROR

The unwinder encountered an unexpected error during phase two. This is usually a throw, which will call terminate().

_Unwind_Resume

Name

_Unwind_Resume -- private C++ error handling method

Synopsis

void _Unwind_Resume((struct _Unwind_Exception *object));

Description

_Unwind_Resume() resumes propagation of an existing exception object. A call to this routine is inserted as the end of a landing pad that performs cleanup, but does not resume normal execution. It causes unwinding to proceed further.

_Unwind_SetGR

Name

_Unwind_SetGR -- private C++ error handling method

Synopsis

void _Unwind_SetGR((struct _Unwind_Context *context), int index, uint value);

Description

_Unwind_SetGR() sets the value of the register indexed for the routine identified by the unwind context.

_Unwind_SetIP

Name

_Unwind_SetIP -- private C++ error handling method

Synopsis

void _Unwind_SetIP((struct _Unwind_Context *context), uint value);

Description

_Unwind_SetIP() sets the value of the instruction pointer for the routine identified by the unwind context


1.9. Interfaces for libdl

Table 1-32 defines the library name and shared object name for the libdl library

Table 1-32. libdl Definition

Library:libdl
SONAME:libdl.so.2

The behavior of the interfaces in this library is specified by the following specifications:

this specification
ISO POSIX (2003)


1.9.1. Dynamic Loader


1.9.1.1. Interfaces for Dynamic Loader

An LSB conforming implementation shall provide the architecture specific functions for Dynamic Loader specified in Table 1-33, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-33. libdl - Dynamic Loader Function Interfaces

dladdr(GLIBC_2.0) [1]dlclose(GLIBC_2.0) [2]dlerror(GLIBC_2.0) [2]dlopen(GLIBC_2.1) [1]dlsym(GLIBC_2.0) [1]

Referenced Specification(s)


1.10. Interfaces for libcrypt

Table 1-34 defines the library name and shared object name for the libcrypt library

Table 1-34. libcrypt Definition

Library:libcrypt
SONAME:libcrypt.so.1

The behavior of the interfaces in this library is specified by the following specifications:

ISO POSIX (2003)


1.10.1. Encryption


1.10.1.1. Interfaces for Encryption

An LSB conforming implementation shall provide the architecture specific functions for Encryption specified in Table 1-35, with the full mandatory functionality as described in the referenced underlying specification.

Table 1-35. libcrypt - Encryption Function Interfaces

crypt(GLIBC_2.0) [1]encrypt(GLIBC_2.0) [1]setkey(GLIBC_2.0) [1]  

Referenced Specification(s)

II. Utility Libraries

Table of Contents
2. Libraries

Chapter 2. Libraries

An LSB-conforming implementation shall also support some utility libraries which are built on top of the interfaces provided by the base libraries. These libraries implement common functionality, and hide additional system dependent information such as file formats and device names.


2.1. Interfaces for libz

Table 2-1 defines the library name and shared object name for the libz library

Table 2-1. libz Definition

Library:libz
SONAME:libz.so.1


2.1.1. Compression Library


2.1.1.1. Interfaces for Compression Library

No external functions are defined for libz - Compression Library


2.2. Interfaces for libncurses

Table 2-2 defines the library name and shared object name for the libncurses library

Table 2-2. libncurses Definition

Library:libncurses
SONAME:libncurses.so.5


2.2.1. Curses


2.2.1.1. Interfaces for Curses

No external functions are defined for libncurses - Curses


2.3. Interfaces for libutil

Table 2-3 defines the library name and shared object name for the libutil library

Table 2-3. libutil Definition

Library:libutil
SONAME:libutil.so.1

The behavior of the interfaces in this library is specified by the following specifications:

this specification


2.3.1. Utility Functions


2.3.1.1. Interfaces for Utility Functions

An LSB conforming implementation shall provide the architecture specific functions for Utility Functions specified in Table 2-4, with the full mandatory functionality as described in the referenced underlying specification.

Table 2-4. libutil - Utility Functions Function Interfaces

forkpty(GLIBC_2.0) [1]login_tty(GLIBC_2.0) [1]logwtmp(GLIBC_2.0) [1]  
login(GLIBC_2.0) [1]logout(GLIBC_2.0) [1]openpty(GLIBC_2.0) [1]  

Referenced Specification(s)


Appendix A. Alphabetical Listing of Interfaces


A.1. libgcc_s

The behaviour of the interfaces in this library is specified by the following Standards.

this specification

Table A-1. libgcc_s Function Interfaces

_Unwind_DeleteException[1]_Unwind_GetLanguageSpecificData[1]_Unwind_SetGR[1]
_Unwind_ForcedUnwind[1]_Unwind_GetRegionStart[1]_Unwind_SetIP[1]
_Unwind_GetGR[1]_Unwind_RaiseException[1] 
_Unwind_GetIP[1]_Unwind_Resume[1] 

A.2. libm

The behaviour of the interfaces in this library is specified by the following Standards.

ISO C (1999)
ISO POSIX (2003)

Table A-2. libm Function Interfaces

__fpclassifyl[1]__signbitl[1]exp2l[1]

I. Package Format and Installation

Table of Contents
1. Software Installation

Chapter 1. Software Installation


1.1. Package Dependencies

The LSB runtime environment shall provde the following dependencies.

lsb-core-ia64

This dependency is used to indicate that the application is dependent on features contained in the LSB-Core specification.

These dependencies shall have a version of 3.0.

Other LSB modules may add additional dependencies; such dependencies shall have the format lsb-module-ia64.


1.2. Package Architecture Considerations

All packages must specify an architecture of IA64. A LSB runtime environment must accept an architecture of ia64 even if the native architecture is different.

The archnum value in the Lead Section shall be 0x0009.


Appendix A. GNU Free Documentation License

Version 1.1, March 2000

Copyright (C) 2000 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.


A.1. PREAMBLE

The purpose of this License is to make a manual, textbook, or other written document "free" in the sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or reference.


A.2. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a notice placed by the copyright holder saying it can be distributed under the terms of this License. The "Document", below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as "you".

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors of the Document to the Document's overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (For example, if the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is released under this License.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, whose contents can be viewed and edited directly and straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input to text formatters. A copy made in an otherwise Transparent file format whose markup has been designed to thwart or discourage subsequent modification by readers is not Transparent. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML designed for human modification. Opaque formats include PostScript, PDF, proprietary formats that can be read and edited only by proprietary word processors, SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to appear in the title page. For works in formats which do not have any title page as such, "Title Page" means the text near the most prominent appearance of the work's title, preceding the beginning of the body of the text.


A.3. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.


A.4. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100, and the Document's license notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a publicly-accessible computer-network location containing a complete Transparent copy of the Document, free of added material, which the general network-using public has access to download anonymously at no charge using public-standard network protocols. If you use the latter option, you must take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to provide you with an updated version of the Document.


A.5. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

  1. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version gives permission.

  2. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together with at least five of the principal authors of the Document (all of its principal authors, if it has less than five).

  3. State on the Title page the name of the publisher of the Modified Version, as the publisher.

  4. Preserve all the copyright notices of the Document.

  5. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.

  6. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this License, in the form shown in the Addendum below.

  7. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document's license notice.

  8. Include an unaltered copy of this License.

  9. Preserve the section entitled "History", and its title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified Version as given on the Title Page. If there is no section entitled "History" in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

  10. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network locations given in the Document for previous versions it was based on. These may be placed in the "History" section. You may omit a network location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives permission.

  11. In any section entitled "Acknowledgements" or "Dedications", preserve the section's title, and preserve in the section all the substance and tone of each of the contributor acknowledgements and/or dedications given therein.

  12. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the section titles.

  13. Delete any section entitled "Endorsements". Such a section may not be included in the Modified Version.

  14. Do not retitle any existing section as "Endorsements" or to conflict in title with any Invariant Section.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document, you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version's license notice. These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains nothing but endorsements of your Modified Version by various parties--for example, statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement of any Modified Version.


A.6. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license notice.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History" in the various original documents, forming one section entitled "History"; likewise combine any sections entitled "Acknowledgements", and any sections entitled "Dedications". You must delete all sections entitled "Endorsements."


A.7. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into the extracted document, and follow this License in all other respects regarding verbatim copying of that document.


A.8. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution medium, does not as a whole count as a Modified Version of the Document, provided no compilation copyright is claimed for the compilation. Such a compilation is called an "aggregate", and this License does not apply to the other self-contained works thus compiled with the Document, on account of their being thus compiled, if they are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one quarter of the entire aggregate, the Document's Cover Texts may be placed on covers that surround only the Document within the aggregate. Otherwise they must appear on covers around the whole aggregate.


A.9. TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these Invariant Sections. You may include a translation of this License provided that you also include the original English version of this License. In case of a disagreement between the translation and the original English version of this License, the original English version will prevail.


A.10. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify, sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies, or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.


A.11. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License "or any later version" applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version ever published (not as a draft) by the Free Software Foundation.


A.12. How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.1 or any later version published by the Free Software Foundation; with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST. A copy of the license is included in the section entitled "GNU Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections" instead of saying which ones are invariant. If you have no Front-Cover Texts, write "no Front-Cover Texts" instead of "Front-Cover Texts being LIST"; likewise for Back-Cover Texts.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software license, such as the GNU General Public License, to permit their use in free software.